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Summary 
 
 Although one of the more useful subjects in higher 
mathematics, tensor analysis has the tendency to be 
one of the more abstruse seeming to students of 
physics and engineering who venture deeper into 
mathematics than the standard college curriculum of 
calculus through differential equations with some 
linear algebra and complex variable theory. Tensor 
analysis is useful because of its great generality, 
computational power, and compact, easy-to-use 
notation. It seems abstruse because of the intellectual 
gap that exists between where most physics and 
engineering mathematics end and where tensor 
analysis traditionally begins. The author’s purpose is to 
bridge that gap by discussing familiar concepts, such 
as denominate numbers, scalars, and vectors, by 
introducing dyads, triads, and other higher order 
products, coordinate invariant quantities, and finally by 
showing how all this material leads to the standard 
definition of tensor quantities as quantities that 
transform according to certain strict rules. 
 
  
Introduction 
 
 This monograph is intended to provide a conceptual 
foundation for students of physics and engineering 
who wish to pursue tensor analysis as part of their 
advanced studies in applied mathematics. Because an 
intellectual gap often exists between a student’s studies 
in undergraduate mathematics and advanced 
mathematics, the author’s intention is to enable the 
student to benefit from advanced studies by making 
languagelike associations between mathematics and 
the real world. Symbol manipulation is not sufficient in 
physics and engineering. One must express oneself in 
mathematics just as in language.  
 I studied tensor analysis on my own over a period of 
13 years. I was in my twenties and early thirties at that 
time and was interested in learning about tensors 

because Einstein had used them and I was reading 
Einstein. Family and work responsibilities prevented 
me from daily study, so I pursued the subject at my 
leisure, progressing through my numerous collected 
texts as time permitted. I found that tensor 
manipulation was quite simple, but the “language 
aspects” of tensor analysis⎯what the subject actually 
was trying to tell me about the world at large⎯were 
extremely difficult. I spent a great deal of time 
disentangling concepts such as the difference between 
a curved coordinate system and a curved space, the 
physical-geometrical interpretation of covariant versus 
contravariant, and so forth. I also followed up a 
number of very necessary side branches, such as the 
calculus of variations (required in deriving the general 
form of the geodesic) and the application of tensors in 
the general theory of mechanics. 
 My studies culminated in my taking a 12-week 
course from the University of Toledo in Toledo, Ohio. 
I was pleased that I could keep pace with the subject 
throughout the 12. My instructor seemed interested in 
my approach to solving problems and actually kept 
copies of my written homework for reference in future 
courses. Afterwards, I decided to write a monograph 
about my 13 years of mathematical studies so that 
other students could benefit. The present work is the 
result.  
 
 
Algebra  
 
Statement of Core Idea 
 
 Physical quantities are coordinate independent. So 
should be the mathematical quantities that model them. 
In tensor analysis, we seek coordinate-independent 
quantities for applications in physics and engineering; 
that is, we seek those quantities that have component 
transformation properties that render the quantities 
independent of the observer’s coordinate system. By 
doing so, the quantities have a type of objective 
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existence. That is why tensors are ultimately defined 
strictly in terms of their transformation properties. 
 
Number Systems 
 
 At the heart of all mathematics are numbers. 
Numbers are pure abstractions that can be 
approximately represented by words such as “one” and 
“two” or by numerals such as “1” and “2.” Numbers 
are the only entities that truly exist in Plato’s world of 
ideals and they cast their verbal or numerical shadows 
upon the face of human thought and endeavor. 
 The abstract quality of the concept of “number”1 is 
illustrated in the following example: Consider three 
cups of different sizes all containing water. Imagine 
that one is full to the brim, one is two-thirds full and 
the last is one-third. Although we can say that there are 
three cups of water, where exactly does the quality of 
“threeness” reside? 
 The number systems we use today are divided into 
these categories:  
 

• Natural or counting numbers: 1, 2, 3, 4, 5 
• Whole numbers: 0, 1, 2, 3, 4, 5 
• Integers: …,–3, –2, –1, 0, 1, 2, 3, 4, 5 
• Rational numbers: numbers that are irreducible 

ratios of pairs of integers 
• Irrational numbers: numbers such as √2 that are 

not irreducible ratios of pairs of integers  
• Real numbers: all the rational and irrational 

numbers taken together 
• Complex numbers: all the real numbers in 

addition to all those that have √–1 as a factor 
 
 Irrational numbers.⎯ These are numbers that can 
be shown to be not irreducible ratios of pairs of 
integers. That √2 is such a number is easily 
demonstrated by using proof by reductio ad absurdum: 
 

Let a and b be two integers such that √2 = a/b 
where the ratio a/b is assumed irreducible. Then, 2 
= a2/b2 and 2b2 = a2. Thus a2 and therefore a are 
even integers, and there exists a number k such that 
a = 2k and a2 = 4k2. Thus, b2 = 2k2, and b2 and 
therefore b are also even integers. But when a and 
b are both even, the ratio a/b is reducible since a 
factor of 2 may be taken from both the numerator 

                                                 
1Number is an abstract concept; numeral is a concrete 
representation of number. We write numerals such as 1, 2, 3…to 
represent the abstract concepts one, two, three… . 

and the denominator. This last statement violates 
the assumption that the ratio a/b must be 
irreducible and therefore we conclude by reductio 
that no two such integers as a and b can exist. 
Q.E.D. 
 

 Real numbers.⎯These numbers may also be divided 
into two different groups, other than rational and 
irrational. 
 Algebraic numbers: Algebraic numbers are all 
numbers that are solutions of the general, finite 
equation  
 

 1
1 1 0... 0n n

n na x a x a x a−
−+ + + + =  (1) 

 

where all the ai are rational numbers and all the 
superscripts and subscripts are integers. Note that √2 is 
such a number since it is a solution to the equation 
 

 2 2 0x − =  (2)  
 

So is the complex number √–1 since it is a solution to 
the equation 
 
 2 1 0x + =  (3) 
 
 Transcendental numbers: All numbers that are not 
solutions to the same general, finite equation (1) are 
called transcendental numbers. The numbers π and e 
(base of the natural logarithms) are two such numbers. 
The transcendental numbers are a subset of the 
irrational numbers. 
 Difference between transcendental and non-
transcendental irrational numbers.⎯The difference 
between transcendental irrational numbers and non-
transcendental irrational numbers can be understood by 
considering classical Greek constructions. In a finite 
number of steps, using a pencil, a straightedge, and a 
compass, it is possible to construct a line segment with 
length equal to the non-transcendental irrational 
number √2. First, draw an (arbitrary) unit line. Second, 
draw another unit line at right angles to the first unit 
line at one of its endpoints. Third, connect the free 
endpoints of the two lines. The result is the required 
line segment of length √2. A similar construction is 
possible for √3 and other such irrational numbers. 
 However, for the transcendental irrational number π, 
no such construction is possible in a finite number of 
steps. Recall that π is the ratio of the circumference of 
a circle to its diameter. Equivalently, it is the length of 
the circumference of a circle of unit diameter. We now 
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ask, is it possible, using only the classical Greek 
methods, to construct a line segment of length π? 
Suppose that we begin with an n-gon of an arbitrary 
finite number of sides to approximate the circle. We 
then use the length of one of the sides and repeat it, 
end to end along a reference line n times. This result 
represents our first approximation of the required line 
segment. 
 We then double the number of sides in the n-gon, 
making it a 2n-gon, and repeat the procedure. The new 
result is our second approximation, and so on as the 
procedure is repeated. It turns out that to reproduce the 
actual circumference length precisely, an infinite 
number of approximations is necessary. Thus, we are 
forced to conclude that using only the Greek classical 
methods, it is impossible to achieve the goal of 
constructing a line segment of length π because it 
exceeds our abilities by requiring an infinite number of 
steps. All finite approximations are close but not exact. 
 A similar argument may be made for the number e. 
The value of the natural logarithm ln(µ) is obtained 
from the integral with respect to x of the function 1/x 
from 1 to µ. For µ = e, the integral becomes ln(e) = 1, 
since e is the base of the natural logarithm. We start by 
not knowing exactly where e lies on the x-axis. We 
may use successive trapezoidal approximations to find 
where it lies by finding to what position x > 1 on the x-
axis we must integrate to obtain an area of unity, but 
the process is extremely complicated and involves 
convergence from below and above. As was the case 
with π, the process exceeds our abilities by requiring 
an infinite number of steps. 
 
Numbers, Denominate Numbers, and Vectors  
 
 Numbers can function in an infinite variety of ways. 
For example, they can be used to count items. If I were 
to ask how many marbles you had in a bag, you might 
answer, “Three,” a satisfactory answer. The bare 
number three, a magnitude, is sufficient to provide the 
information I seek. If you wanted to be more complete, 
you could answer, “Three marbles.” But inclusion of 
the word “marbles” is not required for your answer to 
make sense. However, not all number designations are 
as simple as naming the number of marbles in the bag. 
Suppose that I were to ask, “How far is it to your 
house?” and you answered, “Three.” My response 
would be “Three what?” Evidently, for this question, 
more information is required, another word or quantity 
or something has to be attached to the word “three” for 
your answer to make sense. This time I require a 

“denominate” number, a number with a name (Latin de 
meaning “with” and nomos meaning “name”). An 
answer of “3 km” names the number three so that it no 
longer strands alone as a bare magnitude. These 
numbers are sometimes referred to as “scalars.” 
Temperature is represented by a scalar. The total 
energy of a thermodynamic system is also represented 
by a scalar. 
 Let us pause here to define some basic terminology. 
Consider any fraction, which is a ratio of two integers 
such as two-thirds. You know from school that two is 
called the numerator and three, the denominator. The 
quantity two-thirds is a kind of denominate number. It 
tells how many (enumerates) of a particular fraction of 
something (denominated or named a third) I have. If 
the distance to your house is 2/3 km, then there are 
formally two denominations to contend with: a third 
and a kilometer. 
 Proceeding on, if I were then to ask, “Then how do I 
get to your house from here?” and you said, “Just walk 
3 km,” again I would look at you quizzically. For this 
question, not even a denominate number is sufficient; 
it is not only necessary to specify a distance but also a 
direction. “Just walk 3 km due north,” you say. Now 
your answer makes sense. The denominate number 3 
km now includes the additional information of 
direction. Such a quantity is called a vector. The study 
of vectors is a very broad study in mathematics.  
 Finally, suppose that we were at your house and I 
stopped to examine a support beam in the middle of the 
main room. I might ask, “What is the net load on this 
beam?” and you would answer, “(So many) pounds 
downward.” You answered appropriately using a 
vector. But now I ask, “What is the stress in the 
beam?” You answer, “Which stress? There are three 
tensile and six shear stresses. Which do you want to 
know? And in what part of the beam are you 
interested?” Thus, the subject of tensors is introduced 
because not even a vector is sufficient to answer the 
question about stresses.  
 You might have noticed that as we took our first step 
from bare number to scalar to vector, we added new 
terminology to deal with the concepts of 
denominability and directionality. We will begin our 
approach to tensors specifically by examining vectors 
and then by extending our concept of them. 
 
Formal Presentation of Vectors 
 
 Vectors give us information such as how far and in 
what direction. The “how far” part of a vector is 
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formally called the magnitude, roughly its size. The 
“what direction” part of a vector is formally called the 
direction. Thus, a vector is a quantity that possesses 
magnitude and direction. 
 Now that we have acquired an intuitive sense of 
what vectors are, let us consider their more formal 
characteristics. To do so, take a commonly used vector 
from the toolkit of physics, velocity. Velocity is a 
vector because it has magnitude and direction. Its 
magnitude, usually called speed, is a denominate 
number such as 50 mph or 28 000 km/s. Its direction is 
chosen to be the same as that in which the object is 
moving in space. Note the use of the word “chosen.” 
Mathematicians and physicists are free, within certain 
limits, to choose and define the terms and even the 
systems they are talking about; that is, they can choose 
and define how they will construct their model or 
theory. This point might seem subtle but in the long 
run, it is important. 
 In the angular quantities, such as angular velocity or 
angular momentum, the magnitude of the vector is 
obviously the number of revolutions per minute or the 
number of radians turned per second. But what 
direction should the vector have? The axis of rotation 
is the only direction that is unique in a rotating system, 
so we choose to place the vector along this axis. But 
should it point up or down? Tradition in physics has 
resolved that the direction be assigned via the right-
hand rule: the fingers of the right hand curl in  
the direction of the motion and the thumb of the right 
hand then points in the assigned direction of the vector. 
Such a vector is called a right-handed vector. Had  
the left hand been used, the result would have been  
the reverse. 
 Electrical current density is also a vector. It is 
usually designated by the letter j and has units of 
amperes per square meter. Current density is a measure 
of how much charge passes through a unit area 
perpendicular to the current flow in a unit time. The 
direction assigned to j is somewhat peculiar in that 
physicists and engineers use opposite conventions. For 
the engineer, j points in the direction that conventional 
current would flow. Conventional current is the flow of 
positive charge, and the use of this convention goes 
back to the times and practices of investigators such as 
Benjamin Franklin. It is now known that electrical 
current is a flow of electrons and that electrons (by 
convention) carry a negative charge. (The positive 
charge carriers barely move if at all.) Physicists have 
adopted the convention that j point in the direction of 

electron current, not conventional current. Hence, the 
student should be aware of this difference. 
 Resuming the discussion of velocity as a vector, 
suppose that I were driving northeast on a level road at 
34 mph. How would I specify my velocity? Well, the 
speed is known, but what about the direction? I could 
say “34 mph northeast on a level road.” “On a level 
road” specifies that I am going neither up nor down but 
horizontally. However, I am still unable to do many 
calculations because my direction combines two 
compass headings, north and east. If I am going 
exactly northeast, then I could say that I am traveling x 
mph east and x mph north. The following triangle 
represents my situation:  
 

 
 
 I can solve for x using Pythagoras’s theorem:  
x = 24 mph approximately. Thus, I write the velocity 
vector as 34 mph NE = 24 mph E + 24 mph N, 
understanding that the equation represents the situation 
shown in the triangle. I drop the caveat “on a level 
road” because the directions east and north are 
implicitly measured in the local horizontal plane. 
 To simplify, I use a unit vector u to represent the 
directions. A unit vector has a magnitude equal to one 
and any direction I choose. When I multiply the 
denominate number by the unit vector, the magnitudes 
combine as 1 × 24 mph and the direction attaches 
automatically. 
 Let uE and uN be unit vectors pointing east and north, 
respectively, and let uNE be a unit vector pointing 
northeast so that the velocity vector becomes 
 
 ( ) ( ) ( )34 mph 24 mph 24 mphNE E N= +u u u  (4) 
 
The vector (34 mph) uNE is said to have components  
24 mph eastward and 24 mph northward. This method 
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of representing vectors will be used throughout the 
remainder of this text. 
 If I divide through by the denominate number  
34 mph, I obtain the expression 
 
 ( ) ( )0.71 0.71NE E N= +u u u  (5) 
 
Note that cos 45° = sin 45° = 0.71 to two decimal 
places. I use trigonometry to write 
 
( ) ( )

( )
34 mph 34 mph cos45

34 mph sin 45
NE E

N

= × °

+ × °

u u

u
 (6) 

  
The components of the velocity can be obtained solely 
from the velocity itself and the directional convention 
adopted. This method of writing vectors should already 
be familiar to students of this text. 
 Let us now refine the method just introduced. We 
know that we live in a world of three spatial 
dimensions, forward, across, and up. Let us choose a 
standard notation for writing vectors as follows: 
 

i represents a unit vector forward 
j represents a unit vector across 
k represents a unit vector up 

 
Let us also agree to represent vectors in bolded type. 
Now, let V be a vector with components2 a, b, and c in 
the forward, across, and up directions, respectively. 
Then the vector V is formally written as 
 
 a b c= + +V i j k  (7) 
 
With this notation, we can now define arithmetic rules 
for combining vectors. 
 By the conventions of modern physics, we live in a 
world, not of three, but of four dimensions⎯three 
spatial and one temporal. We therefore introduce a 
fourth unit vector l to represent the forward direction 
of time from past to future. The resulting four-vector3 
V is formally written as 
 

                                                 
2We might also say “scalar” components since the individual components 
of a quantity such as velocity are all scalars. However, there are also cases 
in which the components are differential operators such as in the gradient 
operator ∇ = (∂/∂x)i + (∂/∂y)j + (∂/∂z)k. Herein, therefore, we will use the 
more generic term “components” as being inclusive of all possible cases. 
3A four-vector is a four-dimensional vector in the spacetime of special 
relativity. The components of a four-vector transform according to the 
familiar Lorentz-Einstein transformation for unaccelerated motion. 

 a b c d= + + +V i j k l  (8) 
 
In the case of the spacetime continuum of special 
relativity, the component d is usually an imaginary 
number. For example, if a, b, and c are the usual 
spatial locations x, y, and z, then d is the temporal 
location ict where i = √−1. This situation leads to the 
result that  
 
 2 2 2 2 2 2V x y z c t= ⋅ = + + −V V  (9) 
 
In relativistic spacetime, the theorem of Pythagoras 
does not strictly apply. The properties of four-vectors 
were extensively explored by Albert Einstein.  
 
Vector Arithmetic 
 
 Equality.⎯A basic rule in vector arithmetic is one 
that tells us when two vectors are equal. Suppose there 
are two vectors 
 
 = α +β + χU i j k  (10a) 
 
 a b c= + +V i j k  (10b) 
 
Whenever U = V is written, it will always mean that 
the individual components associated with each of the 
unit vectors i, j, and k are equal. Thus, the single 
vector equation U = V gives three independent scalar 
equations: 
 
 α = a (11a) 
 
 β = b (11b) 
 
 χ = c  (11c) 
 
Consider now the single statement U = V on the one 
hand and the triad {α = a, β = b, χ = c} on the other as 
completely synonymous. 
 Next consider cases where there are different sets of 
unit vectors in the same space. Let us say that i, j, and 
k comprise one set (the set K) and u, v, and w 
comprise a second set (the set K*). Now consider a 
vector V. Let us write 
 
 +a b c+V = i j k  (12a) 
 
 = α +β + χV u v w  (12b) 
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Now, we cannot equate components because the unit 
vectors are not the same. However, we can invoke the 
trivial identity and say that for all vectors V, it is true 
that V = V. From this trivial identity, we acquire the 
nontrivial result that 
 
 a b c+ + = α + β + χi j k u v w  (13) 
 
If the vectors u, v, and w can be expressed as functions 
of i, j, and k, then the components α, β, and χ can also 
be expressed as functions of a, b, and c. In other 
words, if  
 
 1 2 3u u u= + +u i j k  (14a) 
 
 1 2 3v v v= + +v i j k  (14b) 
 
 1 2 3w w w= + +w i j k  (14c) 
 
we can write 
 

( ) ( )
( )

( ) ( )
( )

1 2 3 1 2 3

1 2 3

1 1 1 2 2 2

3 3 3

a b c
u u u v v v

w w w

u v w u v w

u v w

+ + = α +β + χ

= α + + +β + +

+χ + +

= α +β + χ + α +β + χ

+ α +β + χ

i j k u v w
i j k i j k

i j k

i j

k

 (15) 

 
so that 
  
 1 1 1a u v w= α +β + χ  (16a) 
 
 2 2 2b u v w= α +β + χ  (16b) 
 
 3 3 3c u v w= α +β + χ  (16c) 
 
This last set of equations represents a set of component 
transformations for the vector V between the two sets 
of unit vectors K and K*. Coordinate transformations 
will be used later to formally define tensors. In the 
meantime, we will use what we have learned about 
vector equalities to develop many important ideas 
about tensors. 
 Addition.⎯Suppose that I traveled 6 km north and  
3 km more north. How far north would I have gone? A 
total of 9 km north. Now, suppose that I went 3 km 
east, 6 km north, and 5 more km east. How far north 
and how far east would I have gone? I would have 

gone 6 km north, but I would also have gone 3 km + 
5 km = 8 km east. Evidently, when vectors are added, 
they are added component by component. To formalize 
this as a rule, let us say that two vectors U and V can 
be added to produce a new vector W as 
 
 W = U + V (17) 
 
provided that the vectors U and V are added 
component by component. If  
 
 = α +β + χU i j k  (18a) 
 
 a b c= + +V i j k  (18b) 
 
then 
 
 ( ) ( ) ( )a b c+ = α + + β + + χ +U V i j k  (19) 
 
and 
 
 ( ) ( ) ( )a b c− = α − + β − + χ −U V i j k   (20) 
 
 Multiplication.⎯Vector addition provides a good 
beginning for defining vector arithmetic. However, 
vector arithmetic also consists of multiplication. We 
will next formally define several different types of 
products4 that all involve pairs of vectors. 
 Scalar or inner product: The first type of vector 
product to be defined is the scalar or inner product, so 
called because when two vectors are thus combined, 
the result is not a vector but a scalar. In physics, scalar 
products are useful in determining quantities such as 
power in a mechanical system (the scalar product of 
force and velocity). For the vectors 
 
 α +β + χU = i j k  (21a) 
 
 a b c+ +V = i j k  (21b) 
 
the scalar product will be denoted by the symbol U · V 
where the vector symbols U and V are written side by 
side with a dot in between (hence, the scalar product is 
sometimes referred to as the “dot product”). The 
vectors U and V are combined via the scalar product to 
produce a scalar η:  

                                                 
4We will not formally define division of vectors. We will encounter 
reciprocal vector sets, but strict division is not formally defined because 
there are so many different types of vector products. 
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 ⋅ = ηU V  (22) 
 
The scalar may be obtained in one of two ways. The 
first way is component-by-component multiplication 
and summing (analytical interpretation): 
 
 a b c⋅ = α +β + χU V  (23) 
 
The second way is the product of vector magnitudes 
and enclosed angle (geometrical interpretation): 
 
 cos⋅ = θU V U V  (24) 
 
where |U| and |V| are the lengths of U and V, 
respectively, and θ is the angle enclosed between them. 
 Note that in developing these formal definitions, we 
have stated the “new” (i.e., the “unknown”) in terms of 
the “known.” This point might seem trivial, but it is 
often important to bring it to mind, especially when 
you are involved in a complicated proof or other type 
of argument. Arguments usually run aground because 
terms are not sufficiently defined. 
 Let us look at the two definitions of inner product 
more closely and ask whether they are consistent, one 
with the other. Take the vectors U and V and form the 
term-by-term inner product according to basic algebra:  
 

( ) ( )
( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

a b c a

b

a b c

a b c a b c

a b c
a b c a b
c a b c

c a b

c

⋅ = α +β + χ ⋅ + +

= α ⋅ + + +β ⋅ + +

+χ ⋅ + +

= α ⋅ + α ⋅ + α ⋅ + β ⋅ + β ⋅
+β ⋅ + χ ⋅ + χ ⋅ + χ ⋅

= α ⋅ + α ⋅ +α ⋅ + β ⋅

+β ⋅ + β ⋅ + χ ⋅ + χ ⋅

+χ ⋅

U V i j k i j k

i i j k j i j k

k i j k
i i i j i k j i j j
j k k i k j k k

i i i j i k j i

j j j k k i k j

k k

 (25) 

 
 At this point, what are we to do with the inner 
products (i · i), (i · k), (j · k), and so on. We know that 
these vectors are unit vectors and that they are (by 
definition) mutually perpendicular. A little thought 
(and a lot of comparison with historical results in field 
theory) leads us to choose the definition 
 
 1⋅ = ⋅ = ⋅ =i i j j k k  (26) 
 
All other combinations = 0. 

 Remember, everything that is done in mathematics 
must be defined at some point in time by a human 
agency. Historically, applications in areas of physics 
such as field theory have produced certain recurrent 
forms of equations that eventually lead to the writing 
of definitions such as the foregoing. Study these 
definitions carefully. You will notice that the 
information about the inner products of unit vectors is 
neatly summarized in the geometric interpretation of 
inner product: 
 
 cos⋅ = θU V U V  (27) 
 
where in the case of the unit vectors |U| = |V| = 1 and 
cos θ = 1 or 0, depending on whether θ = 0° or 90°. 
The student may now proceed to complete the 
argument. 
 We have already said that the scalar product is also 
called the inner product. The terminology “inner 
product” is actually the preferred term in books on 
tensor analysis and will be adopted throughout the 
remainder of this text. 
 One special case of the inner product is of particular 
interest; that is, the inner product of a vector with itself 
is the square of the magnitude (length) of the vector: 
 
 2U⋅ =U U  (28) 
 
 Cross or vector product: Another type of product is 
the cross or vector product. The terminology “cross” is 
derived from the symbol used for this operation,  
U × V. The terminology “vector” is derived from the 
result of the cross product of two vectors, which is 
another vector. The direction of the new vector is 
perpendicular to the plane of the two vectors being 
combined and is specified as being “up” or “down” by 
the right-hand rule: rotate the first vector in the product 
U × V towards the second. The resultant will point in 
the direction in which a right-handed thread (of a 
screw) would advance. 
 This rule may seem somewhat arbitrary⎯and indeed 
it is⎯but it is useful in physics nonetheless, 
particularly when dealing with rotational quantities 
such as angular velocity. If an object is spinning at a 
rate of ω radians per second, we define a vector ω 
whose direction is along the spin axis by the right-hand 
rule. Now, select a point away from the axis in the 
rotating system and ask, “What is the velocity of the 
point?” Remember that velocity has both magnitude 
(speed) and direction. Let r be a vector from an 
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arbitrary point (reference or datum) on the spin axis to 
the point whose velocity we wish to determine. The 
desired velocity is given by the cross product ω × r. 
The vector resulting from a cross product is sometimes 
also called a pseudovector (or false vector), perhaps 
because of the arbitrary and somewhat ambiguous way 
in which its direction is defined. 
 Two vectors U and V in three-dimensional space 
may be combined via a cross product to produce a new 
vector S: 
 
 × =U V S  (29) 
 
where S is perpendicular to the plane containing U and 
V and has a sense (direction) given by the right-hand 
rule. The vector S is obtained via the rule (geometrical 
interpretation): 
 
 ( )sin= θS U V u  (30) 
 
where |U| and |V| are the lengths of U and V, 
respectively, θ is the angle enclosed between them, and 
u is a unit vector in the appropriate direction. 
 An equivalent formulation of the cross product is as 
a determinant (analytical interpretation): 
 

 det u u ux y z
v v vx y z

× =
i j k

U V  (31) 

 
Because of the use of the right-hand rule, note that  
U × V does not equal V × U, but rather 
 
 ( )× = − ×U V V U  (32) 
 
Thus, the cross product is not commutative. 
 It is interesting to look at the cross products of the 
unit vectors i, j, and k. Since they are all mutually 
perpendicular, sin θ = sin (±90°) = ±1, and |U||V| = 1 × 
1 = 1. If we write the unit vectors in the order i, j, k, i, 
j, k, i, j, k, …, we see that the cross product of any two 
consecutive unit vectors from left to right equals the 
next unit vector immediately to the right: i × j = k; j × 
k = i; k × i = j, and so on. On the other hand, the cross 
product of any two consecutive unit vectors from right 
to left equals negative one times the next vector 
immediately to the left: j × i = −k; k × j = −i;  

i × k = −j, and so on. These relations between unit 
vectors are often used to define or specify a right-
handed coordinate system. (Note that for a left-handed 
coordinate system, the argument would run in reverse 
of the one presented here.) 
 Product of a vector and a scalar: It is not possible to 
form a scalar or a vector product using anything other 
than two vectors. Nonetheless, the operation of 
doubling the length of a vector cannot be represented 
by either of these two operations. So we introduce still 
another type of product: A given vector V may be 
multiplied by a scalar number α to produce a new 
vector αV with a different magnitude but the same 
direction. 
 In the case of doubling the length of the given 
vector, α = 2. In general, we let V = Vu where u is a 
unit vector; then 
 
 ( )V Vα = α = α = ξV u u u  (33) 
 
where ξ = αV is the new magnitude. 
 Perhaps you are thinking that we are trying to make 
up the arithmetic of vectors as we go along. “You 
cannot really do this,” you argue, “because it has all 
been put down already in the text books.” True, it has. 
But where do you think that it all came from? It is 
important for students to approach their mathematics 
not from the perspective that “God said in the 
beginning…” but rather that somebody or many 
somebodies worked very hard to put it all together. 
Students must also realize, by extension, that they are 
perfectly capable of adding to what already is known 
or of inventing an entirely new system for inclusion in 
the ever growing body of mathematics. 
 
Dyads and Other Higher Order Products 
 
 This section will define another more general type of 
vector multiplication. The first step is simply following 
instructions from high school algebra. To take this first 
step, we consider how we performed the multiplication 
of quantities in algebra. Multiply the two quantities  
(a + b + c) and (d + e + f): 
 
( ) ( )a b c d e f ad ae af

bd be bf cd ce cf
+ + × + + = + +

+ + + + + +
 (34) 

 
 Recall that each term from the first parentheses is 
multiplied by each term in the second parentheses and 
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the resultant partial products are summed together to 
form the product. The product actually results from an 
application of the associative and distributive laws of 
algebra. Each of the original quantities had three terms. 
Their product has 32 = 9 terms. 
 Suppose that we multiplied two vectors the same 
way. What sort of entity would we produce? 
Remember that new entities must ultimately be defined 
in terms of those already known. Let us try. Multiply 
the vectors A = ai + bj + ck and D = di + ej + f k using 
the same rules that were used to form the product of  
(a + b + c) and (d + e + f): 
 

( )( )a b c d e f ad ae
af bd be bf cd ce cf

= + + + + = +

+ + + + + + +

AD i j k i j k ii ij
ik ji jj jk ki kj kk

 (35) 

 
 The right-hand side is a new entity, but does it make 
any sense or have any physical meaning? The answer 
is “Yes,” but we must progressively develop and 
define just what that meaning is. 
 The second step is to name this new entity so that we 
can more easily refer to it. We call it a dyad or dyadic 
product from the Latin di or dy, meaning “two” or 
“double.” Inserting a dot between the vectors A and D 
and between the corresponding unit vectors on the 
right-hand side would reduce the dyad to the ordinary 
inner product with the result being a scalar. Similarly, 
inserting the cross symbol would reduce the dyad to 
the ordinary cross product with the result being another 
vector. So the dyad appears to contain the inner and 
cross products5 as special cases. 
 Before making any more formal definitions, we will 
review two pertinent concepts. 
 

First, in algebra when multiplying two terms, it 
makes little difference which term is taken first. If 
we multiply x and y, the result can be called xy or 
yx, since xy = yx by the commutative law. 
However, we have already seen that the 
commutative law does not apply in all cases. For 
example, in the discussion of the vector cross 
product U × V, we discovered that U × V =  
−(V × U) because of the unusual way we chose to 
assign direction to the result (i.e., the commutative 
law does not hold for cross-multiplication). 

                                                 
5The dyad has nine components whereas the cross product has three. 
Insertion of the cross symbol in AD works as follows using the usual rules 
for the cross products of the unit vectors: A × D = (ai + bj + ck) ×  
(di + ej + fk) = adi × i + aei × j + afi × k + bdj × i + bej × j + bfj × k + cdk 
× i + cek × j + cfk × k = (bf – ce)i + (cd – af)j + (ae – bd)k. 

Therefore, in a case such as this, we say that the 
cross product is anticommutative. In the cross 
product, one vector premultiplies and the other 
postmultiplies. The position of the two vectors 
makes a difference to the result. This concept of 
premultiplication and postmultiplication also plays 
a role in defining the properties of the dyad. 
 
Second, recall the multiplication of a vector by a 
scalar. A given vector V can be multiplied by a 
scalar number α to produce a new vector with a 
different magnitude, but the vector will have the 
same direction. Let V = Vu where u is a unit 
vector. Then 
 

 ( )V Vα = α = α = ξV u u u  (36) 
 

where ξ is the new magnitude. Note that the result 
has a different magnitude but has the same 
direction as the original vector. In other words, this 
type of multiplication alters only the size of the 
vector but has no effect on the direction in which it 
points. Note also that αV = Vα. 
 

 Having reviewed these concepts, we are prepared to 
consider the dyad AD, an unknown entity that has 
entered our mathematical world. Let us exercise it and 
see just what we can discover. 
 Suppose that we were to form the inner product of 
AD with another arbitrary vector X. Let us premultiply 
by X and see what happens. Formally, write 
 
 ⋅X AD  (37) 
 
Now, we have another new entity to which we must 
give meaning. Let us agree that the vectors on each 
side of the dot will “attach” to one another just as in a 
normal inner product.  
 
 ( )⋅ ⋅X AD = X A D  (38) 
 
Now we know exactly how to handle the quantity  
(X · A), which is the usual inner product of two vectors 
and is equal to some scalar, say ξ. So, formally write 
 
 ( )⋅ ⋅ ξX AD = X A D = D  (39) 
 
where ξD is the product of a vector and a scalar. This 
product has a magnitude different from the magnitude 
of D but has the same direction as D.  
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 It is significant that the product has its direction 
determined by the dyad and not by the premultiplying 
vector X. It appears that postoperating6 on X with the 
dyad AD has given a vector with a new magnitude and 
a new direction as compared with X. This statement is 
so significant that we will consider it as part of the 
definition of a dyad. 
 Continuing on, suppose that we now postmultiply the 
dyad AD by the same vector X, again using the inner 
product. For consistency, use the same attachment rule 
as before. The result is 
 
 ( )⋅ = ⋅ = ψ = ψAD X A D X A A  (40) 
 
where ψ is the scalar (D · X) 
 As before, we acquire a vector with a new magnitude 
and a new direction from X, but it is a different vector 
(both in magnitude and direction) from the one 
acquired when we premultiplied. Evidently, this type 
of operation with dyads is neither commutative (since 
X · AD ≠ AD · X) nor anticommutative (since X · AD 
≠ −AD · X). This result should not be surprising. 
Commutativity in mathematics is never a given and 
when it does occur, it is somewhat a luxury because it 
simplifies our work. 
 The complete definition of a dyad can now be stated: 
 

A dyad is any quantity that operates on a vector 
through the inner product to produce a new vector 
with a different magnitude and direction from the 
original. The inner product of a vector and a dyad 
is noncommutative. 

 
Dyad Arithmetic 
 
 Equality.⎯Suppose that we have two dyads: 
 
 a b c d= + + + +A ii ij ik ji …  (41a) 
 
 = α +β + χ + δ +B ii ij ik ji …  (41b) 
 
Whenever we say that A = B, we will always mean 
that the individual components associated with each of 
the unit dyads ii, ij, jk, … are equal. Thus, the single 
dyad equation A = B will give us nine independent 
scalar equations:  
 

                                                 
6We preoperate on the dyad with X but postoperate on the vector X with the 
dyad. Note the terminology here. 

 Nine equalities altogether

etc.

a
b
c
d

α = ⎫
⎪β = ⎪⎪χ = ⎬
⎪δ = ⎪
⎪⎭

 (42) 

 
 We will thus consider the single statement A = B on 
the one hand and the nine scalar equations {α = a,  
β = b, χ = c, δ = d,…} on the other as being 
completely synonymous. 
 As in the discussion of vectors, with dyads we will 
also consider cases where there are different sets of 
unit vectors in the same space. Let us say that i, j, and 
k comprise one set (the set K) and that u, v, and w 
comprise a second set (the set K*). Now consider a 
dyad A and write 
 
 a b c= + + +iA ii j ik …  (43a) 
 
 = α +β + χ +A uu uv uw …  (43b) 
 
Now, we cannot directly equate components because 
the unit dyads are no longer the same, but we can 
invoke the trivial identity and say that for all dyads A, 
it is true that A = A. From this trivial identity, we 
acquire the nontrivial result that 
 
 a b c+ + + = α +β + χ +iii j ik uu uv uw… …  (44) 
 
 As before, if the vectors u, v, and w can be expressed 
as functions of i, j, and k, then the components α, β, 
and χ can also be expressed as functions of a, b, and c. 
The actual calculation will not be carried out here for 
the sake of space, but students are encouraged to 
attempt it on their own. The details are not 
complicated; just set up the linear transformation for 
the unit vectors 
 
 1 2 3u u u= + +u i j k  (45a) 
 
 1 2 3v v v= + +v i j k  (45b) 
 
 1 2 3w w w= + +w i j k  (45c) 
 
and naively multiply everything together using algebra. 
 Sums and differences.⎯In defining the equality of 
two dyads, we followed a pattern already familiar to us 
from vector equality. Let us continue to reason along 
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these lines and next consider dyad addition. We will 
agree that dyad addition proceeds component by 
component as does vector addition. Also, we will 
always represent dyads (as we have already begun to 
do) by boldface type with an underscore, such as 
 A or B. Now, write the rule for dyad addition: Let  
A = aii + bij + cik + dji +… and B = αii + βij + χik + 
δji +… . Then 
 

( ) ( )
( ) ( )

a b

c d

+ = + α + +β

+ + χ + + δ +

A B ii ij

ik ji …
 (46) 

 
 Dyad differences are handled the same as dyad sums: 
 

( ) ( )
( ) ( )

a b

c d

− = −α + −β

+ − χ + − δ +

A B ii ij

ik ji …
 (47) 

 
Note from these definitions that 
 
 + = +A B B A  (48) 
 
and 
 
 ( )− = − −A B B A  (49) 
 
Thus, dyad addition is commutative; dyad subtraction 
is anticommutative. 
 Multiplication.⎯As with vector multiplication, dyad 
multiplication may take one of several forms. The dyad 
products to be examined in the following sections are 
the inner product, the cross product, the product of a 
dyad and a scalar, and the direct product of two dyads.  
 Inner product: First, we must define the inner 
product of two dyads. Consider the dyads A and B. 
Their inner product may be formally written as 
 
 ⋅A B  (50) 
 
Now, as before, we must give meaning to the symbol. 
Let us begin by letting 
 

 
=
=

A XY
B ST

 (51) 

 
We now substitute for A and B: 
 
 ⋅ = ⋅A B XY ST  (52) 

As before, it seems appropriate to allow the dot to 
attach to the vectors closest to itself. Therefore, 
 
 ( )⋅ = ⋅ = ⋅ = ξA B XY ST X Y S T XT  (53) 
 
where ξ is the scalar Y · S. The dot product of two 
dyads is thus another dyad. Is this result unexpected? 
Perhaps, but it is consistent with everything that we 
have done up to this point, so we will persist. Note that 
the inner product of two dyads is not commutative (i.e., 
A · B ≠ B · A)  
 
 ( )⋅ = ⋅ = ⋅ = ξA B XY ST X Y S T XT  (54) 
 
but 
 
 ( )⋅ = ⋅ = ⋅ = χB A ST XY S T X Y SY  (55) 
 
Since the inner product of two dyads is another dyad, it 
is just possible that one of the original dyads in the 
product is itself another inner product. Let A = C · D 
and see what we can discover. First, note that 
 
 ⋅ = ⋅ ⋅A B C D B  (56) 
 
The question that now comes to mind is whether the 
order of performing the inner products makes any 
difference to the result; that is, whether 
 
 ( ) ( )⋅ ⋅ = ⋅ ⋅C D B C D B  (57) 
 
To answer this question, let C = XM and D = NY. 
Then A = C · D = XM · NY = X(M · N)Y = ψXY. 
Recalling that Y · S = ξ, 
 

 
( ) ( )⎡ ⎤⋅ ⋅ = ⋅ ⋅⎣ ⎦

= ψ ⋅ = ψξ

C D B X M N Y ST

XY ST XT
 (58) 

 

 
( ) ( )⎡ ⎤⋅ ⋅ = ⋅ ⋅⎣ ⎦

= ξ ⋅ = ξψ

C D B XM N Y S T

XM NT XT
 (59) 

 
Thus, the result is independent of the order of 
performing the inner products, and so we conclude that 
the associative law holds for inner multiplication of 
dyads; that is, that 
 
 ( ) ( )⋅ ⋅ = ⋅ ⋅C D B C D B  (60) 
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 Cross product: We may also define the cross product 
of two dyads as 
 
 ×A B  (61) 
 
With A = XY and B = ST, we have 
 
 ( )× = × = × =A B XY ST X Y S T XMT  (62) 
 
where M = Y × S. The result is another new entity, a 
triad. Its properties may be developed along lines 
analogous to those already laid out for dyads. Note 
how the attachment rule for the operator (in this case, 
the cross ×) has again been applied. In working with 
dyads and higher order products, this rule has become 
the norm, part of the internal “rhythm” of the 
mathematics. 
 Product of a dyad and a scalar: Given the dyad  
A = XY and the scalar α, form the product α A and 
note the result: 
 

( ) ( )
( ) ( )

α = α = α = α = α

= α = α = α = α

A XY X Y X Y X Y

X Y X Y XY A
 (63) 

 
The product of a dyad and a scalar is thus 
commutative. 
 Direct (or dyad) products: We may do with dyads, 
triads, and other higher order products what we have 
already done with vectors; that is, we may multiply 
them directly without either the dot or the cross. Let A 
be a dyad and C be a triad. Then 
 
 =AC Q  (64) 
 
is a pentad. If A has 9 components and C has 27 
components, then Q will have 9 × 27 = 243 
components. Products of any order may thus be 
constructed and their properties defined in accordance 
with what we have already done with dyads. Such 
higher order products are called n-ads where n refers to 
the number of vectors involved in the product. Thus, a 
structure such as the one we have just worked with,  
Q = QRSTU is a pentad because of the five 
component vectors Q, R, S, T, and U. 
 Contraction.⎯This section introduces contraction, 
one more new and as yet unfamiliar operation that will 
play a role in tensor analysis. Consider the dyad  
R = MN. R is contracted by placing a dot between the 
component vectors M and N and carrying out the inner 
product. The result will be a scalar R: 

 ( )contracted R= ⋅ =R M N  (65) 
 
 It is useful to introduce matrix notation at this point 
in our development. In linear algebra we deal with sets 
of linear equations such as 
 
 ax by cz u+ + =  (66a) 
 
 dx ey fz v+ + =  (66b) 
 
 gx hy mz w+ + =  (66c) 
 
Rewritten in matrix form, this set becomes 
 

 
a b c x u
d e f y v
g h m z w

=  (67) 

 
where the matrix premultiplies the column vector with 
components x, y, and z to obtain a new column vector 
with components u, v, and w. Recall that we wrote this 
expression in a shorthand notation similar to that 
which we have been using: 
 
 =Ax u  (68) 
 
 The dot was probably not used in your linear algebra 
class because it was not required to complete the 
notation. In generalizing from the more specific forms 
of linear algebra and vector analysis to the more 
general forms of dyads and higher order products, 
however, the notation becomes incomplete without the 
dot.  
 In the notation that we have been using, the left-hand 
side is actually a triad: 
 
 =Ax T  (69) 
 
 To obtain the system of linear equations, we must 
contract the triad by inserting a dot between the dyad A 
and the vector x. The result is 
 
 ⋅A x = u  (70) 
 
As we generalize to include more information in less 
space, we must become more rigorous in bookkeeping 
our symbols. 
 In higher order n-ads, it is necessary to specify 
exactly where a contraction is to be made. Consider the 
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pentad ABDCE. In any one of several ways, the dot 
can be introduced between the five component vectors 
to produce different results, all of which are legitimate 
contractions of the pentad: 
 
 ⋅ = µAB DCE ACE  (71a) 
 
 ⋅ = λABDC E ABD  (71b) 
 
 ⋅ ⋅ = νA BDC E D  (71c) 
 
Note that each dot reduces the order of the result by 
two. Thus, the pentad with one dot produces a triad, 
with two dots, a monad (vector), and so on. 
 
Components, Rank, and Dimensionality 
 
 The n-ads are mathematical entities that consist of 
components. 
 

Components are just the denominate (or 
nondenominate) numbers that premultiply the unit 
n-ads and are required to completely specify the 
entire n-ad. 

 
As a general rule, when different observers are 
involved in a situation involving n-ads, the 
components (component values) they record will vary 
from observer to observer but only in a way that allows 
the n-ad as a whole to remain the same. The n-ad must 
be thought of as having an observer-independent 
reality of its own. We are already familiar with this 
concept from our knowledge of arithmetic. For 
example, the number eight may be written as the sum 
of different pairs of numbers: 
 
 8 = 5 + 3, 6 + 2, 3 + 3, +2,… (72) 
 
The component numbers have been changed but their 
sum remains the same. 
 In physics and engineering, it is often the case that 
more than one observer is involved in a given situation, 
each simultaneously watching the same event from a 
different perspective. Although their individual 
descriptions may vary because of their perspectives, 
their overall accounts of the event must match because 
the event itself is one and the same for all. This 
situation should remind students of the trivial identities 
used in previous sections; namely, V = V and A = A. 
In this case, the trivial identity is  
 

 Event = Itself (73) 
 
In other words, every event equals itself regardless of 
the perspective from which it is viewed. Herein lies the 
major reason why vectors and dyads and triads and so 
forth (more generally, tensors) are used in physics. The 
trivial identity parallels a sort of objective reality that 
mirrors what we believe of the universe at large. We 
used the trivial identity to obtain transformations 
between different sets of unit vectors. The trans-
formations preserve the identities of the vector and/or 
the dyad so that it remains the same for both sets. 
 We can now replace the term “set of unit vectors” 
with “observer.” Each observer sets up a set of unit 
vectors (measuring apparatus), but whatever 
phenomenon is being observed must be the same for 
all, despite possible different perspectives. Later, when 
we develop the component transformations that will 
formally define tensors, we will do so explicitly with 
this kind of mathematical objectivity in mind. Thus, 
tensors will be ideal mathematical objects for building 
models of the world at large. 
 Vectors and other higher order products are often 
“viewed” simultaneously from different coordinate 
systems. For any given vector (event), the components 
viewed within each individual coordinate system differ 
from those viewed in all other coordinate systems. 
However, the vector itself remains one and the same 
vector for all. Thus, the component values are 
coordinate dependent (they are the projections onto the 
particular coordinate axes chosen), whereas the vector 
itself is said to be coordinate independent (it represents 
an objective reality). 
  In a three-dimensional space, the actual number of 
individual components that comprise a vector or some 
higher order entity remains the same for everybody: 
 

1. A scalar has one component; that is, the 
denominate number that represents it. 

2. A vector has three components, one in each of the 
i, j, and k directions. 

3. A dyad has nine components, one for each of the 
unit dyads ii, ij, jk, and so on. 
 
The number of components provides a good index for 
making a distinction between one type of entity and 
another. 
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 The entities7 with which we are dealing are called 
tensors (a term to be defined) and their position in the 
component number hierarchy is designated by an index 
number called the rank. Table I presents this concept. 
 

TABLE I.⎯TENSORS AND THEIR RANK 
Type of tensor Rank Number of  
  components 
Scalar 0 1 
Vector 1 3 
Dyad 2 9 

 
 We have begun to build a sequence. Can you see the 
next term? It would be a tensor of rank 3 with 27 
components followed by a tensor of rank 4 with 
81 components. The terms that can be added to the list 
are unlimited. The relationship that exists between  
the rank and number of components is presented in 
table II.  
 

TABLE II.⎯RELATIONSHIP BETWEEN  
RANK AND COMPONENTS 

Type of tensor Rank Number of  
  components 
Scalar 0 1 
Vector 1 3 
Dyad 2 9 
“Triad” 3 27 
“Quartad” 4 81 

 
Note that the rank, as we have defined it, is equal to the 
number of vectors directly multiplied to form the 
object. A scalar involves no vectors; a vector involves 
one vector; a dyad involves two vectors, and so on. In 
addition, another general relationship is apparent: 
 
 Number of components = 3(Rank) (74) 
 
To generalize further, the number three arises because 
we have been working in three-dimensional space, the 
space most familiar to all of us. 
 

A three-dimensional space is any space for which 
three independent numbers (coordinates) are 
required to specify a point. 

 
However, the dimensionality of the space need not be 
restricted to three. A little reflection will show that we 

                                                 
7In fact, tensors are proper subsets of scalars, vectors, dyads, triads, and so 
on. Thus, while all rank 2 tensors are dyads, for example, not all dyads are 
rank 2 tensors. The distinction will become more clear when we formally 
define tensors and tensor character. 

could repeat our development in any number of 
dimensions n. 
 

An n-dimensional space is any space for which n 
independent numbers (coordinates) are required to 
specify a point. 

 

Therefore, for an n-dimensional space, it may be stated 
(herein without proof) that 
 

Number of components  
 = (dimensionality of space)(Rank) (75) 
 

or 
 
 Number of components = n(Rank) (76) 
 
 
Dyads as Matrices 
 
 You should have noticed that the rules that we have 
been developing for dyads are extensions of the rules 
already developed for vectors and are the same as the 
rules developed for matrices and matrix algebra. This 
is not accidental. A knowledge of matrix algebra 
implies a rudimentary understanding of dyad algebra 
and vice versa. At this point, we will digress to explore 
this connection more thoroughly. 
 First, recall that in constructing a dyad from two 
vectors A = ai + bj + ck and D = di + ej + fk, we 
multiplied the vectors using the same rules as those for 
multiplying numbers in high school algebra: 
 

( ) ( )a b c d e f ad ae
af bd be bf cd ce cf

= + + × + + = +

+ + + + + + +

AD i j k i j k ii ij
ik ji jj jk ki kj kk

 (77) 

 
Now, suppose that we wrote out the vectors A and D 
with a slightly different notation: 
 
 1 2 3a a a= + +A i j k  (78) 
 

and 
 
 1 2 3d d d= + +D i j k  (79) 
 
where a1 = a, a2 = b,…d1 = d, d2 = e, … . Using this 
new notation, the dyad AD becomes 
 
 1 1 1 2 1 3 2 1a d a d a d a d= + + +AD ii ij ik ji…  (80) 
 
By setting a1d1 = µ11, a1d2 = µ12,…, this dyad may be 
rewritten as 
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 11 12 13 21= µ + µ + µ + µAD ii ij ik ji…  (81) 
 
Students should see that the components µij of the dyad 
AD can be arranged in the familiar configuration of a 
3×3 square matrix (having the same number of rows as 
columns):  
 

 
11 12 13

21 22 23

31 32 33

µ µ µ
µ µ µ
µ µ µ

 (82) 

 
Hence, the components of all dyads of a given 
dimension can be represented as square matrices. (We 
shall not prove this statement herein.) In an n-
dimensional space, the dyad will be represented by an 
n×n square matrix. Just as a given matrix is generally 
not equal to its transpose (the transpose of a matrix is 
another matrix with the rows and columns 
interchanged), so it is with dyads: it is generally the 
case that UV ≠ VU; that is, the dyad product is not 
commutative.  
 We know that a matrix may be multiplied by another 
matrix or by a vector and also that given a matrix, the 
results of premultiplication and postmultiplication are 
usually different: matrix multiplication does not, in 
general, commute. 
 Using the known rules of matrix multiplication, we 
can write the rules associated with dyad multiplication. 
For example, to use matrices to show that the product 
of a dyad M and a scalar α is commutative, let  
 

 
11 12 13

21 22 23

31 32 33

µ µ µ
= µ µ µ
µ µ µ

M  (83) 

 

Then for any scalar α,  
 

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

αµ αµ αµ
α = αµ αµ αµ

αµ αµ αµ

µ α µ α µ α
= µ α µ α µ α = α
µ α µ α µ α

M

M

 (84) 

 
Fields 
 

 Tensor analysis is used extensively in field theory by 
physicists and engineers. Therefore, it is worthwhile to 

digress again and consider the concept of a field. 
Before doing so, we will digress even farther to 
consider mathematical models and their relationship to 
mathematical theories. 
 Physicists and engineers must often set up 
mathematical models of the systems they wish to 
study. The word “model” is very important here 
because it illustrates the relationship between physics 
and engineering on the one hand and the real world on 
the other. Models are not the same as the objects they 
represent in that they are never as complete. If the 
model were as complete as the object it represented, it 
would be a duplicate of the object and not a model. 
Sometimes a model is very simple, as was the model 
used earlier to represent the number of components in 
a tensor: 
 
 Number of components = n(Rank) (85) 
 
 Sometimes a model is elegant or very general, in 
which case it is a theory. Theories, even though 
logically consistent, can never be proven 100 percent 
correct. Wherever a given theory falls short of 
experimental reality, it must be modified, shored up, so 
to speak. Thus, in the 20th century, relativity and 
quantum mechanics were developed to shore up 
classical dynamics when its predictions diverged from 
experiment. Of course, relativity and quantum 
mechanics possess all the former predictive power of 
classical dynamics, but they are also accurate in those 
realms where classical dynamics failed. 
 Models in physics and engineering consist of 
mathematical ideas. When setting up a mathematical 
model, the physicist or engineer must first define a 
working region, a “space” in which the model will 
actually be built. This region is an abstraction, a 
substratum within which the equations will be written 
and the actual mathematical maneuvers will be made. 
Recall the closed systems that you have already studied 
in thermodynamics. These spaces have a definite 
boundary that partitions off a piece of the world that is 
just sufficient for dealing with the problem at hand. 
 Usually, the working region is considered to 
comprise an infinite number of geometrical points, 
with the proviso that for any point P in the region, 
there is at least one point also in the region that is 
infinitely close to P. Under the appropriate conditions, 
such a region is called a continuum (or geometric 
continuum), but a more rigorous statement declares the 
following: 
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For all points P in a given region, construct a 
sphere with P at the center. Then reduce the sphere 
to an arbitrarily small radius. If in the limit of 
smallness there is at least one other point P* of the 
region inside the sphere with P, then the region is 
called a continuum. In topology, such an 
accumulation of points is also called a point set.  

 

 
 
A field can be properly designated over this 
continuum. The field may be a scalar field, a vector 
field, or a higher-order-object field and is formed 
according to the following rule:  
 

At every point P of the continuum, we designate a 
scalar, a vector, or some higher order object called 
a field quantity. The same type of quantity must be 
specified for every point of the continuum. 

 
 Since we want the fields to be “well behaved,” (i.e., 
we can use calculus and differential equations 
throughout the field), we impose another condition on 
the field quantities: 
 

Consider the specific field quantities that exist at 
two arbitrary points P and P* in the continuum. 
Let A be the field quantity at P and A* be the field 
quantity at P*. Then as P approaches P*, the field 
quantity A must approach the field quantity A*; 
that is, the difference A – A* must tend to zero. 
 

 When this condition is satisfied, the field is said to 
be continuous. Wherever this condition is violated, a 
discontinuity exists. When discontinuities occur in a 
field, the usual equations of the field cannot be applied. 
Discontinuities are sometimes called shocks or 
singularities depending on their exact nature. 

 A punctured field is a field wherein the 
discontinuities are circumscribed and thereby 
eliminated. Punctured fields are dealt with in the 
calculus of residues in complex number theory. 
 
Magnetic Permeability and Material Stress 
 
 This section provides two real-world examples of 
how second-rank tensors are used in physics and 
engineering: the first deals with the magnetic field and 
the second, with stresses in an object subjected to 
external forces. 
 Recall from basic electricity and magnetism that the 
magnetic flux density B in volt-seconds per square 
meter and the magnetization H in amperes per meter 
are related through the permeability of the field-
bearing medium µ in henrys per meter by the 
expression 
 
 = µB H  (86) 
 
If you are not familiar with these terms then, briefly, 
the magnetization H is a vector quantity associated 
with electrical current flowing, say, through a loop of 
wire. The magnetic flux density B is the amount per 
unit area of magnetic “field stuff” flowing through the 
loop in a unit of time, and the permeability is a 
property of the medium itself through which the 
magnetic field stuff is flowing (loosely analogous to 
the resistivity of a wire.)8 
 For free space, a space that contains no matter or 
stored energy, µ is a scalar with the particular value µ0: 
 
 7

0 4 10 H/m−µ = π×  (87) 
 
This denominate number is called the permeability of 
free space. Since µ is a scalar, the flux density and the 
magnetization in free space differ in magnitude only 
but not in direction. However, in some exotic materials 
(e.g., birefringent materials), the component atoms or 
molecules have peculiar electric or magnetic dipole 
properties that make these terms differ in both 
magnitude and direction. In these materials, a scalar 
permeability is insufficient to represent the relationship 

                                                 
8The resistivity of a wire or of any conducting medium enters the field 
equations as a proportionality between electric current density and electric 
field. Recall that Ohm’s law for current and voltage states V = IR, where  
V is voltage (volts), I is current (amperes), and R is resistance (ohms). In 
field terms, this same law has the form E = ρj, where E is electric field in 
volts per meter, ρ is resistivity in ohm-meters, and j is current density in 
amperes per square meter. 
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between B and H. The scalar permeability must be 
replaced by a tensor permeability, so that the relation-
ship becomes 
 
 = ⋅B µ H  (88) 
 
 The permeability µ is a tensor of rank 2. It is a 
physical quantity that is the same for all observers 
regardless of their frame of reference. Remember that 
B and H are still both vectors, but they now differ from 
one another in both magnitude and direction. This 
expression represents a generalization of the former 
expression B = µH and, in fact, contains this 
expression as a special case. 
 To understand how the equation B = µH is a special 
case of B = µ · H, select for the tensor µ the special 
form 
 

 
0 0

0 0
0 0

µ
= µ

µ
µ  (89) 

 
Then, µ · H = µHxi + µHyj + µHzk = µH. 
 The magnetic field represents a condition of energy 
storage in space. The field term for stored energy takes 
on the form of a fluid density and has the units energy-
per-unit-volume or in meter-kilogram-second units, 
 
 ( )3 3joules meter J m=  (90) 
 
But joules = (force × distance) = newtons × meters = 
newton-meters so that energy density also appears as a 
fluid pressure: 
 
 3 3 2J m =N×m m = N m  (91) 
 
that is, force per unit area. If you read older texts or the 
original works of James Clerk Maxwell, you will read 
of magnetic and electric pressure. The energy density 
of the field is what they are referring to. 
 The term with units of newtons per square meter is 
also called stress. Thus, some older texts also spoke of 
field stress. Doing so is not entirely inappropriate since 
many materials when placed in a field, experience 
forces that cause deformations (strains) with their 
associated stresses throughout the material. 
 The classical example of the use of tensors in 
physics deals with stress in a material object. Since 

stress has the units of force-per-unit-area (newtons per 
square meter), it is clear that  
 
 Stress × area = force (92) 
 
that is, the stress-area product should be associated 
with the applied forces that are producing the stress. 
We know that force is a vector and that area is an 
oriented quantity that can be represented as a vector. 
The vector chosen to represent the differential area dS 
has magnitude dS and direction normal to the area 
element, pointing outward from the convex side. 
 Thus, the stress in equation (92) must be either a 
scalar or a tensor. If stress were a scalar, then a single 
denominate number should suffice to represent the 
stress at any point within a material. But an immediate 
problem arises in that there are two different types of 
stress: normal stress (normal force) and shear stress 
(tangential force). How can a single denominate 
number represent both? Furthermore, there are nine 
independent components of stress: three are normal 
stresses, one associated with each of the three spatial 
axes, and six others are shear stresses, one associated 
with each of the six faces of a differential cube. 
 Since force and area are both vectors, we must 
conclude that stress is a rank 2 tensor (3×3 matrix with 
nine components) and that the force must be the inner 
product of stress and area. The differential force dF is 
thus associated with the stress T on a surface element 
dS in a material by  
 
 d d= ⋅F T S  (93) 
 
The right-hand side can be integrated over any surface 
within the material under consideration as is actually 
done, say, in the analysis of bending moments in 
beams. The stress tensor T was the first tensor to be 
described and used by scientists and engineers. The 
word tensor derives from the Latin tensus meaning 
“stress” or “tension.” 
 Note that in the progression from single number to 
scalar to vector to tensor, and so on, information is 
being added at every step. The complexity of the 
physical situation being modeled determines the rank 
of the tensor representation we must choose. A tensor 
of rank 0 is sufficient to represent something like a 
single temperature or a temperature field across the 
surface of an aircraft compressor blade. A tensor of 
rank 1 is required to represent the electric field 
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surrounding a point charge in space or the (classical)9 
gravitational field of a massive object. A tensor of rank 
2 is necessary to represent a magnetic permeability in 
complex materials or the stresses in a material object 
or in a field, and so on. 
 
 
Location and Measurement: Coordinate Systems 
 
 Once we have chosen a working space, we need to 
specify locations in that space. When we make a 
statement such as “Consider the point P,” we must be 
able to say something about how to locate P. 
 We do so by setting up a reference or coordinate 
system with which to coordinate our observations. 
First, we choose a point P0. Through P0 draw three 
mutually perpendicular lines. Then select an interval 
on each of the lines (e.g., the width of a fist or the 
distance from the elbow to the tip of the longest finger) 
and repeatedly mark off the interval end to end along 
each line. We need not select equal intervals for all 
three lines, but the system is usually more tractable if 
we do. 
 Now, we place integer markers along each of the 
lines. At P0, place the integer zero. At the first interval 
marker on each line, place a one; at the second marker, 
a two, and so on. We have now constructed a 
coordinate system. Each point P in the space may be 
assigned a location using the following rule: 
 

Through P, draw three lines perpendicular to and 
intersecting each of the coordinate lines. Note the 
number where the perpendiculars touch the 
coordinate lines. Agree on an order for the lines by 
labeling one x, one y, and one z. Write the numbers 
corresponding to P as a triad (x, y, z) and place the 
triad next to the point. If the perpendiculars do not 
fall directly on integers, interpolate to write the 
numbers as fractions or decimals. 

 

The point P0 will be named the “origin” of the 
coordinate system, since it is the point from which the 
three coordinate lines apparently originate. The three 
                                                 
9In classical or Newtonian gravitation theory, the field term is the local 
acceleration g in meters per square second; the gravitational potential is a 
scalar energy-per-unit-mass term φ in square meters per square second; 
these terms are related by the Poisson equation 4πg = ∇φ. In general 
relativity, the components of the gravitational field (the field terms) are the 
Christoffel symbols i

ikΓ  in meters; the potentials are the components of the 
rank 2 metric tensor gjk in square meters; and the equation relating these 
terms is a rank 2 tensor equation involving spacetime curvature and the 
local stress-energy tensor, the components of which are measured in joules 
per cubic meter. 

coordinate lines themselves will be named “coordinate 
axes” or just “axes.” The numbers associated with any 
point P in the space will be given the name 
“coordinates.” The axes will be ordered according to 
the following rule: 
 

Arbitrarily select one of the axes and call it x. 
Place integers along the axis and note the direction 
along which the integers increase. Call this 
direction positive. Now use the right-hand rule 
from the positive x-axis to the next axis. Call that 
axis y. The right-hand rule establishes the positive 
direction along y. Finally, use the right-hand rule 
again from the y-axis to determine the positive 
direction along the third axis and call it z. 

 
This type of system is called a right-handed coordinate 
system for obvious reasons (see following sketch). We 
will continue to use right-handed systems unless 
otherwise specified.  
 

 
 
 Now, put a vector into the space; represent the vector 
as a directed line segment (although this representation 
is artificial). The direction assigned to the vector is 
arbitrary. Place an arrow point on one end to show the 
direction and call this end the head. Call the other end 
the tail. The length of the line segment represents the 
magnitude of the vector. The arrow point represents its 
direction. The field point with which the vector is 
associated will be, by mutual agreement, the tail point 
(see sketch).  
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 When we speak of magnitude, we progress from the 
problem of location to that of measurement. Let us 
place the vector along the x-axis and imagine that its 
tail is located at x = 1 and its head, at x = 2. What is the 
magnitude of the vector? “Well,” you say, “Its 
magnitude is 1, since 2 − 1 = 1.” But note that I am 
immediately forced to ask, “One what?” All that has 
been specified so far is a coordinate difference, not a 
length. We often set things up so that coordinate 
differences represent actual lengths in some system of 
units but to do so is purely a matter of choice. 
 Take a centimeter rule and measure the length of the 
x-axis between the markers 1 and 2. Suppose that we 
measure 2.345 cm. Then, the line segment with a 
coordinate “length” of one has a physical length of 
2.345 cm. Call the physical length s and the coordinate 
length ξ. We now have the provisional relationship 
 

 2.345 cms = ξ  (94) 
 

 If we have been careful about constructing our 
coordinate system and have taken pains to keep all the 
coordinate intervals the same physical length, then this 
relationship holds throughout the space. Thus, for a 
coordinate difference of 5.20, we have 
 

 ( )2.345 5.20 12.2 cm approx.s = × =  (95) 
 

The number 2.345 is a denominate number and has 
units of centimeter per unit-coordinate-difference, or 
just plain centimeters. It is called a metric. Remember 
it well, for in the general case, the metric associated 
with a coordinate system is a rank 2 tensor (see 
footnote 7 on the gravitational field) and plays a 
variety of important roles. 
 
 
Multiple Coordinate Systems: Coordinate 
Transformations 
 
 Suppose that we were working together in a given 
space and that we each had attached to ourselves our 
own coordinate system. You make observations and 
measurements in your system and I make them in 
mine. Is it possible for us to communicate with one 
another and to make sense of what the other is doing? 
Well, we are observing and measuring the same 
physical phenomena in the same space. If these 
phenomena are “real” (as we must assume), then they 
must have an objective existence apart from what we 
see or think of them; they must exist independently of 
our respective coordinate systems. This concept is 

fundamental to all physics and engineering and is, in 
fact, an axiom so apparently self-evident as to remain 
implicit most of the time. To illustrate, suppose that we 
were each observing a new car at the dealer. I observe 
from the front and just a little to the right; you observe 
from the rear. I note a painted projection on one side of 
the car and ask you to tell me what the projection looks 
like to you. For you to know what I am referring to, 
you must first know where I am standing relative to 
you and the car. With this knowledge in hand, you 
observe that from your perspective, the projection is a 
driver-side rear-view mirror. I now know the function 
of the projection, and you know that it is housed in a 
painted metal housing. 
 The two different locations at which you and I were 
standing are taken as the origins of two different 
coordinate systems. Drawing the coordinate systems 
on a sheet of paper would enable us to note that the 
space represented by the sheet of paper (a plane) 
contains the two systems in such a way that each can 
be represented in terms of the other. This 
representation is called a coordinate transformation. 
 Let us give names to our two coordinate systems. I 
call my system K and we agree to call yours K*. 
Instead of a car, let us now observe a single point P. 
The coordinates of P that I record will be labeled  
(x, y, z); those that you record will be labeled  
(x*, y*, z*). 
 Next, we both observe a given vector V in our 
working space and we say that it is located at a definite 
field point P. We both record the coordinates of the 
points at the head and tail of the vector: 
 

Head You ( )* * *, ,H H Hx y z  Me (xH, yH, zH) 

Tail You ( )* ** , ,T T Tx y z  Me (xT, yT, zT) 

 
We each use our respective results to determine the 
square of the coordinate magnitude of the vector: 
 

Observer Magnitude 

 You ( ) ( ) ( )2 2 2
* ** * * *H T H T H Tx x y y z z− + − + −  

 Me (xH − xT)2 + (yH − yT )2 + (zH − zT)2 

 
For simplicity, assume that for this particular 
experiment, coordinate magnitude equals physical 
magnitude in appropriate units (i.e., the metric is unity) 
in both coordinate systems. Does it make sense that we 
should determine different magnitudes for the same 
vector? Since the vector is an objective reality in space 
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and is independent of our respective coordinate 
systems, the answer is a resounding “No.” Therefore, 
we are able to write 
 

( ) ( ) ( )
( ) ( ) ( )

2 2 2* * * * * *

2 2 2

H T H T H T

H T H T H T

x x y y z z

x x y y z z

− + − + −

= − + − + −
 (96) 

 

At least we know that our respective measurements are 
related by some type of equation, in this case through 
the magnitude of the vector V, which magnitude must 
be the same for all observers. This assurance leads us 
to postulate that there must be mathematical functions 
that relate our respective coordinate observations to 
one another; perhaps functions that look like 
 
 ( )* * , ,x x x y z=  (97a) 
 
 ( )* * , ,y y x y z=  (97b) 
 
 ( )* * , ,z z x y z=  (97c) 
 
Note that the last group of equations specifies a 
particular notation for the three functions. This 
notation is standard in books on tensor analysis and 
will be used throughout the remainder of this text. 
Also, because there is nothing particular about the 
order in which we choose between K and K*, we might 
just as easily have written the variables in reverse: 
 
 ( )*, *, *x x x y z=  (98a) 
 
 ( )*, *, *y y x y z=  (98b) 
 
 ( )*, *, *z z x y z=  (98c) 
 
That such functions as these do exist is easily argued 
by noting that the origin of my coordinate system is a 
point in your coordinate system (as is your origin a 
point in my system); my coordinate axes are straight 
lines in your system, and so on. From these 
considerations, the equations relating the two systems 
are obtained. The system of equations 
 
 ( )* * , ,x x x y z=  (99a) 
 
 ( )* * , ,y y x y z=  (99b) 

 ( )* * , ,z z x y z=  (99c) 
 
or its reverse is called a coordinate transformation. The 
origin of my system, for example, is the point (x, y, z) 
= (0, 0, 0). In your system, this point is located at 
 
 ( )* * 0,0,0x x=  (100a) 
 
 ( )* * 0,0,0y y=  (100b) 
 
 ( )* * 0,0,0z z=  (100c) 
 
The existence of such a family of coordinate 
transformations assures us that if I specify a point P at 
the coordinates (x, y, z) in my system, I can always 
calculate the coordinates (x*, y*, z*) in your system 
and tell you exactly where to look to see the same 
point P. Objects like the vector V are formally said to 
be invariant under a coordinate transformation. This 
concept of invariance is of paramount importance in 
defining tensors. 
 
Coordinate Independence 
 
 Think of a vector V at a point P in space. Imagine 
that you and I both observe it from our respective 
coordinate systems K* and K. The symbol V represents 
something physical and has an existence independent 
of our choice of the locating and measuring apparatus; 
hence, V is a coordinate-independent entity. As such, it 
represents the first example of what we will eventually 
admit into that class of objects that will formally be 
called tensors. 
 Can we write a definition for coordinate 
independence in mathematical terms? Well, we can 
first say in K that I observe a vector V; in K* you 
observe a vector V*, the same vector that I observe (as 
V) in K. Coordinate independence is then specified by 
saying that V and V* are one and the same, identical, 
equal: 
 
 *=V V  (101) 
 
Although the vectors V and V* are identical, their 
components in K and K*, respectively, generally are 
not. We have already touched upon this concept; now 
let us look at it a little more closely. Draw a 
representative picture in two-dimensions. In K, let  
V = v1 + v2, and in K*, let * *

1 2* = +V v v .  
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 Obviously the coordinate systems K and K* in the 
diagram are oblique since the component vectors, 
assumed parallel to the local coordinate axes, are not 
perpendicular. Here we have a situation wherein two 
different sets of components make up the same vector. 
One set belongs to K, the other to K*. The vector V  
is itself a physical quantity, coordinate independent, 
the same for all observers. The components 
( * *

1 2 1 2, , , andv v v v ) are coordinate dependent; they are 
determined by V and the particular observer’s chosen 
coordinate system. In fact, the components are no more 
than the projections of the vector V onto the respective 
coordinate axes. 
 The physical reality of the vector V does not 
translate directly to the components * *

1 2 1 2, , , andv v v v . 
In the case of a car traveling at 50 mph due northeast, 
the velocity vector of the car is a measurable quantity. 
If I choose a coordinate system with axes oriented 
exactly due north and exactly due east, then the 
components along those axes (36 mph due north and 
36 mph due east) are determined by the physical 
velocity vector and the angles made by that vector with 
the respective coordinate axes. A change in choice of 
axes will cause a change in the magnitudes and 
directions of the component vectors but not in V itself. 
 The two observers ought to be able to share their 
results and can do so through the coordinate 
transformations. It may be shown that each component 
vector in the K system is derivable from the component 
vectors in the K* system and vice versa through the 
coordinate transformations. In other words, once we 
have established and agreed upon the coordinate 
transformations, we may write 
 
 ( )* *

1 1 1 2,=v v v v  (102a) 
 
 ( )* *

2 2 1 2,=v v v v  (102b) 

 ( )* *
1 1 1 2,=v v v v  (102c) 

 
 ( )* *

2 2 1 2,=v v v v  (102d) 
 
The functions * *

1 2 1 2, , , andv v v v  must be specified to 
preserve the equality V = V*, and in formal tensor 
analysis, this specification can always be 
accomplished. 
 
Coordinate Independence: Another Point of View 
 
 When we spoke of the coordinate independence of 
the vector V, we argued that although the components 
were different for different coordinate systems, the 
magnitude of the vector must be the same for all 
observers. In other words, 
 

 { } { }* * *= ⇒ ⋅ = ⋅V V V V V V  (103) 
 

or 
 
 2 2*v v=  (104) 
 

where v and v* are the respective magnitudes. 
 Now with this idea in mind, consider a dyad. When 
viewed from K, call the dyad S and when viewed from 
K*, call the dyad S*. We now assert that the dyad is 
coordinate independent so that S = S*. Immediately, 
the question arises: Can we use the concept of 
magnitude, or more properly find an associated scalar, 
to gain understanding of the physical meaning of the 
relation S = S*? 
 With the vector V, we found an associated scalar, the 
magnitude V · V of the vector. We agreed, on physical 
grounds, that this magnitude must be the same for all 
observers. Now, suppose that we contract the dyad to 
find its associated scalar. Let us write 
 
 ( )contracted s=S  (105a) 
 

 ( )* contracted *s=S  (105b) 
 
What now can we say about s and s*? That they are 
equal? First, observe that s and s* are scalars; that is, 
they represent the inner product of the two component 
vectors comprising the dyad in each of the systems K 
and K*, respectively. Set S = AB and S* = A*B*. 
Then 
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 * * *= ⇒ =S S AB A B  (106) 
 
Now proceed formally as follows: Form the left inner 
product of both sides of the equation AB = A*B*  
with A: 
 
 * *⋅ ⋅=A AB A A B  (107) 
 

 ( ) ( )* *⋅ = ⋅A A B A A B  (108) 
 

 ( )2 * *a = ⋅B A A B  (109) 
 

 
*

*
2a

⎛ ⎞⋅
= ⎜ ⎟
⎝ ⎠

A AB B  (110) 

 

We have now expressed the vector B as a function of 
B*. In equation (110), call the term in parentheses β. 
We then have 
 

 *= βB B  (111) 
 

Now, return to equation (106) and form the right inner 
product of both sides with B: 
 

 

( )
( )

( )

2

2

2

* *
* * * *

* *

* *

b

b

b

⋅ = ⋅ →

= ⋅ = ⋅ →

⋅
=

⋅
= =

β β

AB B A B B
A A B B A B B

A B B
A

A B B A

 (112) 

 
Using (111) and (112) in A · B finally gives 
 

 ( )* * *
⎛ ⎞

⋅ = ⋅ β = ⋅⎜ ⎟⎜ ⎟β⎝ ⎠

AA B B A B  (113) 

 
that is 
 

 *s s=  (114) 
 

 The coordinate independence of the dyad S does 
indeed imply the coordinate independence of its 
associated scalar by contraction s. Thus 
 

A test for the coordinate independence of any dyad 
is to contract the dyad and check the coordinate 
independence of the resulting magnitude.10 

 

However, the same must be true of a quartad or any 
other even-numbered product since 
 

1. Contraction reduces rank by 2 (thus quartad → 
dyad → scalar, etc.). 

2. Every even number is a multiple of 2. 
 

Therefore, a more general rule states: 
 

A test for the coordinate independence of any 
even-numbered product is to repeatedly contract 
the product until a single magnitude is obtained 
and then check the coordinate independence of the 
result. 

 

Then, what about odd-numbered products such as 
triads or pentads? It is stated without proof (the proof 
should be obvious) that their contractions will always 
result in a vector. Thus 
 

A test for the coordinate independence of any odd-
numbered product is to repeatedly contract the 
product until a quantity with magnitude and 
direction is obtained and then check the coordinate 
independence of the result. 

 
Coordinate Independence of Physical Quantities: 
Some Examples 
 
 Tensors are formally defined by the coordinate 
transformation properties of their components. The 
transformation properties of tensors are specified by 
remembering that the physical quantities they represent 
must appear the same to different observers with 
different points of view. This property ensures a type 
of objective reality in the mathematics that mirrors the 
objective reality of physical objects and events. 
 We assert that tensors must be quantities that are 
coordinate independent; conversely, only these 
coordinate independent quantities are admissible into 
that class of objects that we call tensors. Some 
quantities are coordinate dependent. If a quantity is 
coordinate dependent, then it cannot be admitted as a 
tensor. The individual components of a tensor may 
appear different to different observers, as the shadow 
of a stick may appear different when the light is held at 

                                                 
10We assert that S = S* => s = s*. By the theorem of the contrapositive,  
s ≠ s* => S ≠ S*; i.e., the quantity is not coordinate independent.  
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different angles; however, the overall tensor (like the 
actual stick) must remain the same for all. 
 So as not to get lost in the unfamiliar notational 
schemes that will be introduced later, consider some 
concrete examples from the real world.  
 Admissible scalars.⎯Suppose that I measure the 
temperature (°C) at a given point P at a given time. 
You also measure the temperature (°C) at P at the 
same time but from a different location. Say that P is a 
point in a beaker of fluid; I stand due north of the 
beaker whereas you stand due south. We both have 
identical thermometers, and so on. It would make no 
sense if you and I acquired different temperature 
readings; we both should expect to obtain, and both 
must obtain, the same numerical quantity from our 
respective measurements. If T is the temperature 
measured in K and T* is the temperature measured in 
K*, physics requires that 
 

 *T T=  (115) 
 

This simple expression is a scalar transformation law 
between K and K* for the temperature T. 
 

We now specify that only scalars that transform 
according to this rule and are coordinate 
independent are considered admissible as tensors. 

 
 Inadmissible scalars.⎯Since we have also hinted 
that there are scalar quantities that are inadmissible as 
tensors, is a counterexample possible? Certainly. This 
time, let T represent the frequency of a light signal 
emanating from an ideal11 monochromatic source at P. 
We both measure the frequency of the light at the same 
time using the same units of inverse seconds. This 
time, let us also assume that one of us is moving 
relative to the other and to the source. 
 If I am “stationary,” the light will have a certain 
frequency, say T = T0, where the subscript 0 implies a 
specific numerical value. If you are moving relative to 
me when you do your measurement, the light that you 
observe will be red or blue shifted and so will appear 
to you as having frequency T* = T0 ± ∆T, where ∆T is 
just the amount by which the light is frequency shifted. 
Obviously T ≠ T* in this case, and although the 
frequency thus observed is a scalar quantity, it is 
evidently not admissible as a tensor. 
 This counterexample may seem odd at first glance, 
but it becomes important in special relativity. You 

                                                 
11We have evidently gotten our source from the same bin as we got the 
proverbial massless pulley and the nonstretch rope. 

might be inclined to argue that I (the stationary 
observer) have made the correct measurement simply 
because I was stationary. That being so, you (the 
moving observer) have only to correct for your motion 
and then T = T*. Then you ask, “Isn’t T admissible as a 
tensor after all?” 
 The answer is that in classical physics it is, but in 
relativity it is not. T would be a tensor only if the term 
“stationary” could be adequately defined. In classical 
physics, stationary means “not moving relative to 
absolute space.” But in special relativity, the concept 
of absolute space is abandoned and replaced with the 
notion that the observation made in either coordinate 
system is equally valid. Since there is no absolute 
system available for comparison, both observations are 
correct. That they do not agree numerically is simply 
accounted for by the fact that the two systems are in 
relative motion.12 But whether one or the other or both 
are “actually” moving is a meaningless question. The 
same argument holds for motion of the monochromatic 
source. The bottom line is that it makes no difference 
whether it is you or I or the source or all three that are 
moving. Only the relative motion counts. It is in this 
sense that the frequency of the monochromatic source 
is not a tensor. 
 Vectors.⎯As with scalars, neither are all quantities 
with magnitude and direction admissible as tensors. 
Let V represent a quantity with magnitude and 
direction observed in K and V* represent the same 
quantity observed in K*. If this quantity is to be 
admissible as a tensor, then it must be coordinate 
independent; that is, it must satisfy 
 
 *=V V  (116) 
 
This simple expression is a vector transformation law 
between K and K*: 
 

We now specify that only quantities that transform 
according to this rule are considered admissible as 
tensors. 

 
 Is a counterexample possible here? Yes. The position 
vector whose components are the coordinate values 
themselves is obviously not coordinate independent. 
We will consider the position vector in greater detail 

                                                 
12In special relativity, time (and therefore frequency or inverse time) is a 
component of a four-dimensional vector in spacetime. This vector is called 
a four-vector and is a tensor. Recall that we have already said that although 
a tensor must be coordinate independent, its components usually are not. In 
this case, the distinguishing feature of the two coordinate systems is that 
they are in relative motion.  
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after we have formally defined tensors according to 
their component transformations. 
 Apply the test of finding associated scalars 
(magnitudes) for the position vector. First, let R be a 
position vector that locates a point in K and R* be a 
position vector that locates the same point in K*. 
Unless the origins of K and K* coincide, we must have 
 

 *= +R R C  (117) 
 

where C is the vector that locates the origin of K 
relative to K*. Obviously, we cannot infer from this 
latter relationship that R = R* unless C = 0 (the zero 
vector). Additionally, we must also have 
 

 
( ) ( )
( ) ( ) ( )

* *

* * *2

⋅ = + ⋅ +

= ⋅ + ⋅ + ⋅

R R R C R C

R R R C C C
 (118) 

 

Apparently, the position vector does not pass this test 
either. The position vector is an example of a vector 
that is not admissible into the class of objects called 
tensors. 
 Admissible vectors.⎯ Although the position vector r 
is not a tensor, its differential dr is. The differential 
position vector does not depend in any way on 
coordinate values, only on their differences; therefore, 
it is coordinate independent. Now, let us take a careful 
look at the differential position vector dr. 
 In college texts, dr is usually given as 
 
 ( ) ( ) ( )d d d dx y z= + +r i j k  (119) 
 
where i, j, and k are unit vectors. Again we assert that 
dr has as its components only the coordinate 
differentials, not the coordinate values themselves; dr 
is not specifically attached to any particular coordinate 
system. 
 
Metric or Fundamental Tensor 
 
 The quantity dr ⋅ dr = (dr)2 represents the square of 
the magnitude of dr (a coordinate “distance”), but it 
may or may not represent a true length in meters or 
centimeters unless provision for doing so has been 
made in setting up the coordinate system. 
 Consider the case where such provision has not been 
made. In fact, look at the case where a different metric 
exists along each axis. We will associate the unit 
meters (m) with the metric quantities and not with the 
coordinate differentials or the unit vectors. 

 The vector dr still represents the vector resultant of 
the coordinate differentials dx, dy, and dz; but dr now 
has nothing to do with physical distance; it represents a 
coordinate distance. However, if α, β, and χ are the 
metric terms for x, y, and z, respectively, then the 
vector 
 
 ( ) ( ) ( )d d d dx y z= α + β + χu i j k  (120) 
 
does carry the necessary physical distance information. 
To find the physical length ds of du, we must form the 
inner product 
 

( ) ( ) ( ) ( )2 2 2 2d d d d d ds x y z= ⋅ = α + β + χu u  (121) 
 
The square root of the right-hand side provides the 
required length in meters. 
 Can ds be directly related to the vector dr? Yes. Two 
approaches will now be presented to show how. 
 Approach 1: Take the expression (ds)2 = du · du = 
(αdx)2 + (βdy)2 + (χdz)2 and rewrite it as 
 

 ( )2 2 2 2d d d d d d ds x x y y z z= α +β + χ  (122) 
 
and note that this expression is the same as 
 

( ) ( ) ( ) ( )
( )
[ ]

2 2 2 2

2 2 2

d d d d d

d d

d d

s x y z⎡ ⎤= α + β + χ ⋅⎣ ⎦
⎡ ⎤= α +β + χ ⋅ ⋅⎣ ⎦

= ⋅ ⋅

i j k r

ii jj kk r r

G r r

 (123) 

 
The components of the dyad G are, in fact, 
components of a rank 2 tensor called the metric or 
fundamental tensor. As a matrix, G has this 
appearance: 
 

 

2

2

2

0 0
0 0
0 0

α
→ β

χ
G  (124) 

 
The components of G are arranged in a 3×3 square 
diagonal matrix whose terms each have the physical 
units square meters (m2). 
 Approach 2: This approach is somewhat more 
elegant and introduces the style of argument that is 
often used when developing formal equations. 
 Since dr is a vector, assume the existence of a dyad 
G whose properties are to be determined but for which 
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G · dr is another vector. It should be obvious that we 
fully intend G to carry the necessary metrical 
information. Specifically, we shall require G to satisfy 
the condition that (ds)2 = [G · dr] · dr, where ds is a 
distance in meters and G will be called the metric 
dyad. 
 Note that in this approach, nothing restricts our 
choice of G to be a diagonal matrix. Necessity forces 
G to be a square matrix, but the possibility of G 
possessing nonzero off-diagonal terms has not been 
eliminated. 
 In this second argument, you might wonder why we 
introduced the dyad G only one time instead of 
introducing a dyad g such that 
 
 ( )2d d ds ⎡ ⎤ ⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦g r g r  (125) 
 

The question is well taken. We could have done things 
this way, but the result would have turned out to be the 
same as the one we initiated above. Remember that the 
inner product is commutative. Therefore, 
 

[ ]
[ ] [ ]

d d d d

d d d d

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⋅ ⋅ ⋅ = ⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= ⋅ ⋅ = ⋅ ⋅

g r g r g g r r

G r r G r r
 (126) 

 

where G = g  · g  is the dyad introduced originally. 
The implicit lesson here is that there exists a sort of 
“economy of symbols” in dyad (and by extension, in 
tensor) notation. One learns this economy only with 
time and experience. 
 Let us now show that G must be coordinate 
independent. Begin with the terms ds and dr. We have 
already agreed that dr is a coordinate independent 
vector and can argue that since ds is the physical length 
of dr, it must be a coordinate independent scalar. So, in 
the case of two coordinate systems K and K*, we have 
 

 d * ds s=  (127) 
 

and by extension 
 

 ( ) ( )2 2d * ds s=  (128) 
 

Now, let (ds)2 = (G · dr) · dr in K and (ds*)2 = (G* · 
dr*) · dr* in K*. We then have 
 

 ( ) ( )d d * d * d *⋅ ⋅ = ⋅ ⋅G r r G r r  (129) 
 

But dr is coordinate independent, therefore dr = dr* 
and 

 

 ( ) ( )d d * d d⋅ ⋅ = ⋅ ⋅G r r G r r  (130) 
 

or 
 
 ( ) ( )d d * d d 0⋅ ⋅ − ⋅ ⋅ =G r r G r r  (131) 
 

Simplifying, 
 

 ( )* d d 0⎡ ⎤− ⋅ ⋅ =⎣ ⎦G G r r  (132) 
 

Consider what this last equation has to tell us. It states 
that 
 

There exists a quantity, namely [(G – G*) · dr] · 
dr, which everywhere equals zero or, more 
precisely, which vanishes everywhere in the space 
under consideration. Remember that we are 
working in a field and this equation must be 
satisfied at every point in the field. Now, we can 
neither guarantee that dr vanishes everywhere nor 
that there is orthogonality everywhere (so that at 
least one of the cosine terms in the inner products 
is cos(90°) = 0. Thus, we are forced to conclude 
that the only way we have of meeting the condition 
that [(G – G*) · dr] · dr = 0 in all possible cases is 
to assert that G – G* = 0, where 0 is the zero dyad 
0ii + 0ij + 0ik + 0jk +… . In other words, we are 
forced into saying that the dyad G – G* vanishes 
everywhere in the field and then into drawing the 
obvious conclusion that G = G*. In other words, 
the dyad G is coordinate independent. Q.E.D. 

 

 We have already said that the components of G are 
components of the metric tensor. The metric tensor is 
also known as the “fundamental tensor.” This other 
name pertains to the broad role it plays throughout 
tensor analysis. To begin to understand this role, we 
will return to the dyad G and determine the quantity 
(ds)2 yet once again, this time slightly altering the roles 
played by i, j, k and α, β, and χ. 
 Return to equation (120) 
 
 ( ) ( ) ( )d d d dx y z= α + β + χu i j k  (120) 
 

and use the associative law to write 
 
 ( ) ( ) ( )d d d dx y z= + +x y zu e e e  (133) 
 

where we have set ex = αi, ey = βj, and ez = χk. We 
will call ex, ey, and ez base vectors (or basis vectors). 
Note that these base vectors now carry the metric 
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information and also that we have surrendered the use 
of unit vectors in writing du. In the general cases dealt 
with by tensor analysis, unit vectors are seldom used; 
non-unit base vectors are used for convenience and 
expedience. 
 Now, let us find (ds)2: 
 
( ) ( ) ( )

( )

2 2 2

2

d d d

d

x x y y

z z

s x y

z

= ⋅ + ⋅ +

⋅

e e e e

e e
 (134) 

 

It should be clear at this point that the components of 
G may be represented in matrix form: 
 

 
x x

y y

z z

⋅
= ⋅

⋅

e e 0 0
G 0 e e 0

0 0 e e
 (135) 

 
The off-diagonal terms are again all zero in this matrix. 
However, this time we can see that the reason they 
must all be zero is that the individual base vectors ex, 
ey, and ez are all mutually orthogonal. Now, relax this 
condition and suppose that the axes (and therefore the 
base vectors) are not orthogonal. Look at a simple 
oblique two-dimensional coordinate system: 
 

 
 
Note now that the cross terms ex · ey and ey · ex no 
longer vanish but have as their common value ex ey cos 
(θ) (where ex and ey are the magnitudes of the 
respective base vectors). We never know when we will 
have to deal with such systems (e.g., in 
crystallography) so it pays at this point to generalize a 
bit. It is not a big stretch to return to three dimensions 
and to infer a more general form for G as 
 

 
x x x y x z

y x y y y z

z x z y z z

⋅ ⋅ ⋅
→ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

e e e e e e
G e e e e e e

e e e e e e
 (136) 

 
From this argument, it is now possible to infer another 
characteristic of the fundamental tensor itself: its 
symmetry. Since the inner product of vectors is 
commutative, we have the following relationships: 
 

 
x y y x

x z z x

y z z y

⋅ = ⋅

⋅ = ⋅
⋅ = ⋅

e e e e
e e e e
e e e e

 (137) 

 
Any matrix with this property is called symmetric. 
Thus, the metric or fundamental tensor must be a 
symmetric tensor. 
 If we now replace the subscripts x, y, and z with the 
numbers 1, 2, and 3 and call the general term  
ei · ej = gij, we may represent the components of G in 
the classical form used to write the metric tensor: 
 

 
11 12 13

21 22 23

31 32 33

g g g
g g g
g g g

=G  (138) 

 
Now, the symmetry of G is simply stated by noting 
that for all indices j and k, gjk = gkj.13  
 In addition to carrying metrical information in 
general coordinate systems, another important function 
of the metric tensor is to relate the covariant and 
contravariant components of a vector within a given 
coordinate system. However, before this comment can 
be elucidated further, we must return to a consideration 
of coordinate systems and base vectors. 
 
Coordinate Systems, Base Vectors, Covariance, and 
Contravariance 
 
 It is time to give closer consideration to exactly how 
we chose the base vectors for a given coordinate 
system. Up to now, we have tacitly assumed that we 
could find unit vectors directed neatly along the axes 
of a Cartesian system, but matters are usually not so 
                                                 
13Two types of symmetry in tensor analysis are symmetry wherein the off-
diagonal components are pairwise equal according to the rule amn = anm, 
and skew symmetry wherein the off-diagonal components are pairwise 
equal only after one of them has been multiplied by (−1), so that  
amn = −anm. 
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simple, such as in crystallography where the axes are 
not orthogonal and the base vectors are of different 
magnitudes or as in relativity where the axes are 
nonorthogonal and are usually bent or curved.  
 So, we will take a closer look at the base vectors. 
They are important for the same reason as the unit 
vectors i, j, and k: All the other vectors in the space are 
expressed as a linear combination of them. Thus, in the 
system where i, j, and k are the basis, any other vector 
A may be written as 
 
 x y za a a= + +A i j k  (139) 
 
where ax, ay, and az are the components of A in 
directions i, j, and k, respectively. 
 Consider a Cartesian coordinate system. Two sets of 
geometrical entities are present to make up the system: 
the coordinate axes and the coordinate surfaces. We 
are already familiar with the coordinate axes; they are 
the lines that we have been labeling x, y, and z. What 
about the coordinate surfaces? 
 We know from our school geometry that two lines 
determine a plane. Therefore, there are three distinct 
planes in a Cartesian system generated by the three 
distinct pairs of coordinate axes; that is, the xy-, xz-, 
and yz-planes. These planes are the coordinate surfaces 
in the Cartesian system and are just as useful for 
specifying location and distance as are the coordinate 
axes. We have not concerned ourselves with the 
distinction between referring everything to the 
coordinate axes versus referring everything to the 
coordinate surfaces. So now, let us think about this 
distinction. Pick a point P away from the origin in our 
space and say that we wish to specify a vector V at P. 
How do we actually do so? To begin, we require a 
basis vector set at P. In a Euclidean space, this so-
called local basis is seldom of concern since the basis 
vectors are the same everywhere throughout the space, 
but Euclidean space is a very particular space with 
some very nice properties (other types of spaces are 
not so well behaved). To prepare for these other cases, 
examine the Euclidean space with its Cartesian system 
and try to draw out some generalities. 
 If we are working at point P, we obviously wish to 
have a local coordinate system there, and we wish the 
local coordinate system to correlate readily with the 
global coordinate system of which it is a part. We 
specify the local system simply by specifying a local 
basis. We may specify our local basis at P in one of 
two ways: 
 

1. We may construct a set of local axes at P using 
local coordinate curves belonging to the system at 
large. In a Cartesian system, these curves are straight 
lines parallel to the coordinate axes. Then, choose a set 
of base vectors such that there is one member of the set 
tangent to each of the local axes at P. Call this set e1, 
e2, and e3. The vectors need not be unit vectors but 
may be if we so desire. We may now specify V as a 
linear combination of these three vectors. The resulting 
components of V are said to be referred to the local 
axes and are called contravariant components of the 
vector; but if we are in a Cartesian system and have 
specified for our local basis the unit vectors i, j, and k, 
this additional verbiage may be omitted. 

2. Alternatively, we may directly construct three 
local coordinate surfaces at P. (The intersections of the 
surfaces provide the local coordinate axes.) Then, 
choose a set of base vectors such that one member of 
the set is perpendicular to each of the coordinate 
surfaces at P. Call this set * * *

1 2 3, , ande e e . Again, the 
vectors need not be unit vectors but may be if we so 
desire. We may again specify V as a linear 
combination of these three vectors. The resulting 
components of V are said to be referred to the local 
coordinate surfaces and are called covariant 
components of the vector; but as before, if we are in a 
Cartesian system and have specified for our local basis 
the unit vectors i, j, and k, this additional verbiage may 
be omitted. 
 
 In the Cartesian system, the two sets of base vectors 
(i.e., contravariant and covariant) will be identical. 
However, in an oblique system, or in a curved system 
such as an elliptical coordinate system, the two sets 
will be distinct. One set is usually chosen over the 
other in such cases for simple expedience. 
 To recapitulate: the basis set tangent to the 
coordinate curves is called a contravariant basis set. 
The basis set perpendicular to the coordinate surfaces 
is called a covariant basis set. In the general case these 
sets are separate and distinct, though, as we will 
discover shortly, they are also related. The 
representation of the vector V using one set or the 
other is called either a contravariant or a covariant 
representation. Sometimes V is referred to as a 
contravariant or a covariant vector, and the implicit 
meaning is understood.  
 It is a well-known property of Euclidean geometry 
that two nonparallel lines with a common point of 
intersection determine a plane. The plane is said to be 
the product space of the two lines. If the lines are 
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marked with coordinate intervals, then every point in 
the product space will possess a coordinate pair, one 
member of the pair deriving from each line. 
 The concept of product space is neither limited to 
lines nor to Euclidean geometry. Any two nonparallel 
curves intersecting at a point determine a unique 
product surface (two-dimensional space) in the same 
way that the two lines determined the plane. Thus, two 
circles with different radii, existing in perpendicular 
planes, and intersecting at a point determine a torus; 
also, two equal-radii circles intersecting at two points 
determine a sphere. Thus can two sets of curves be 
used to construct a curvilinear coordinate system in 
three-dimensional Euclidean space. Therein, the 
difference between covariant and contravariant 
components of a vector becomes very important. 
 In general, an n-dimensional space and an m-
dimensional space may be used to determine a new and 
unique (n+m)-dimensional product space by an 
extension of the concepts briefly outlined herein for 
lines and curves.  
 We will now introduce a more formal notation for 
contravariant and covariant basis vectors. The 
contravariant set will be denoted by superscripts and 
the covariant set, by subscripts: 

 
e1 → e(1) 
e2 → e(2) 
e3 → e(3) 

*
1e  → e(1) 
*
2e  → e(2) 
*
3e  → e(3) 

 
We may write the vector V in its contravariant and its 
covariant forms as follows: 
 

( ) ( ) ( )

( ) ( ) ( )

1 2 31 2 3

1 2 31 2 3

v v v
v v v

= + +
= + +

V e e e
e e e

 (140) 

 

Note the use of superscripts and subscripts on the 
contravariant and covariant vector components vi and 
vj, respectively, and on the basis vectors e(i) and e(j). 
These superscripts and subscripts are called indices. 
The component indices do not use parentheses, which 
are reserved for the basis vector indices only. The 
parenthesized indices on the basis vectors are not 
strictly tensor indices, but the indices on the vector 
components are. 

 Now let us try to discover some relationships 
between and within the two basis sets in a given 
coordinate system: 
 First, recall the dyad G. Its components were shown 
to be inner products of non-unit basis vectors like the 
general basis vectors e(j) and e(k) that have just been 
introduced. We now formally define the contravariant 
and covariant components of G as follows: 
 

1. Covariant gjk = e(j) · e(k), where j and k 
individually take on the values 1, 2, 3 

2. Contravariant gjk = e(j) · e(k), where j and k 
individually take on the values 1, 2, 314 

 
 Next, observe that the two sets of basis vectors (i.e., 
the contravariant set and the covariant set) are mutually 
orthogonal. Since the coordinate curves are contained 
in the coordinate surfaces (in the Cartesian system, the 
coordinate lines are contained in the coordinate planes) 
and the covariant basis vectors are perpendicular to 
these same surfaces, it follows that each covariant 
basis vector is perpendicular to two contravariant basis 
vectors, that is, the two that are tangent to the 
coordinate curves in the coordinate surface under 
consideration. 
 Let us agree on a labeling system for the coordinate 
curves and surfaces: 
 

The coordinate plane perpendicular to the x-axis 
will be called the yz-plane. 
The coordinate plane perpendicular to the y-axis 
will be called the xz-plane. 
The coordinate plane perpendicular to the z-axis 
will be called the xy-plane. 

 

Now, replace the designations x, y, z by 1, 2, 3 
according to the following rule: 
 

x → 1 
y → 2 
z → 3 

 

We may then restate the labeling system as 
 

The coordinate plane perpendicular to the 1-axis 
will be called the 23-plane. 
The coordinate plane perpendicular to the 2-axis 
will be called the 13-plane. 

                                                 
14Note that the covariant and contravariant components are derived from 
the superscripted and subscripted sets of unit vectors, respectively. This 
peculiarity arises from the transformation properties of the basis vectors 
when viewed from the standpoint of differential geometry. 
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The coordinate plane perpendicular to the 3-axis 
will be called the 12-plane. 

 

So now we have that  
 

e(1) ⊥ e(2) and e(3)  e(1) ⊥ e(2)
 and e(3) 

e(2) ⊥ e(1) and e(3)  e(2) ⊥ e(1)
 and e(3) 

e(3) ⊥ e(2) and e(3)  e(3)
 ⊥ e(2)

 and e(3) 
 
 Note that this listing says nothing about the three 
pairs of vectors e(1) and e(1), e(2) and e(2), e(3) and e(3). 
The reason is that these particular pairs are not usually 
perpendicular. They are either parallel as in the 
Cartesian system or meet at some angle θ < 90° as in 
the oblique system. At any rate, their inner products 
never vanish as do the inner products of such pairs as 
e(1) and e(2), e(2) and e(3), e(1) and e(3) and so on. 
 Finally, we may specify that the two sets of basis 
vectors must always be reciprocal sets. That is, when 
the inner product is formed between a covariant and a 
contravariant base vector in any order, the result will 
always be 0 or 1. Thus, we will choose the basis 
vectors so that the inner products of the three 
respective pairs e(1) and e(1), e(2) and e(2), e(3) and e(3) in 
any order are each equal to unity everywhere 
throughout the space. This requirement places a 
restriction on the choices of magnitude only, since the 
vector directions are already fixed by the local 
coordinate axes and surfaces. Again, this is done for 
expedience. 
 All this information about contravariant and 
covariant basis vectors may be summarized in a single 
equation. We must first introduce a peculiar symbol 
called Kronecker’s delta (Leopold Kronecker, German 
algebraist, number theorist, and philosopher of 
mathematics, 1823−92). We will write this symbol as 

j
kδ ⎯a term that appears to mix covariant and 

contravariant indices (as, in fact, it does). We will 
specify that j

kδ  = 1 only when j = k, and that j
kδ  = 0 

whenever j ≠ k. Thus 1
1δ  = 2

2δ  = 3
3δ  = 1; all other 

combinations of indices produce zero. 
 We may now summarize the relationships between 
contravariant and covariant base vectors as15 
 
 ( )

( ) ( )
( )j j k

jk k⋅ = ⋅ = δe e e e  (141) 

                                                 
15Note again that the superscript j in the inner products becomes a covariant 
index in the delta and that the subscript k in the inner products becomes a 
contravariant index in the delta. This situation is reminiscent of what 
happened with the fundamental tensor. 

It will turn out that the Kronecker delta represents the 
components of a rank 2 mixed tensor. In the following 
section, we will demonstrate coordinate independence. 
 
Kronecker’s Delta and the Identity Matrix 
 

 Look carefully at Kronecker’s delta and write out its 
value for each pair of indices:  
 

1
1 1,δ =  2

1 0,δ =  3
1 0δ =  

1
2 0,δ =  2

2 1,δ =  3
2 0δ =  

1
3 0,δ =  2

3 0,δ =  3
3 1δ =  

 

Seen in this way, it should be apparent that 
Kronecker’s delta may be thought of as representing 
the components of a 3×3 square matrix I: 
 

 

31 2
1 1 1

31 2
2 2 2

31 2
3 3 3

δ δ δ
= δ δ δ
δ δ δ

I  (142) 

 

Those familiar with matrices and linear algebra will 
immediately recognize that I is the identity matrix. 
Recall that for any vector A or any matrix M, it is 
always true that 
 
 ⋅ = ⋅ =I A A I A  (143) 
 

and 
 

 ⋅ = ⋅ =I M M I M  (144) 
 

 and that, in general, for any n-ad X, 
 

 ⋅ = ⋅ =I X X I X  (145) 
 

 With these concepts in mind, we will now 
demonstrate the coordinate independence of 
Kronecker’s delta by demonstrating the coordinate 
independence of the dyad I. Take any n-ad T in the 
system K. We know that for T  
 

 ⋅ = ⋅ =I T T I T  (146) 
 

It is sufficient to use only one of these relations, say  
T · I = T. For T in system K, we must have T* in 
system K* and we specify that T must be coordinate 
independent by writing T = T*. This is the same as 
saying 
 

 * * *⋅ = ⋅ = ⋅T I T I T I  (147) 
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Then 
 

 ( )* * * *⋅ − ⋅ = ⋅ − ⋅ = ⋅ − =T I T I T I T I T I I 0  (148) 
 

where 0 is the zero n-ad of appropriate rank. Since T is 
arbitrary, we must have 
 

 * or *− = =I I 0 I I  (149) 
 

The last expression is just what we require to establish 
the coordinate independence of I and therefore of 
Kronecker’s delta. Q.E.D. 
 
Dyad Components: Covariant, Contravariant, and 
Mixed 
 
 Let us now reexamine what we have learned about 
dyads in the light of our new knowledge about 
covariant and contravariant vector components. In a 
typical dyad such as D = AB, the vectors A and B may 
individually be 
 

Covariant and covariant 
Covariant and contravariant 
Contravariant and covariant 
Contravariant and contravariant 

 
 The same dyad D may now be represented in four 
different ways: covariant, mixed, mixed, and 
contravariant. Using the indicial notation already 
introduced, we will display a typical term of D for each 
case: 
 

Covariant: ajbk = cjk 
Mixed: ajbk = k

jc  
Mixed: ajbk = j

kc  
Contravariant: ajbk = cjk 

 

The dyad is not changed by the choice of 
representation, even though the components are 
different in each case. Remember that the base vectors 
are also different in each case. Therefore, just as we 
had the covariant and contravariant representations of a 
vector, we may also have covariant, contravariant, and 
mixed representations of a dyad or of any of the higher 
order products, triad, quartad, and so forth. Similarly, 
since tensors are a subset of these different families of 
vector product, we may have tensors with covariant 
components, tensors with contravariant components, 
and tensors with mixed components. We usually 

simplify the grammar by simply saying covariant 
tensors, contravariant tensors, and mixed tensors. 
 
Relationship Between Covariant and Contravariant 
Components of a Vector 
 
 Recall that the vector V in the coordinate system K 
may be represented in a contravariant or covariant 
form: 
 

( ) ( ) ( )

( ) ( ) ( )

1 2 31 2 3

1 2 31 2 3

v v v
v v v

= + +
= + +

V e e e
e e e

 (150) 

 
We may now ask how the components vj and vk are 
related. To answer this question, we must invoke the 
rules of inner multiplication for the basis vectors e(j) 
and e(k). Those rules are restated here for the sake of 
completion: 
 

e(j) · e(k) = gjk 
e(j) · e(k) = gjk 
e(j) · e(k) = e(k) · e(j) = k

jδ  
 

 We are now ready to determine how the two sets of 
vector components are related. When we have finished 
this determination, we will see that the fundamental 
tensor makes its presence felt. Perhaps you can already 
see how this is going to happen. 
 Form the inner product V · e(1): 
 

 
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

1 1 2 3 11 2 3

1
1 2 31 2 3

v v v

v v v

⋅ = + + ⋅

= + + ⋅

V e e e e e

e e e e
 (151) 

 
When we distribute the inner product through the 
parentheses and simplify, we obtain the result that 
 
 1 2 3

1 11 12 13v g v g v g v= + +  (152) 
 
Similarly 
 
 1 2 3

2 21 22 23v g v g v g v= + +  (153) 
 
 1 2 3

3 31 32 33v g v g v g v= + +  (154) 
 
and 
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 1 11 12 13
1 2 3v g v g v g v= + +  (155) 

 
 2 21 22 23

1 2 3v g v g v g v= + +  (156) 
 
 3 31 32 33

1 2 3v g v g v g v= + +  (157) 
 
We might recognize that the two systems of equations 
are matrix products, which should be of no surprise at 
this point. Let us call GC the covariant fundamental 
dyad and GC the contravariant fundamental dyad. 
Similarly, introduce the column vector VC as the 
column vector of covariant components and the 
column vector VC as the column vector of 
contravariant components. Thus, 
 

 

1
1

2
2

3
3

, C
C

v v
v v
v v

= =V V  (158) 

 
11 12 13

11 12 13
21 22 23

21 22 23
31 32 33

31 32 33

, C
C

g g g g g g
g g g g g g
g g g g g g

= =G G  (159) 

 
Using familiar notation from linear algebra, we can 
write the relationships in equations (152) through (157) 
as 
 
 and CC C

C CC= ⋅ = ⋅V G V V G V  (160) 
 
Equivalently, we may write 
 
 andk j jk

j k jk k kv g v v g v= Σ = Σ  (161) 
 
 Dr. Albert Einstein noticed that the summation sign 
Σk was redundant in these equations and all others like 
them since summation always occurred over a repeated 
index. Note that in each case above, summation is 
occurring over the index k, which is repeated once as a 
covariant index and once as a contravariant index in 
each term. Thus, in the severely abbreviated notation 
of tensor analysis, we have finally 
 
 andk j jk

j jk kv g v v g v= =  (162) 
 
where summation over the index k is understood. This 
last convention is called Einstein’s summation 

convention. In full, Einstein’s summation convention 
states that 
 

In the notation of tensors, summation always takes 
place over a repeated pair of indices, one covariant 
and the other contravariant. The repeated indices 
are called bound or dummy indices. The 
nonrepeated indices are called free indices and 
indicate actual tensor rank and type. 

 
 To work with an equation such as vj = gjkvk, first 
observe where the repeated indices fall. Since these 
indices indicate summation, expand along these indices 
first: 
 
 1 2 3

1 2 3j j j jv g v g v g v= + +  (163) 
 
Next, remember that the free index j must take on all 
possible values sequentially. Since j ranges in value 
over 1, 2, and 3, expand the free index (or indices) 
next: 
 
 1 2 3

1 11 12 13v g v g v g v= + +  (164) 
 
 1 2 3

2 21 22 23v g v g v g v= + +  (165) 
 
 1 2 3

3 31 32 33v g v g v g v= + +  (166) 
 
When done, the information stored in the compact 
tensor notation is ready and available for you to work 
with. 
 It is worthwhile here to demonstrate the expedience 
of tensor notation. Let us repeat the argument that we 
just went through in “longhand” but this time use strict 
tensor notation. 
 The vector V can be stated in terms of its 
contravariant components and its covariant 
components as 
 
 ( )

( )
ii

j jv v= =V e e  (167) 

 
Note that we do not use i as an index in both equations; 
we choose different letters. Now, form the inner 
product V · e(k): 
 
 ( ) ( ) ( )

( )
( )k i k ki

j jv v⋅ = ⋅ = ⋅V e e e e e  (168) 

 
The second equality simplifies as 
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 ( ) ji i
ik ik j kkv g g v v v= = δ =  (169) 

 
where in the term j

j kv δ , summation is over the index j. 
A similar argument may be formed for V · e(m). If 
nothing else, you see the compactness of the notation 
and the capability it provides for manipulating large 
amounts of information with only a few symbols. 
 
Relation Between gij, gst, and δs

w  
 
 Now we will use our new Einstein notation to 
establish the relationship 
 
 iij ij

jk jk kg g g g= = δ  (170) 
 
Begin by recalling that for any vector V with covariant 
components vi and contravariant components vj, we 
can write 
 
 andk k kp

i ik pv g v v g v= =  (171) 
 
Substituting the second equation into the first, we find 
that  
 
 kp

i ik pv g g v=  (172) 
 
And we can always write the trivial identity16 
 
 p

i piv v= δ  (173) 
 
Subtracting these two equations, we obtain 
 

( )
( )

0

0

pkp
ik p pi

pkp
ik p pi

g g v v

g g v v

− δ =

→ −δ =
 (174) 

 
But vp is an arbitrary vector so that we cannot assume 
that vp = 0. Therefore, this equation can only be true 
provided that 
 
 pkp

ik ig g = δ  (175) 

                                                 
16A trivial identity in algebra is any identity of the type 1 × a = a × 1 = a or  
0 + x = x + 0 = x. These identities are important in applications such as the 
one with which we are dealing and will be used many times more 
throughout this text. 

An identical argument (starting with vk = gkpgpmvm) 
permits us to establish that gkpgpm = k

mδ . With these 
two identities, we can then write 
 
 Q.E.D.iij ij

jk jk kg g g g= = δ  (176) 
 
NOTE: We never divide out terms as we do in algebra. 
Division is not defined for tensors. However, because 
division is a process of repeated subtractions, we do 
use subtraction as we just did in the example above and 
in other examples throughout this text. 
 
Inner Product as an Operation Involving Mixed 
Indices 
 
 Now we return to the inner product of two vectors. 
Recall that any vector V has two representations within 
a given system: a contravariant and a covariant: 
 

( ) ( ) ( )

( ) ( ) ( )

1 2 31 2 3

1 2 31 2 3

v v v
v v v

= + +
= + +

V e e e
e e e

 (177) 

 
Take this vector and another vector 

( ) ( ) ( )

( ) ( ) ( )

1 2 31 2 3

1 2 31 2 3

u u u
u u u

= + +
= + +

U e e e
e e e

 (178) 

 
and form their inner product V · U in the following 
ways: 
 

Covariant · covariant 
Covariant · contravariant 
Contravariant · covariant 
Contravariant · contravariant 
 

We will do each combination in turn and look at the 
results. 
 
Covariant · covariant:  
 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

1 2 3 1 2 31 2 3 1 2 3

11 12
1 1 1 2 7 additional terms

v v v u u u

v u g v u g

+ + ⋅ + +

= + +

e e e e e e

…
 (179) 

 
Covariant · contravariant:  
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( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 31 2 3
1 2 31 2 3

1 2 3
1 2 3

v v v u u u

v u v u v u

+ + ⋅ + +

= + +

e e e e e e
 (180) 

 
Contravariant · covariant:  
 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 31 2 3
1 2 31 2 3

1 2 3
1 2 3

v v v u u u

v u v u v u

+ + ⋅ + +

= + +

e e e e e e
 (181) 

 
Contravariant · contravariant:  
 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

1 2 3 1 2 31 2 3 1 2 3

1 1 1 2
11 12 7 additional terms

v v v u u u

v u g v u g

+ + ⋅ + +

= + +

e e e e e e

…
 (182) 

 
 It should be clear that two of the four combinations 
yield simpler results than the other two. The 
combinations covariant · covariant and contravariant · 
contravariant yield nine separate terms, each involving 
the component values and the components gij or gmn. 
The combinations covariant · contravariant and 
contravariant · covariant yield three separate terms, 
each without the components gij or gmn and look much 
the same as the form for the inner product that we first 
memorized in basic calculus. Therefore, we will adopt 
the convention that the inner product of two vectors 
must always involve the covariant representation of 
one and the contravariant representation of the other. 
 

Note: In adopting this convention for the inner 
product of two vectors, we were led by the form 
for the inner product that we memorized in basic 
calculus. It is important to always remember that in 
extending any mathematical system into new 
territory (i.e., territory differing from what has 
already been established), we must also take care 
to establish firm tie-ins with what has already been 
established so that a two-way road exists between 
the old and the new. In this way, the growing body 
of mathematics remains a seamless whole, much 
like the great system of highways that crisscross 
our Nation. 

 
 Using Einstein’s notation, we formally define the 
inner product of the tensors vj and uk as 
 
 j j

j jv u u v=  (183) 
 

The following will show that the other three 
possibilities readily derive from equation (183): 
 

1. The covariant vj is related to the contravariant vs 
via the expression vj = gjsvs. Making the appropriate 
substitution yields 
 
 j s j

j jsv u g v u=  (184) 
 
which is the same result found for contravariant · 
contravariant. 

2. The contravariant uj is related to the covariant ut 
by uj = gjtut. Thus 
 
 j jt jt

j j t j tv u v g u g v u= =  (185) 
 
which is the same result found for covariant · 
covariant. 

3. Using both relations together yields 
 

 ( )( )j s jt jt s
j js t js t

t s t
s t t

v u g v g u g g v u

v u v u

= =

= δ =
 (186) 

 
which is the same result found for contravariant · 
covariant. These last calculations continue to 
demonstrate the manipulation of the tensor indices. 
Again, you should be able to see how effective the 
shorthand of tensor analysis is when performing these 
types of calculations and (hopefully) why it is very 
worth your time to practice it carefully. 
 
General Mixed Component: Raising and Lowering 
Indices 
 
 Now, imagine the general n-ad R with mixed 
components written as 
 
 ijk

stuR …
…  (187) 

 
The covariant components are s, t, u,… and the 
contravariant components are i, j, k,… . Now, if we 
wish to represent this quantity using the contravariant 
form for the s component rather than the covariant 
form, we multiply by gwz to form a new term: 
 
 ijkwz

stug R …
…  (188) 
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Next, we set the index z = s and sum over the repeated 
index s to obtain the new representation: 
 
 ijk ijk iwjkwz ws

stu stu tug R g R R→ =… … …
… … …  (189) 

 
The term for this process is “raising an index.” 
Similarly, we may use gqv to lower a contravariant 
index. What must be done is to switch a contravariant 
component for a covariant one or vice verse. The 
overall term is not affected by this manipulation. 
 In the dyad notation that we have become 
accustomed to using, this same calculation would 
appear as follows. Let 
 
 C C C

C C C=R I J K S T U ……  (190) 
 
where the individual vectors are now represented by 
the same letters as those used for their respective 
indices in ijk

stuR …
… , and the superscripted and subscripted 

capital “Cs” indicate contravariance and covariance. 
Now, if we wish to use the contravariant representation 
of S rather than its covariant representation, we first 
left-multiply the n-ad R by GC: 
 
 C C C C C

C C C=G R G I J K S T U… …  (191) 
 
Note that the dot signifying inner product has not been 
placed. At this time, we select the location for the dot 
and write accordingly 
 

( )C CC C C
C C C

C C C C
C C

⋅ = ⋅

=

G R I J K G S T U

I J K S T U

… …

… …
 (192) 

 
This last result is the one sought. The new n-ad has as 
its components the terms iwjk

tuR …
… . 

 Why raise and lower indices? For expedience. For 
example, consider the dyad M with covariant 
components mjk. We wish to find its trace.17 Can we 
just add the terms m11 + m22 + m33? No, we cannot 
because a greater degree of caution is required when 
working with covariant, contravariant, and mixed 
terms. 
 Therefore, what exactly is the definition of the trace 
of a matrix? The trace of a matrix is a solution λ (a 

                                                 
17When the dyad is represented as a Cartesian matrix, the trace is the sum of 
the diagonal terms. 

scalar) to the so-called characteristic equation of a 
matrix: 
 
 ⋅ = λM X X  (193) 
 
where X (≠ 0) is a vector. We can rewrite this equation 
in tensor notation, assuming that we are free to use the 
covariant form of M: 
 
 k j

jkm x x= λ  (194) 
 
Note that an immediate problem here is that the free 
index j on xj is contravariant whereas the 
corresponding index j on mjk is covariant. We are 
asserting that a covariant vector mjkxk is identical to a 
contravariant vector λxj, which in the general case, we 
have no right to do. So, evidently, the use of a 
covariant M is not appropriate here. 
 Let us examine our situation further: the summation 
index k in mjkxk seems to be properly arranged. 
Therefore, if we were to use a mixed form of M with a 
contravariant index j, everything would be in proper 
order. Write18 
 

 j k j
km x x= λ  (195) 

 
which is indeed a legitimate equation. Next, proceed as 
before by subtracting λxj from both sides: 
 

 0j k j
km x x− λ =  (196) 

 

Simplify further by noting that jj k
kx x= δ  and then 

substitute and factor out common terms: 
 
 ( ) 0j j k

k km x− λδ =  (197) 

 
Since xj is an arbitrary vector, we must have 
 
 j j

k km = λδ  (198) 
 
But λδk

j  is zero unless j = k. So, let us set j = k = s and 
sum:19 
                                                 
18Recall that .j js

skkm g m=  Therefore, if we have the fundamental tensor, 
then we also have the means of obtaining the necessary mixed components 
of M from the given covariant components. 
19We say that j

kδ  = 0 unless j = k for which case 1j
kδ =  . We are here 

speaking of the individual terms in j
kδ  without summation. Setting j = k 
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 Trace of 3s
sm→ = λM  (199) 

 
 The direct approach to the problem of finding the 
trace of the matrix M given its covariant components is 
as follows: Given mjk, first raise one of the two 
covariant indices (it does not matter which); then set 
the values of the new indices equal and sum over the 
repeated index. Thus, 
 
 sst sj

jk jk jk km g m g m m→ → →  (200) 
 
and 
 
 31 2

1 2 3 trace ofs u
ukm m m m m→ = + + → M  (201) 

 
 At this point, you might again be wondering why 
covariance and contravariance never occurred before in 
college mathematics. Remember that mathematics, as 
it relates to physics and engineering, assumes 
Euclidean space with Cartesian coordinates almost 
exclusively. In Cartesian coordinates, the covariant and 
the contravariant components are one and the same, 
and the fundamental tensor is merely the identity 
tensor. 
 When other coordinate systems are used, such as 
spherical or cylindrical coordinate systems, the 
covariant and contravariant components are still one 
and the same, provided that unit vectors are used as 
basis vectors. However, the fundamental tensor has 
some diagonal terms other than unity. The full 
machinery of tensor analysis with all its distinctions 
and carefully crafted terminology is simply not 
necessary to handle such things, so the distinctions 
remained hidden. 
 Herein, we are introducing a branch of mathematics 
that deals with what happens in cases that are more 
general than those studied in college. In fact, we are 
developing a mathematical system so general that it 
can be used in any type of space, with any type of 
curvature, and with any number of dimensions. This 
point is evident in the fact that although we are tacitly 
assuming the space of familiarity (Euclidean three-
space), we are making no specific caveats about the 
actual space under consideration or about its 

                                                                                   
and summing yields 1

1δ  + 2
2δ  + 3

3δ  = 1 + 1 + 1 = 3. (In an n-dimensional 
space, we would have 1

1δ  + 2
2δ  + … + n

nδ  = 1 + 1 + … + 1 = n.) 
Remember that when using tensor notation, be very specific in defining 
everything. Specificity is the price we must pay for the great generality and 
convenience the notation affords. 

dimensionality. Thus, what we are saying is not limited 
to Euclidean three-space or to anything else. This fact 
alone does not prove the generality of tensor analysis, 
but for our purposes, it at least points very strongly 
towards it. 
 
Tensors: Formal Definitions 
 
 Tensors are coordinate-independent objects. Because 
they possess this important property, they are ideally 
suited for constructing models and theories in physics 
and engineering. The components of the physical 
world are also coordinate independent, that is, they do 
not depend for their existence or for their properties on 
what we think about them or on the direction in which 
we view them.20 
 The components of tensors are the equivalent of 
projections of the tensor onto the coordinate axes. This 
statement has explicit meaning for vectors only. It has 
only heuristic meaning in all other cases and serves as 
a guide to thinking. The components are therefore 
coordinate dependent in the sense that the angle at 
which we view a house or a car is dependent on our 
location relative to the house or the car. 
 Coordinate independence is best expressed 
mathematically by writing down a system of equations 
that relate the components seen in one arbitrarily 
chosen coordinate system (which we have been calling 
K) to those seen in another arbitrarily chosen 
coordinate system (which we have been calling K*). 
Such a system of equations is called a transformation. 
The transformations that are used to define tensors are 
subject to the restriction that the tensors themselves 
must be coordinate independent; that is, they must 
possess a kind of physical reality. 
 Now, specific mathematical shape will be given to 
these ideas. We have already written coordinate 
transformations in integral form: 
 
 ( )* * , ,x x x y z=  (202) 
 
 ( )* * , ,y y x y z=  (203) 
 
 ( )* * , ,z z x y z=  (204) 
 

 Now switch from using these expressions to using 
the equivalent differential forms. Doing so involves the 
use of differential calculus and actually represents the 
                                                 
20This situation is characteristic of classical and relativistic models; it is 
replaced in quantum mechanics with the uncertainty principle. 
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beginnings of differential geometry, the work 
developed by Riemann and others (Bell, 1945) in the 
19th century and used so effectively by Einstein in the 
20th century. Differential geometry is at the basis of 
tensor analysis and therefore of both theories of 
relativity. 
 In differential form, the transformation equations are 
 

 * * *d * d d dx x xx x y z
x y z

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (205) 

 

 * * *d * d d dy y yy x y z
x y z

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (206) 

 

 * * *d * d d dy y yy x y z
x y z

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (207) 

 

These expressions should appear familiar since they 
are nothing more than an application of the chain rule 
for partial derivatives to the differentials of x*, y*, and 
z* in turn. 
 We have already argued that the vector dr = dxi + 
dyj + dzk (the differential displacement vector) is 
coordinate independent. We further note that the terms 
dx, dy, and dz are the components of the differential 
position vector in a coordinate system K and that the 
terms dx*, dy*, and dz* are the components of that 
same vector in another system K*. Therefore, the three 
differential equations (205) to (207) represent an actual 
transformation between the K and K* systems. 
Moreover, they represent the transformation that we 
are seeking for the specific case of the vector dr. 
 The equations are linear with respect to the 
coordinate differentials dx, dy, and dz, which are 
combined in turn with the derivatives (∂x*/∂x), 
(∂x*/∂y), and (∂x*/∂z), and so forth, to give the terms 
dx*, dy*, and dz*. The original coordinate 
transformations 
 
 ( )* * , ,x x x y z=  (208) 
 
 ( )* * , ,y y x y z=  (209) 
 
 ( )* * , ,z z x y z=  (210) 
 

enter into the picture through these derivatives. 
 Since, in a Cartesian system, the unit vectors i, j, and 
k are both covariant and contravariant without 

distinction, it appears that we are free to specify which 
type of tensor we wish dr to be. We assert that 
whatever it is in one coordinate system, it will be in all 
coordinate systems. Let us choose to make it the 
prototypical contravariant tensor. This choice makes 
sense because for the vanishing of dy and dz, dr = dxi, 
a vector tangent to the x-axis (similarly for the 
vanishing of dx and dz and dx and dy). To reiterate, 
select the vector dr to represent the prototypical 
contravariant vector. All other vectors that transform 
according to the rule established for dr will be called 
contravariant vectors. That is, all other vectors whose 
components transform like 
 

 * * *d * d d dx x xx x y z
x y z

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (211) 

 

 * * *d * d d dy y yy x y z
x y z

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (212) 

 

 * * *d * d d dz z zz x y z
x y z

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (213) 

 

In matrix form, the same transformation equations 
become 
 

 

* * *

* * *d * d

* * *

x x x
x y z

y y y
x y z

z z z
x y z

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

r r  (214) 

 
If we now make the formal notational changes  
dx → dx1, dy → dx2, and dz → dx3; dx* → dx1*,  
dy* → dx2*, and dz* → dx3* and substitute, we 
observe that this entire set of expressions can be 
written in tensor format as 
 

 *d * d
i ki
k

xx x
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (215) 

 
where summation takes place over the repeated index 
k. This expression is the prototype for contravariant 
vectors. Since all contravariant vectors must behave 
the same way, we are now in a position to state the 
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general definition of a contravariant vector or tensor of 
rank 1: 
 

Any vector having components Ai in K and Aj* in 
K* is a contravariant tensor of rank 1 if its 
components transform according to the rule 

 

 **
i ki
k

xA A
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (216) 

 
Now, we will do the same type of exercise for the 
covariant vector or covariant tensor of rank 1. Only 
this time, we will dive immediately into Einstein’s 
shorthand notation. 
 We have already said that contravariant basis vectors 
are basis vectors that are tangent to the coordinate 
curves. Also, covariant basis vectors are basis vectors 
that are perpendicular to the coordinate surfaces. We 
know that for any surface corresponding to a scalar 
function of the form φ(x, y, z) = constant, a vector 
perpendicular to φ is the gradient ∇φ where ∇ is the 
differential operator: 
 

 
d dx y z

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞∇ = + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎝ ⎠
i j k  (217) 

 
Let us demonstrate the coordinate independence of ∇φ. 
We know from beginning calculus that 
 
 d d∇φ⋅ = φr  (218) 
 
and therefore, 
 
 * * d * d *∇ φ ⋅ = φr  (219) 
 
But since φ and therefore dφ are scalars, we also have 
dφ = dφ*. Furthermore, we have also established that 
dr = dr*. Therefore, 
 

( )
d d

* * d * * d 0
φ = ∇φ⋅

= ∇ φ ⋅ → ∇φ−∇ φ ⋅ =

r
r r

 (220) 

 
 
Since dr is an arbitrary tensor, this equation is 
everywhere satisfied only if ∇φ = ∇*φ*. Q.E.D. 
 In index notation, the gradient of φ is simply written 
∂φ/∂xs in K and ∂φ*/∂xt* in K*. By the chain rule for 
partial derivatives, we have 

 *
* *

s

t t s
x

x x x
⎛ ⎞∂φ ∂ ∂φ⎛ ⎞= ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

 (221) 

 
where summation occurs over the repeated index s. 
 Using arguments analogous to those used for the 
contravariant case, we take this expression to be the 
prototype transformation for covariant vectors. Since 
all covariant vectors must behave the same way, we are 
now in a position to state the general definition of a 
covariant vector or tensor of rank 1: 
 

Any vector having components Ai in K and Aj* in 
K* is a covariant tensor of rank 1 if its components 
transform according to the rule 

 

 *
*

k
i ki

xA A
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (222) 

 
To reiterate, the covariant and contravariant vectors of 
rank 1 tensors are formally defined by their 
transformation rules: 
 

 *Covariant
*

k
i ki

xA A
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (223) 

 

 **Contravariant
ii k
k

xA A
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (224) 

 
Many (if not most) texts on tensors begin by stating 
these definitions without offering any background. 
What this monograph has attempted to do is build a 
bridge from what is considered a sound knowledge of 
vectors (i.e., a knowledge common to all students of 
physics and engineering) up to this point so that the 
natural flow of thought, the natural connectivity of 
mathematical ideas, does not appear interrupted when 
tensors are first encountered. 
 From this point, we may proceed at once to write 
down the law for the general rank n mixed tensor 

ijl
stuR …
… . Since this tensor is equivalent to an n-ad made 

up of covariant and contravariant vectors, let us simply 
note that the same laws apply for those vectors when 
“locked up in combination” in an n-ad as when they 
are free to stand alone. So, using what we have just 
done, we can write the general definition of the 
transformation law directly: 
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Any quantity ijl
stuR …
…  is a rank n mixed tensor 

provided that its components transform according 
to the rule 
 

 

* * **

* * *

i j k

s t u

ijk
stu

x x xR
x x x

x x x
x x x

R

α β χ
αβχ
λµν

λ µ ν

⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂
= ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂
⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

…
…

…
…

"

"

 (225) 

 
 Study this rule carefully until you begin to see its 
structure and rhythm. Note that there are bound and 
free indices. The free indices are represented by Greek 
letters to make them more distinctive; however, these 
are not summation indices. The bound indices are 
represented by Roman letters, and they are summation 
indices. The term on the right is a multiple summation; 
in other words, summation occurs first over the index i, 
then the result is summed over the index j, then that 
result is summed over the index k, and so on. Perhaps 
now you can begin to appreciate anew the efficacy of 
tensor analysis’ beautiful, if somewhat severe, 
shorthand notation. 
 
Is the Position Vector a Tensor? 
 

 Assume two linear two-dimensional coordinate 
systems K and K* in the plane. Let the coordinates in 
K be designated (x, y) and the coordinates in K* be 
designated (x*, y*). Since both systems comprise 
straight lines, we may write21 
 
 ( ) ( )*x a x h b y k= + + +  (226) 
 
 ( ) ( )*y c x h d y k= + + +  (227) 
 
In index notation, these same equations become 
 
 ( ) ( )1 1 2*x a x h b x k= + + +  (228) 
 
 ( ) ( )2 1 2*x c x h d x k= + + +  (229) 
 

                                                 
21We might also have written x* = sx + ty + 0*x  and y* = mx + py + 0*y  
where ( 0*x , 0*y ) is the location of the K* origin as seen from K. If we set 

0*x  = sh + tk and 0*y  = mh + pk, then we acquire the form of the equations 
presented in the text, namely, x* = s(x + h) + t(y + k) and y* = m(x + h) + 
p(y + k). 

Assume that the components of the position vectors are 
contravariant components; therefore, we must have 
 

 
1 1

1 1 2
1 2
* ** x xx x x

x x
⎛ ⎞ ⎛ ⎞∂ ∂

= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (230) 

 

 
2 2

2 1 2
1 2
* ** x xx x x

x x
⎛ ⎞ ⎛ ⎞∂ ∂

= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (231) 

 
But, since 

 
1

1
*x a

x
⎛ ⎞∂

=⎜ ⎟∂⎝ ⎠
 (232) 

 

 
1

2
*x b

x
⎛ ⎞∂

=⎜ ⎟∂⎝ ⎠
 (233) 

 

 
2

1
*x c

x
⎛ ⎞∂

=⎜ ⎟∂⎝ ⎠
 (234) 

 

 
2

2
*x d

x
⎛ ⎞∂

=⎜ ⎟∂⎝ ⎠
 (235) 

 
this obviously cannot be the case unless h = k = 0, that 
is, unless the origins coincide. 
 There is another argument, for those who might have 
some trouble with the one just advanced. From the 
theory of differential equations for the general case, 
write 
 

 * *d * d dx xx x y
x y

⎛ ⎞∂ ∂⎛ ⎞= + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (236) 

 

 * *d * d dy yy x y
x y

⎛ ⎞∂ ∂⎛ ⎞= + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (237) 

 
However, except under certain very specialized 
conditions, we are not permitted to write 
 

 * ** x xx x y
x y

⎛ ⎞∂ ∂⎛ ⎞= + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (238) 

 

 * ** y yy x y
x y

⎛ ⎞∂ ∂⎛ ⎞= + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (239) 
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This second argument aptly demonstrates that the 
differential position vector is a rank 1 tensor in the 
general case, but the position vector itself is not. 
 
The Equivalence of Coordinate Independence With 
the Formal Definition for a Rank 1 Tensor (Vector) 
 
 Recall that earlier, we provisionally defined a rank 1 
tensor as any quantity with direction and magnitude 
that satisfied the relationship V = V* when viewed 
respectively from reference systems K and K*. We will 
now argue that this provisional definition is equivalent 
to the formal definition we have just set down in terms 
of vector components. 
 Let a Riemannian n-space Rn have two coordinate 
systems K and K*. Let V be a vector in Rn as seen from 
the system K and V* be the same vector as seen from 
the system K*. To show equivalence of the expression 
V = V* for the total vector and the expression 
vi(∂x*j/∂xi) = v*j for the contravariant components, we 
must demonstrate that 
 

 { }* *
*

i
i j

j
xv v

x
⎧ ⎫⎛ ⎞∂⎪ ⎪= ⇔ =⎨ ⎬⎜ ⎟∂⎪ ⎪⎝ ⎠⎩ ⎭

V V  (240) 

 
 First: Necessity (⇐).⎯Assume that 
 

 *
*

i
i j

j
xv v

x
⎛ ⎞∂

= ⎜ ⎟∂⎝ ⎠
 (241) 

 

Then 
 

( ) ( ) ( )

( )

* *
* *

* * *

i i
i i ii j j

j j

jj

x xv v v
x x

v

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
= = = ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

= =

V e e e

e V

 (242) 

 

Therefore, 
 

 { }* *
*

i
i j

j
xv v

x
⎧ ⎫⎛ ⎞∂⎪ ⎪= ⇒ =⎨ ⎬⎜ ⎟∂⎪ ⎪⎝ ⎠⎩ ⎭

V V  (243) 

 
Next: Sufficiency (⇒).⎯Assume that V = V*. Then 

 
 ( ) ( )* *i ji jv v=e e  (244) 
 

 Consider the point P at which the vector is located in 
Rn. Set up local axes at P for both K and K*. These 
axes must all intersect at P. 
 Now embed Rn into a Euclidean space En+1 with an 
(n+1)-dimensional Cartesian coordinate system. In 
En+1, the base vectors e(i) and e*(j) are tangent to the 
coordinate axes in their respective coordinate systems 
K and K* in Rn. Also, in En+1, the space Rn is a 
hypersurface on which every point in Rn may be 
located by a position vector r in En+1. 
 The base vectors e(i) and e*(j) are tangent to the 
coordinate axes in K and K*, respectively. Let these 
axes be labeled xi in K and x*j in K*. Then 
 

 ( ) ( )and *
*

i j
i jx x

∂ ∂
= =
∂ ∂

r re e  (245) 

 
But, from the theory of differential equations, we have 
 

( )

( ) ( )

*
*

* ** *

j
i

i j i

j j
j j

i i

x
x x x

x x
x x

⎛ ⎞∂ ∂ ∂⎛ ⎞= = ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ ∂

= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

r re

e e
 (246) 

 
that is, e(i) = (∂x*j/∂xi)e*(j). 
 Substitution of this result into vie(i) = v*je*(j) gives 
 

( ) ( ) ( )

( )

* ** *

* *

j j
i j ji i i

i i

jj

x xv v v
x x

v

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
= = ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

=

e e e

e

 (247) 

 
We conclude that vi(∂x*j/∂xi) = v*j. Therefore, 
 

 { }* *
*

i
i j

j
xv v

x
⎧ ⎫⎛ ⎞∂⎪ ⎪= ⇒ =⎨ ⎬⎜ ⎟∂⎪ ⎪⎝ ⎠⎩ ⎭

V V  (248) 

 
Thus, the equation V = V* is both necessary and 
sufficient to ensure that vi(∂x*j/∂xi) = v*j. The two 
expressions are equivalent. Q.E.D. 
 
Coordinate Transformation of the Fundamental 
Tensor and Kronecker’s Delta 
 
 It is worthwhile to write down the coordinate 
transformations of the covariant and contravariant 
components of the fundamental tensors as practice and 
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also for future reference. We will simply specialize the 
general rule, equation (225). 
 For the covariant fundamental tensor, we have 
 

 *
* *

s t
jk stj k

x xg g
x x

⎛ ⎞⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

 (249) 

 
For the contravariant fundamental tensor, we have 
 

 *
* *j k

jk st
s t

x xg g
x x

⎛ ⎞⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

 (250) 

 
Finally, we know that the components of Kronecker’s 
delta may be represented in terms of the components of 
the fundamental tensor as 
 

 i ij
jkk g gδ =  (251) 

 
We may use the two expressions just given to write 
 

 **
*

i t
i s

tk s k
x x
x x

⎛ ⎞⎛ ⎞∂ ∂
δ = δ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

 (252) 

 
Please study these expressions in relation to the general 
transformation formula to make certain that you 
understand how they were obtained so that you are 
able to write similar expressions. 
 
Two Examples From Solid Analytical Geometry 
 
 We take our space to be the usual Euclidean three-
space of our college analytical geometry and use 
different sets of coordinate systems to map this space. 
Within these systems, we will begin to see how the 
ideas about tensors may be applied on a rudimentary 
level. 
 Example 1: Cartesian coordinates.⎯We begin with 
the most familiar system of all, the three-dimensional 
Cartesian coordinate system. We will place this system 
into our space and call it K. This system comprises 
three mutually perpendicular straight lines intersecting 
at a common point called the origin. The unit interval 
is usually taken as a unit of distance and is the same on 
all three of the axes x, y, and z. In K, (ds)2 = (dx)2 + 
(dy)2 + (dz)2. 
 Now, let us show the tensor character of ds by 
showing that ds = ds*. Let us place a second system 
into our space such that its origin is displaced from the 
origin of K and the system itself is at some arbitrary 
angle to K. Call this new system K*. In K*, (ds*)2 = 

(dx*)2 + (dy*)2 + (dz*)2. The coordinate transform-
ations from K to K* are the linear equations 
 
 ( ) ( ) ( )1 0 1 0 1 0*x l x x m y y n z z= − + − + −  (253) 
 
 ( ) ( ) ( )2 0 2 0 2 0*y l x x m y y n z z= − + − + −  (254) 
 

 ( ) ( ) ( )3 0 3 0 3 0*y l x x m y y n z z= − + − + −  (255) 
 
where (x0, y0, z0) is the location of the K* origin in K, 
and (l1, m1, n1), (l2, m2, n2), (l3, m3, n3) are the direction 
cosines of the x*-, y*-, and z*-axes, respectively, 
measured with respect to the x-, y-, and z-axes in K. If 
we now form the coordinate differentials, we find that 
 

 1 1 1*d d d dx l x m y n z= + +  (256) 
 

 2 2 2*d d d dy l x m y n z= + +  (257) 
 

 3 3 3*d d d dz l x m y n z= + +  (258) 
 

and 
 

( ) ( ) ( ) ( )
( )( ) ( )( )

( )( )

2 2 2 2

2 22 2 2 2 2 2
1 2 3 1 2 3

22 2 2
1 2 3

d * d * d * d *

d d

d

s x y z

l l l x m m m y

n n n z

= + +

= + + + + +

+ + +

 (259) 

 

Since the direction cosines must satisfy ( )2 2 2
1 2 3l l l+ +  = 

( )2 2 2
1 2 3m m m+ +  = ( )2 2 2

1 2 3n n n+ +  = 1, we have that 
 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

2 2 2 2

d * d * d * d *

d d d d

s x y z

x y z s

= + +

= + + =
 (260) 

 
as we were to show. Q.E.D. This calculation reaffirms 
the rank 0 tensor characteristic of ds. 
 

Remember, if a quantity is shown to be a tensor in 
one particular system, then it is a tensor in all 
systems. 

 
Sometimes, the proof of tensor character may be 
greatly simplified by keeping this rule in mind and 
choosing a particular coordinate system in which to 
demonstrate tensor character. 
 Next, let us determine the fundamental tensor in K. 
We know, in general, that ds2 = gjkdxjdxk. In the case of 
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system K, we have (ds)2 = (dx)2 + (dy)2 + (dz)2 = 
(1)(dx)(dx) + (1)(dy)(dy) + (1)(dz)(dz) = (1)dx1dx1 + 
(1)dx2dx2 + (1)dx3dx3, where the superscripted 
variables have been substituted for x, y, and z. We must 
conclude that 
 

 11 22 33 1g g g= = =  (261) 
 

 ( ) 0jkg j k≠ =  (262) 
 

Equivalently, we have 
 

 
1 0 0
0 1 0
0 0 1

=G  (263) 

 

That is, the fundamental tensor in this case is none 
other than the identity tensor whose components are 
given by Kronecker’s delta. 
 Since the components that we are looking at are the 
subscripted gjk, we conclude that this tensor is the 
covariant fundamental tensor. What about the 
contravariant fundamental tensor? Well, we have just 
shown that GC = I. Let GC = A and invoke the rule  
GC · GC = I. Substituting, we see immediately that we 
have 
 

 ⋅ =I A I  (264) 
 

There is only one tensor A that will satisfy this 
relationship, and that is A = I. So the covariant and the 
contravariant fundamental tensor are one and the same 
in K (and by extension, in K*, also). This identity is the 
reason that covariance and contravariance do not 
appear as distinct cases in a Cartesian system in 
Euclidean three-space. They are indistinguishable. 
 Example 2: Spherical coordinates.⎯Let us leave 
Cartesian coordinates now and go to something a little 
more interesting. The spherical coordinate system 
comprises the same three axes as the Cartesian system 
with the addition of concentric spheres centered on the 
origin. The coordinates used to locate a point in space 
with spherical coordinates are (1) its distance ρ from 
the origin (i.e., the radius of the sphere on which it 
lies); (2) the angle φ that the line from the origin to the 
point makes with the z-axis; and (3) the angle θ that the 
projection of the same line in the x,y-plane makes with 
the x-axis. 
 Let us erase the previous Cartesian systems and 
begin again. We place a spherical coordinate system in 
our space and call it K. We have learned in our basic 

calculus that in K, (ds)2 = (dρ)2 + (ρdφ)2 + (ρsinφdθ)2. 
We have already shown the tensor character of ds in 
the Cartesian system, so there is no need to show it 
again here. It is apparent, however, that if we did, the 
calculation would be messier than before. 
 Let us determine the fundamental tensor in K. First, 
we must recognize that the coordinate differentials are 
dρ, dφ, and dθ. Setting x1 = ρ, x2 = φ, and x3 = θ, we 
discover that 
 

 ( ) ( )2 2
11 22 331, , sing g g= = ρ = ρ φ  (265) 

 

 ( ) 0jkg j k≠ =  (266) 
 

This time, the tensor GC takes on a more interesting 
aspect: 
 

 ( )
( )

2

2

1 0 0

0 0

0 0 sin
C = ρ

ρ φ

G  (267) 

 

This time, the contravariant fundamental will not be a 
mere repeat of the covariant fundamental tensor. Again 
using the rule GC · GC = I, we discover that 
 

 ( )
( )

2

2

1 0 0

0 0

0 0 sin

C −

−

= ρ

ρ φ

G  (268) 

 

In this case, there is a difference between covariance 
and contravariance. Using vs = gskvk, write the 
relationship between contravariant and covariant 
components of a vector in spherical coordinates: 
 

 1
1v v=  (269) 

 

 ( )2 2
2v v⎡ ⎤= ρ⎢ ⎥⎣ ⎦

 (270) 
 

 ( )2 3
3 sinv v⎡ ⎤= ρ φ⎢ ⎥⎣ ⎦

 (271) 
 

These equations are not overly exciting (since there are 
no off-diagonal terms in the matrix to “spice things 
up”), but they do illustrate the essential role played by 
the fundamental tensor and the difference between 
covariant and contravariant components of a vector in 
a familiar space using familiar coordinate systems. 
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Calculus 
 

Statement of Core Idea  
 
 In general, base vectors have nonzero derivatives 
with respect to space and time. These nonzero 
derivatives enable us to model two very important but 
independent mechanical ideas: 
 

1. The pseudoforces that are observed in 
accelerated coordinate systems (gravitational, 
centrifugal, and Coriolis)  

2. The curvature or non-Euclidean characteristics 
of space and time as measured by real physical 
instruments 

 

In tensor analysis, the base vector derivatives have a 
very specific mathematical form. 
 
First Steps Toward a Tensor Calculus: An Example 
From Classical Mechanics 
 

 Now that we have acquired a formal definition of 
tensor as a quantity that possesses certain prescribed 
transformation properties (i.e., is coordinate 
independent) and a beginning grasp of tensor algebra, 
we may proceed directly to develop a tensor calculus. 
 The calculus that we learned in college is a body of 
mathematics that enables us to deal with continuous 
fields. Classical mechanics and relativity both are 
concerned with fields: flow, gravitational and electric, 
magnetic, and so on. We have already learned that 
prescribing coordinate independence to tensors 
provides us with an ideal tool for building physical 
theories, the correlation being that physical objects and 
events also are coordinate independent. 
 This correlation is worth noting again and again. It 
provides an important clue to understanding applied 
mathematics in general. All too often, students learn 
bare problem-solving techniques without ever learning 
what their solutions are telling them about the world at 
large. If the concepts of mathematics are not as 
familiar as the concepts of language and as easily 
expressed and interpreted, the value of the students’ 
mathematical knowledge is at best questionable.  
 Applied mathematics has its roots in the study of the 
world at large. As complex as that world may seem, it 
provides us with certain comprehensible themes that 
are repeated over and over in an almost bewildering 
array of diverse phenomena. Thus, we speak of the 
flow of ocean currents as easily as we speak of the 
flow of electrical currents in a wire or in space or the 

flow of pulverized pyroclastic material from an 
erupting volcano. The common denominator here is the 
concept of flow. 
 The theory of fields involves flow. In a velocity 
field, we speak of a continuously moving medium, air 
perhaps or water whose velocity at every point in the 
field is represented by the vector at that point. In 
magnetic and electric fields, we speak of magnetic and 
electric flux (from the Latin fluxit, flow) and flux 
density (flow per unit area). Classically, the electric 
and magnetic fluxes were thought to be a class of 
imponderable fluids. Although the concept of 
imponderable fluids is no longer used in physics, the 
idea of flux remains. 
 The concept of flow leads directly to the calculus. 
Consider the flow of water from a faucet. If everything 
is working properly, the flow is both smooth and 
continuous. However, to describe the flow, we use 
ratios formed from discontinuous “chunks” of space 
and time. It seems that we have no choice in the 
matter. We speak of liters per second or gallons per 
minute, but this description applies equally well to a 
liter “slug” dropping once every second as it does a 
continuous flow. We divide the flow into discreet 
spatiotemporal portions to express its smoothness and 
continuity. 
 Realizing the incongruity here, we might attempt to 
correct our description by choosing a smaller unit of 
time and a correspondingly smaller unit of volume. 
Thus, we might speak of milliliters per millisecond, 
but the idea of a slug of material is still present, 
although each slug is a thousand times smaller and the 
slugs are a thousand times more frequent in their 
appearance. We may in imagination continue this 
process of subdividing indefinitely until we approach 
the limit of an infinitesimal time unit and a 
correspondingly infinitesimal unit of volume. This 
concept of limit lies at the very heart of the calculus. 
 In the calculus, we learn to form ratios such as the 
one described above and to take the limit as the 
denominator term “tends to zero.” Such a ratio is 
called, in the limit, a derivative. In college, we spoke 
of total and partial derivatives. In tensor calculus, we 
will speak of an absolute and a covariant derivative as 
natural generalizations of total and partial derivatives. 
We will learn to differentiate a vector and then by 
extension how to differentiate a general mixed tensor. 
We will approach these concepts via classical 
mechanics so that the abstractions of tensor calculus 
become founded in real-world considerations. 
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 Sir Isaac Newton (1642−1727) first developed 
classical mechanics as we know it today. Newton was 
not the first to create classical mechanics, but he 
synthesized ideas that were replete during his lifetime. 
He once admitted that if he had seen farther than most, 
it was because he stood on the shoulders of giants. 
Newton certainly realized the debt he owed to the great 
minds who preceded him. 
 Newton set down his great work in a volume that is 
today commonly called the Principia.22 His theoretical 
framework was not without problems, and his ideas 
were reformulated and refined in various ways during 
the years following his initial work. One such 
refinement is attributed to Professor Ernst Mach 
(1838−1916), a German physicist and philosopher who 
specifically addressed Newton’s ideas about absolute 
space. Recall that we just spoke of a correlation 
between theoretical ideas and the real world. Mach 
sought such a correlation: an astronomical 
interpretation of Newton’s absolute space. 
 Mach suggested that the fixed stars provided the 
stationary reference that Newton required. We know 
today that the concept of fixed stars is a fiction and that 
no such stationary reference exists in nature. But 
Mach’s ideas are nonetheless an important part of 
modern physics. Einstein strongly favored the fixed 
star point of view and attempted without success to 
make it follow from the equations of general relativity. 
In keeping with the astronomical understanding of his 
time, Einstein substituted the somewhat more vague 
notion of “total distant matter” for fixed stars and 
called the resultant statement Mach’s principle. 
 Because relativity radically revised the foundations 
of physics laid down by Newton, it is essential that we 
understand something about them. Paramount among 
these foundations are the concepts of absolute space 
and absolute time. We begin by quoting Newton’s own 
words (Hawking, 2002): 
 

Absolute space, in its own nature, without 
regard to anything external, remains always 
similar and immovable… . Absolute, true, and 
mathematical time, of itself, and from its own 
nature flows equably without regard to 
anything external… .  

 

 Space for Newton was strictly Euclidean and three-
dimensional. In Newton’s day, the so-called non-

                                                 
22The entire title is Philosophiae Naturalis Principia Mathematica (The 
Mathematical Principles of Natural Philosophy). In Newton’s day, the 
science that we call physics was referred to as natural philosophy. 

Euclidean geometries had not been conceived. It was 
generally accepted among philosophers that there was 
one and only one legitimate geometry of the world. 
Straight lines could be extended throughout the known 
universe and their various relationships written down 
without ever asking precisely what such extension 
might mean physically. (Note that the precise 
correlations between the Euclidean straight line and its 
physical realization are being ignored here.) Perhaps 
such questions were just not considered important.23  
 For Newton, time was a quantity independent and 
different from space. Like space, it was rigid and 
absolute; unlike space, the same instant (or point) of 
time could be simultaneously present to observers 
everywhere⎯could be occupied by observers 
everywhere⎯whereas spatial points were spread out so 
that the same point could not be occupied by more than 
one observer at a time. Under these conditions, Newton 
assumed that information could be transferred 
throughout space instantaneously regardless of the 
spatial separation between the points or regions 
involved.24 
 Newton was uncomfortable with his absolutes but 
had nothing better to replace them with. For him, 
physical objects such as pebbles, boulders, or planets 
existed in space much as actors existed on the stage. 
Remove or change the actors and the stage remained 
behind unaltered. The Newtonian stage was the 
framework of absolute space and time. He developed 
his mechanics to describe how and why the actors 
moved about as they did on the stage. In the 
mathematical formulation, the actors were represented 
by Euclidean points called mass points (geometrical 

                                                 
23But it was by asking just such a question that Einstein was first led to 
develop relativity. The classical straight line may be represented physically 
by a pencil of light or as we might say today, by an ideal laser beam that 
propagates with no divergence. Einstein specifically asked how such a 
pencil would appear to an observer running abreast of it. The implication is 
that to do so, the observer must run away from the light source at 3×108 m/s 
to keep pace with a single wave front of the light pencil. The answer to his 
question is surprising: to such an observer, the pencil would still outpace 
her at a speed of 3×108 m/s, exactly the same as if she were standing still 
next to the source. This result led Einstein to a complete redefinition of the 
notions of space and time. 
24We might argue in favor of this point as follows: Suppose that there is a 
supermassive star somewhere in our spatial vicinity. We may not be able to 
see the star, but we have instruments that indicate its local gravitational 
influence. Now, at some time t0 the star ceases to exist. Since we and the 
star both simultaneously occupy the time t0, we know immediately that 
something has happened because our instruments register the change. In 
relativity, we have no way of knowing that anything has happened to the 
star until at least the time t0 + x/c where x is the spatial distance of the star 
from us and c is the speed of light. In relativity, we say that a gravitational 
wave has propagated from the site of the vanished star and that its passage 
is what our instruments actually registered. 
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points with a mass in kilograms associated with them). 
The actors in turn were acted upon by contact forces 
that were the agents which produced changes in their 
state of motion or rest. 
 The use of mass points to represent extended objects 
required some care in their selection. If a single point 
were to be used, it was typically the center of mass, 
center of gravity, center of percussion, or some other 
equivalent center. There were rules and mathematical 
methods for locating these points given the shape and 
mass distribution of the object being represented. The 
center always moved along a well-defined trajectory 
even though the object itself might be tumbling or 
gyrating in some way. It was the trajectory of the 
center that was predicted by the equations of 
mechanics. In some cases, more than one point was 
required to represent an extended mass; for example, 
two points were required when forces of rotation 
(called torques or couples) were involved. 
 Newtonian mechanics was governed by three laws of 
motion: 
 

1. An object will persist in its state of absolute rest 
or motion along a straight line unless acted upon by an 
outside force. 

2. The force acting on an object is equal to its time 
rate of momentum. 

3. Internal forces, forces of action and reaction, 
occur in equal and opposite pairs. 
 

 For rotational motion, the word “force” in the above 
statements may be replaced by the word “torque.” 
There were also conserved quantities for which strict 
accounts were required to be bookkept. These 
quantities included mass, electrical charge, energy, 
linear momentum, and angular momentum. 
 In dealing with planetary motions and those of the 
Moon and the tides, Newton had to establish one more 
law for noncontact forces, specifically for the 
noncontact force of gravity.25 This “action at a 
distance”26 operation of gravity (i.e., action that 
involved neither contact nor an intervening medium) 
was particularly uncomfortable for Newton, but it 
certainly appeared to occur in nature and had to be 
accommodated in his theory. The law of gravity states 

                                                 
25Post-Newtonian developments include similar laws of force between 
isolated electric charges and individual magnetic poles. 
26In modern physics, the idea of action at a distance is replaced by the field. 
The object in question does not mysteriously respond to the influence of 
some other distant object but to the field conditions in its immediate 
vicinity. The field is set up by the distant object. Changes in the field 
propagate at the speed of light. 

that the force acting between any two objects is 
proportional to the product of their respective masses 
and is inversely proportional to the square of the 
distance between their centers. 
 The mathematics used to express classical mechanics 
is the vector calculus. Locations, velocities, 
accelerations, forces, and momentums are all vectors. 
Some of these vectors appear as derivatives of others. 
It is at this point that our development of tensor 
calculus may begin. 
 First, let us write the basic equations that describe 
the motion of a mass point in Euclidean three-space. 
We will use a Cartesian coordinate system that is 
unaccelerated, that is, an inertial frame of reference. 
(Such a coordinate system is also called an Eulerian 
frame if it is fixed.27) Here is the general procedure that 
we will follow: 
 

1. Locate the mass point at any time t by using a 
position vector r(t). Since the point is moving through 
the space mapped by the coordinate system, r(t) will 
have a magnitude and direction dependent upon the 
time of observation. This dependency is noted by the 
symbol (t) immediately following the symbol r. 

2. The velocity of the point will be the time 
derivative dr(t)/dt. Strictly speaking, even though dr is 
a tensor, the velocity dr/dt is not28 because if viewed 
from another coordinate system K* in uniform (i.e., 
unaccelerated) motion VREL relative to the first, the 
velocity of the point as viewed in K* is dr(t)/dt + 
VREL. Thus, dr*(t)/dt ≠ dr(t)/dt; that is, it is not strictly 
coordinate independent. 

3. The acceleration of the point will be the time 
derivative of the velocity d2r(t)/dt2. Interestingly, for 
coordinate systems in uniform relative motion, 
acceleration is a tensor; that is, d2r*/dt2 = d2r/dt2. This 
relationship does not hold, however, when one or both 
of the coordinate systems themselves are accelerated.29 
 
 Let us use the now familiar form r = xi + yj + zk to 
represent position. We then have the following system 
of equations: 
 

                                                 
27The term “fixed” is applied either in the sense of Newton’s absolute space 
or Mach’s fixed stars frame of reference. In modern physics, the concept of 
a fixed frame loses all meaning. 
28The differential time dt is the component of a so-called four-vector in 
special relativity. Thus, the ratio dr/dt is not strictly the ratio of a vector and 
a scalar. Einstein corrected this lack by using the spacetime metric ds in 
place of the differential time dt in special relativity. Thus, he essentially 
redefined velocity as dr/ds, which is a tensor. 
29Again, the problem is more subtle than presented here. Refer to comments 
about dt and ds in footnote 28. 
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Position 
 

 x y z= + +r i j k  (272a) 
 

Velocity 
 

 d d d d
d d d d

x y z
t t t t

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

rv i j k  (272b) 

 

Acceleration 
 

2 2 2 2

2 2 2 2
d d d d
d d d d

x y z
t t t t

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

ra i j k  (272c) 

 

 Do you notice anything peculiar about these 
equations? Probably not at first glance. They are easily 
recognizable from a basic physics text. But you might 
have asked, Whatever happened to the derivatives of 
the base vectors i, j, and k? We know from basic 
calculus that the derivative of a product (uv) always 
goes according to the rule: d(uv) = udv + vdu. So why 
do we not apply this rule in forming the velocity and 
acceleration vectors above; that is, d(xi) = (dx)i + x(di) 
and so on for the other terms? 
 The answer is obvious: the derivatives of the base 
vectors are all equal to zero, so there is no point in 
writing them. Why are they all equal to zero? The 
coordinate systems are all inertial coordinate systems 
that are unaccelerated relative to absolute space. Even 
though the base vectors of K* are in motion as viewed 
from K (and vice versa), they change neither their 
magnitude (which remains unity) nor their direction 
(they translate but do not rotate). 
 What if the coordinate system K* were to accelerate 
relative to the inertial coordinate system K? This 
question can most easily be answered by selecting a 
test case and working it through. Make K* an 
accelerated coordinate system and then introduce a 
mass point whose motion in K* we will examine.  
 First, let us introduce a slight change in terminology: 
we will refer to a coordinate system as a frame of 
reference (this usage was already hinted at a few 
paragraphs ago). This terminology is better in keeping 
with that used in classical mechanics, the theory of 
relativity, electrodynamics, and those disciplines of 
physics and engineering most likely to use tensor 
analysis. 
 Now, what type of acceleration should we choose for 
K*? Let us make it a rotating frame of reference. It will 
rotate uniformly about its origin as seen from K. Where 
shall we locate K* relative to K? Well, since we can 
place the origin of K* anywhere we like in K, let us 

place it right at the origin of K for ease in visualization 
and in writing equations. 
 We will also assume that the z- and the z*-axes 
coincide and that the rotation of K* is about the z-axis. 
Doing so actually reduces the calculation to two 
dimensions for the most part (in the xy-plane). The 
motion of the mass point will be confined to this plane 
for the remainder of this discussion, and the z-axis will 
be invoked only as necessary to specify the rotation 
vector that lies along the z-axis in the present scheme. 
The following sketch illustrates the foregoing 
discussion. 
 

 
 The Greek letter ω represents the angular velocity of 
K* relative to K. Its units are radians per second (s−1). 
If K* is rotating at υ revolutions per second, then by 
definition ω = 2πυ. (ω is also called the angular 
frequency in some cases. Note that this particular 
choice for ω gives the very desirable result that one 
complete revolution corresponds to 2π radians.) As a 
vector, we may choose ω = ±ωk. We will take 
counterclockwise rotation (as viewed from positive z in 
K) to be positive rotation. In this case, ω = +ωk and 
points along the positive z-axis. 
 Now, ignoring the z-direction for the moment, 
concentrate on what is happening in the xy-plane. First, 
there are the basis (unit) vectors i and j in K and i* and 
j* in K*. Perhaps you recall that with K* rotating in 
the manner we have selected, they are related by the 
linear system of equations: 
 
 ( ) ( ) ( )* cos sint t t= ω + ωi i j  (273a) 
 
 ( ) ( ) ( )* sin cost t t= − ω + ωj i j  (273b) 
 

where t is time in seconds. Note that the unit vectors in 
K* are time variable, at least with regard to their 
direction. Therefore, their time derivatives possess 
nonzero values: 
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Position 
 
 * * * * *x y= +r i j  (274a) 
 

 
Velocity 
 

d * d ** * *
d d

d * d ** *
d d

x y
t t

x y
t t

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

v i j

i j
 (274b) 

 

Acceleration 
 

2 2

2 2

2 2

2 2

d * d ** * *
d d

d * d * d * d *2
d d d d

d * d ** *
d d

x y
t t

x y
t t t t

x y
t t

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞+ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

a i j

i j

i j

 (274c) 

 These expressions may be simplified by choosing a 
less cumbersome notation. For the velocity terms, let 
* d * /dxv x t= , and so forth and for the acceleration 

terms, 2 2* d * /dxa x t= , and so forth. Then we can write 
 
Position 
 
 * * * * *x y= +r i j  (275a) 
 
Velocity 
 

* *
d * d ** * * * *
d dx yv v x y

t t
⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i jv i j  (275b) 

 
Acceleration 
 

2 2

2 2

* * * *
d * d ** * * 2
d d

d * d ** *
d d

x y x ya a v v
t t

x y
t t

⎡ ⎤⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i ja i j

i j
 (275c) 

 
 This presentation is somewhat more easily read than 
the previous one. Let us go one step farther and define 
more new terms: 
 

 * ** * *x yv v= +V i j  (276a) 
 
 * ** * *x ya a= +A i j  (276b) 
 

 d * d ** * *
d dt t

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i jE i j  (276c) 

 

 
2 2

2 2
d * d ** * j*
d dt t

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

i jF i  (276d) 

 

With these new terms, we are able to write 
 

Position 
 
 * * * * *x y= +r i j  (277a) 
 

Velocity 
 
 ( )* * * *= + ⋅v V r E  (277b) 
 
Acceleration 
 
 ( )* * 2 * * * *= + ⋅ + ⋅a A V E r F  (277c) 
 
 Note that for unaccelerated motion, E* = F* = 0 (the 
zero dyad), and the three equations reduce to the same 
form that they have in K. It is easily shown that the two 
“extra” terms in the equation for acceleration (i.e., 
2V*· E* and r* · F*) are the Coriolis and centrifugal 
accelerations, respectively, and are pseudo-
accelerations observed by an observer who is 
stationary in K* (and therefore rotating relative to K). 
 When the mass point is introduced into the picture, 
the peculiarities inherent in our description will be 
perceived. First, assume that its path in K is rectilinear; 
that is, no external forces are acting on the mass point, 
which is in conformity with Newton’s first law of 
motion. In this simplest of all cases, we have (in K) v = 
constant and a = 0. 
 However, in K*, another situation prevails:  
v* = v*(t) and a* ≠ 0. The path of the mass point in K* 
is seen as a curve along which the mass point is 
accelerating. The accelerations seen in K* are none 
other than the Coriolis and centrifugal accelerations 
that are nonzero in all rotating frames of reference. 
 The nonzero derivatives of the base vectors in K* 
correspond to the appearance of the Coriolis and 
centrifugal accelerations in K*. It is important, 
therefore, to keep track of the base vector derivatives, 
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for they tell us how mass points behave in our 
particular frame of reference. This situation will arise 
again when we examine Einstein’s view of the 
gravitational field. 
 Let us carefully examine the acceleration given 
above: 
 
 ( )* * 2 * * * *= + ⋅ + ⋅a A V E r F  (277c) 
 
We will ignore the term A* for the moment and 
consider just the terms 2V* · E* and r* · F*. We must 
proceed with care. First, consider just the term  
2V* · E*. Since we have 
 
 ( ) ( ) ( )* cos sint t t= ω + ωi i j  (278a) 
 
 ( ) ( ) ( )* sin cost t t= − ω + ωj i j  (278b) 
 
the unit vector derivatives contained in E* must be 

 ( ) ( )d * sin cos *
d

t t
t
= − ω ω + ω ω = ω

i i j j  (279a) 

 

 ( ) ( )d * cos sin *
d

t t
t
= − ω ω − ω ω = −ω

j i j i  (279b) 

 
We have V*, so let us put the pieces together: 
 

**2 * * 2 * 2 *
2 * * 2 *

x yv v⋅ = − ω + ω

= ω × = ×

V E i j
k V Vω

 (280) 

 
Save this result for a moment and proceed. Next, 
consider just the term r* · F*. Using the derivatives 
previously obtained, we find that 
 

( ) ( )
2

2 2 2
2

d * cos sin *
d

t t
t

= − ω ω − ω ω = −ω
i i j i  (281a) 

 

( ) ( )
2

2 2 2
2

d * sin cos *
d

t t
t
= ω ω − ω ω = −ω

j i j j  (281b) 

 
so that 
 

( ) ( )2 2 2* * * * * * *x y⋅ = −ω + −ω = −ωr F i j r  (282) 
 
Putting everything together, we find that 
 
 2* * 2 * *= + × − ωa A V rω  (283) 
 

 The roles of each of the terms on the right-hand side 
will now be examined. Remember that the observer in 
K*, who is in actuality rotating relative to absolute 
space (represented by the system K), is entitled to think 
of herself as being at rest with the universe rotating 
around her. This statement is a classical statement of 
the relativity principle. 
 If this assumption is made in K*, then an application 
of Newton’s force-as-rate-of-momentum law allows us 
to identify each of the three right-hand terms. The 
force-as-rate-of-momentum law states that 
 

 
( )d *d * d ** *

d d d
m

m m
t t t

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

vp vf a  (284) 

 

If we now multiply the entire expression for a* by the 
mass m, we obtain 
 

 2* * * 2 * *m m m m= = + × − ωf a A V rω  (285) 
 

We now see that a* is the total acceleration due to 
external (contact) forces acting on the point under 
consideration. Since our observer considers herself to 
be at rest in K*, she will consider the acceleration A* 
as being that due to all external (contact) forces plus 
any other field forces that happen to be acting. If no 
external forces are acting in K*, she will set a* = 0 and 
conclude that the total acceleration A* that she 
observes must be due to the field forces A* = −2ω × 
V* + ω2r*. 
 The first term, −2ω × V*, is the velocity-dependent 
Coriolis acceleration; the second term is the radially 
outward-pointing centrifugal acceleration. 
 
(N.B.: From our point of view in K, both these terms 
arise simply enough from the rotation of K* relative to 
inertial space. From our observer’s point of view, they 
appear as real, if somewhat mysterious, accelerations 
that have no visible agents exerting the force that 
causes them, unless they are to be associated with the 
rotational motion of the entire universe around the 
origin of K*, another argument associated with Ernst 
Mach.) 
 
 This discussion is given here at length because the 
pseudoaccelerations (as the Coriolis and centrifugal 
accelerations are often called) have much in common 
with the gravitational acceleration in general relativity. 
The fact that the pseudoaccelerations in K* derive their 
mathematical form from the nonzero derivatives of the 
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basis vectors is all important. An identical situation is 
encountered in Einstein’s development of the 
gravitational field equations. 
 
Base Vector Differentials: Toward a General 
Formulation 
 
 The essential idea in the previous section that we 
must now develop further is this: the derivative of any 
quantity of higher order than a scalar must take into 
account the nonzero derivatives of the base vectors as 
well as those of the individual vector components, 
since the base vector derivatives carry important 
information about the system under consideration. 
 In the previous section, we saw that in a rotating 
frame of reference, there are accelerations that arise 
simply because of the rotation, namely, Coriolis and 
centrifugal accelerations. Such a frame is called a non-
inertial frame of reference. 
 In the more general case, any accelerated frame is 
non-inertial. The mathematical form of the so-called 
pseudoaccelerations that arise in non-inertial frames is 
obtained directly from the nonzero base vector 
derivatives relative to inertial space. In a frame where 
these derivatives vanish, there are no 
pseudoaccelerations. Such a frame is called an inertial 
frame of reference. 
 Jumping ahead for just a moment, it should be noted 
here that Einstein showed that a frame of reference in a 
gravitational field is equivalent to an accelerated frame 
of reference in inertial space. The formal expression of 
this idea is the principle of equivalence. In relativity, 
the gravitational field, classically an acceleration 
field,30 derives mathematically from the general form 
for base vector derivatives that we are about to 
develop. The foregoing argument along with this 
important observation provide the student with an 
immediate stepping stone to the general theory of 
relativity. 
 

Note: Before continuing, let us make another 
change in terminology. In developing a general 
expression for base vector derivatives, it is more 
convenient to consider the base vector differentials 
rather than full derivatives. We will do so starting 
now and continue until we have a general formula 
in hand. 

 

                                                 
30Although many people speak of gravity as a force field, formally it is not. 
The vector field term in Newton’s theory of gravitation is not force but 
acceleration, g (m/s2). 

 We begin by using the position-velocity-acceleration 
development that we have just worked through as a 
springboard and demonstrate in a qualitative way how 
we come to expect that the base vector differentials 
must be 
 

1. Linearly dependent on the coordinate 
differentials 

2. Linearly dependent on the base vectors 
themselves 

3. Functions of the coordinate values 
 
The first step is to write the time derivatives of the 
base vectors as they appeared in the previous section, 
in differential form: 
 
 d * *d and d * *dt t= ω = −ωi j j i  (286) 
 
Note that these differentials are already linearly 
dependent on the base vectors. Next, to make these 
equations appear more complete, we will appropriately 
add31 the trivial terms 0i* and 0j* so that 
 
 ( )d * 0 * * d t= +ωi i j  (287a) 
 
and 
 
 ( )d * * 0 * d t= −ω +j i j  (287b) 
 
Now that zero has been added to each equation, we see 
that each of the base vector differentials appears as a 
linear sum over the basis vectors i* and j*.32 Now 
there is symmetry between the two equations where 
there was not a moment ago. Since we are expanding 
from a restricted (mathematically and physically) 
example of a rotating system, it is not unreasonable to 
believe that these trivial terms we have just introduced 
will not remain trivial in all cases. In fact, it is 
categorically true in the general case that they will not. 
 Next, consider the time differential dt. It is true that 
time is an important element in all physics and 
engineering methods, but not all situations that we can 
imagine are going to be time dependent. On the other 
hand, all situations will require coordinate 

                                                 
31Always remember that in doing any mathematical development, knowing 
how to add zero and/or how to multiply by 1 are often times your most 
important assets. 
32We are still operating only in the xy-plane, but that is alright. The xy-
plane actually is sufficient for representing the whole operating space since 
the motions we are concerned with are confined to it. 
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measurements of some type. So, we need to involve 
the coordinate differentials. If time is to be a 
coordinate in our overall system (as it is in relativity), 
then it will fall under the purview of this involvement; 
if not, we shall not be left wholly without recourse. 
 Recall that the base vector transformations involved 
time as a parameter: 
 
 ( ) ( ) ( )* cos sint t t= ω + ωi i j  (288a) 
 
 ( ) ( ) ( )* sin cost t t= − ω + ωj i j  (288b) 
 
As a first step to involving the coordinate differentials, 
we must use these transformations to show that similar 
transformations exist for x* and y* as functions of x 
and y. It will turn out again that time will still be a 
parameter. Let us write out the position vector for any 
point P in the space mapped by K and K*. In this 
special case wherein the origins of K and K* coincide, 
the position vector will be the same in both systems. 
Thus, in this special case, r = r* and in K 
 
 x y= +r i j  (289a) 
 
and in K* 
 
 * * * * *x y= +r i j  (289b) 
 
Remembering that r = r*, let us substitute for i* and j* 
in the second of these equations: 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

* * cos sin

* sin cos

*cos *sin

*sin *cos

x t t

y t t

x t y t

x t y t x y

⎡ ⎤= ω + ω⎣ ⎦
⎡ ⎤+ − ω + ω⎣ ⎦

⎡ ⎤= ω − ω⎣ ⎦
⎡ ⎤+ ω + ω = +⎣ ⎦

r i j

i j

i

j i j

 (290) 

 
By equating the components of i and j in the last two 
expressions, we immediately see that 
 
 ( ) ( ) ( )*, *, *cos *sinx x y t x t y t= ω − ω  (291a) 
 
and 
 
 ( ) ( ) ( )*, *, *sin *cosy x y t x t y t= ω + ω  (291b) 
 

These are coordinate transformations from K* to K. 
Solving for x* and y*, we find the inverse 
transformations from K to K*: 
 
 ( ) ( ) ( )* , , cos sinx x y t x t y t= ω + ω  (292a) 
 
 ( ) ( ) ( )* , , sin cosy x y t x t y t= − ω + ω  (292b) 
 
Now, the next step in involving the coordinate 
differentials is to imagine a point P that is stationary in 
K (and therefore in inertial space). Since P is 
stationary, we have the simplification that x = a 
constant and y = a constant. We may now proceed to 
differentiate x* and y* at P:33 
 
 ( ) ( )d * sin cos dx x t y t t⎡ ⎤= − ω ω + ω ω⎣ ⎦  (293a) 
 
 ( ) ( )d * cos sin dy x t y t t⎡ ⎤= − ω ω − ω ω⎣ ⎦  (293b) 
 
Note that we may add these two expressions to obtain 
the new single expression 
 
 ( )d * d * dx y t t+ = λ  (294) 
 

where λ(t) = [− xω sin(ωt) + yω cos(ωt) −xω cos (ωt) − 
yω sin(ωt)]. If we now eliminate34 the time t in the 
system of equations 
 
 ( ) ( ) ( )* cos sinx t x t y t= − ω + ω  (295a) 
 
 ( ) ( ) ( )* sin cosy t x t y t= − ω + ω  (295b) 
 
then λ(t) → λ(x*, y*); that is, λ goes from being a 
function of time to being a function of the coordinate 
values x* and y* exclusively, and 
 

 ( )1d d * d *t x y⎛ ⎞= +⎜ ⎟λ⎝ ⎠
 (296) 

 

                                                 
33Since K* is rotating, the point P will appear, from K*, to travel in a 
clockwise circle about the origin. Therefore, if at time t = t0, P is at 
( 0*x , 0*y ), then at time t = t0 + dt, it will have “moved” to ( 0*x  + dx*,  

0*y  + dy*). It is the differentials dx* and dy* in this last expression that we 
are actually determining in the discussion in the text. Keeping P stationary 
in K is simply a device chosen to avoid extra work in the differentiation. 
34Such elimination is theoretically possible but practically is a mess, since 
the equations involved are transcendental. 
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The right-hand side is a function exclusively of the 
coordinate values and the coordinate differentials. By 
substituting for dt in the base vector differentials di* 
and dj*, we obtain 
 

 ( )( )1d * 0 * * d * d *x y⎛ ⎞= +ω +⎜ ⎟λ⎝ ⎠
i i j  (297a) 

 
and 
 

 ( )( )1d * * 0 * d * d *x y⎛ ⎞= −ω + +⎜ ⎟λ⎝ ⎠
j i j  (297b) 

 
With this last equation, we have successfully shown 
what we set out to show, namely, that the base vector 
differentials are 
 

1. Linearly dependent on the coordinate 
differentials 

2. Linearly dependent on the base vectors 
themselves 

3. Functions of the coordinate values Q.E.D.  
 
Another Example From Polar Coordinates 
 

 Perhaps you are not totally convinced by the 
argument we have just completed. “There seem to have 
been some smoke and mirrors,” you argue tentatively. 
Point well taken. Let us look at another example that is 
both demonstrative and illustrative. 
 This time, we use a polar coordinate system rather 
than a Cartesian coordinate system to map the plane. 
The polar coordinate system differs from the Cartesian 
in one essential aspect: 
 

The Cartesian coordinate system consists of 
straight lines and planes and is therefore a “flat” 
coordinate system used to map a flat (i.e., 
Euclidean) space. By comparison, the polar 
coordinate system is not flat but is a curved 
coordinate system used to map a flat space. The 
peculiarities that we are about to note are due to 
the curvature.35 

                                                 
35Some spaces are also curved and are called non-Euclidean spaces or 
oftentimes Riemannian spaces (after Bernhard Riemann, 1826−1866). In 
these non-Euclidean spaces, there are only straightest possible curves called 
geodesics, which possess the same curvature (locally) as the space itself. 
Geodesics are the natural generalization of the straight line. Coordinate 
systems constructed of geodesics in a curved space are called geodesic 
coordinate systems. The Cartesian coordinate system is the geodesic 
coordinate system of Euclidean space. A given space can only contain 
curves of curvature greater than or equal to that of the space itself. Thus, a 

 In the polar coordinate system, there are two sets of 
base vectors. One set uρ is tangent to the radial lines; 
the other set uθ is tangent to the concentric circles. The 
two sets are orthogonal at any particular point P in the 
system. It should be immediately apparent that the 
directions associated with the base vectors depend on 
where you are located in the plane relative to the origin 
of coordinates. Recall that the points in a polar 
coordinate system are labeled as the ordered pair (ρ, θ) 
where ρ is the radial distance from the origin and θ is 
the angle (measured counterclockwise) from a 
preselected line sometimes called the x-axis (for which 
θ = 0 by definition). 
 For points on the x-axis, therefore, uρ points to the 
right and uθ points straight up. At θ = 90°, uρ points 
straight up and uθ points to the left. It is apparent that 
the base vectors and their differentials in this 
coordinate system are coordinate dependent even if 
time independent. We may write the base vectors 
relative to a Cartesian coordinate system with a 
common origin as 
 
 ( ) ( )cos sinρ = θ + θu i j  (298a) 
 
 ( ) ( )sin cosθ = − θ + θu i j  (298b) 
 
and their differentials as 
 
 d dρ θ= θu u  (299a) 
 
 d dθ ρ= − θu u  (299b) 
 
 These expressions certainly involve both base 
vectors and one of the coordinate differentials. In the 
polar coordinate system, the base vector differentials 
are nonzero, not because of acceleration or anything 
having to do with being inertial or non-inertial but 
because the coordinate system is curved. 
 
Base Vector Differentials in the General Case 
 
 Introductory thoughts.⎯The time has come to 
generalize what we have been saying about base vector 
derivatives. From the rules developed herein, we will 
be able to derive much of tensor calculus. Consider, 
first, the contravariant representation of a vector V: 

                                                                                   
sphere cannot contain a straight line, just as a spherical n-space can never 
contain a Cartesian coordinate system. 
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 ( )kkv=V e  (300) 
 
with summation over all the values of the repeated 
index k. The contravariant representation has been 
chosen with a sort of malice of forethought. The 
development for the contravariant representation will 
be carried out by employing a unique device involving 
permutation of covariant tensor indexes. Once we have 
finished with the contravariant base vector differential, 
the covariant base vector differential will practically 
fall into our laps. 
 Now, we differentiate 
 
 ( ) ( ) ( )( )d d dk kk kv v= +V e e  (301) 

 
Each term on the right-hand side has a repeated index 
k, and each term represents a summation over all the 
values of k, even though the index pairs do not involve 
the usual covariant-contravariant configuration. 
 We now proceed to develop a general formulation 
for the base vector differential de(k) in view of the three 
criteria stated below. Our formulation of de(k) must 
satisfy these criteria; that is, the base vector 
differentials must be 
 

1. Linearly dependent on the coordinate 
differentials 

2. Linearly dependent on the base vectors 
themselves 

3. Functions of the coordinate values 
 
We demonstrated these criteria with examples. Now, 
we raise them to the status of criteria that must be 
satisfied in general, so let us examine them closely: 
 
 1. The coordinate differentials are components of a 
contravariant vector dxs. This is a condition of all 
coordinate differentials. Linear dependence here means 
that our general formulation must involve a sum of the 
type αsdxs. The term αs may be a function of the 
coordinate values. 
 2. The linear dependence on the base vectors must 
similarly involve a sum of the type βme(m). Criteria 1 
and 2 taken together suggest that we are seeking a term 
of the type αsβ

mdxse(m) = m
sλ dxse(m). The terms βm and 

therefore m
sλ  may both be functions of the coordinate 

values. 
 
 

 3. Finally, we desire an expression of the form de(k) 
= (some term) m

sλ dxse(m). Note that the index K is 
missing on the right side of the equation. We will 
supply that index by setting the dummy we called 
“some term” → εk. Thus de(k) = εk m

sλ dxse(m) = m
ksΓ  

dxse(m). Summations are understood to be over all 
repeated index pairs. 
 
 We now have the general expression required for the 
contravariant base vector differential de(k). Let us write 
it one more time for completion: 
 
 ( ) ( )d dk mm s

ks x= Γe e  (302) 
 
 We are far from finished, for we must now specify 
the new unknown term m

ksΓ  entirely as a function of 
known terms and then determine whether it is a tensor. 
Remember the trivial rule that states that the unknown 
is always defined in terms of the known? We are about 
to see that this rule is not so trivial after all. 
 To begin, we inner-multiply both sides of  
equation (302) by the contravariant base vector e(w) or 
more formally, we “left-operate” with e(w) · (read as  
“e superscript w dot”): 
 
 ( ) ( ) ( ) ( )( )d dw k w mm s

ks x⋅ = ⋅ Γe e e e  (303) 

 
Note that there are now two free indexes: w and k. 
 Next, we will consider each side of this new equation 
separately. On the left-hand side is e(w) · de(k) and on 
the right-hand side, e(w) · ( m

ksΓ dxse(m)). The right-hand 
side is easily reduced:36  
 
( ) ( )( ) ( ) ( )( )d d

d d

w m w mm ms s
ks ks

m ms s
wm wmks ks

x x

x g g x

⋅ Γ = Γ ⋅

= Γ = Γ

e e e e
 (304) 

 
Note that once the base vectors are eliminated, the 
summation indexes become covariant-contravariant 
pairs as they should. Please study these steps until they 
are clear to you. Every step taken so far derives its 
validity from what we have previously said and done. 
When you are satisfied that you understand, go on. 
 The left-hand side is also easily reduced, since37 
 
                                                 
36Remember that gwm = e(w) · e(m). 
37Remember that gwk = e(w) · e(k) and the rule for differentiating a product. 
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( ) ( ) ( ) ( ) ( )

( )
d d d

d d

w k k w
wk

m s
wk km sw

g

g g x

⋅ = − ⋅

= − Γ

e e e e
 (305) 

 
Combining the results for the right- and the left-hand 
sides yields  
 
 ( )d d dmm s s

wk km ws wm ksg g x g x− Γ = Γ  (306a) 
 
or  
 
 ( )d d dmm s s

wk km ws wm ksg g x g x= Γ + Γ  (306b) 
 
Look at this equation and ask yourself, “Having gotten 
this far, what would I do next?” The most obvious step 
that should come to mind is to differentiate with 
respect to xt: 
 
( )wk s m sm

km ws wmt tkst

m m
km wmwt kt

g
g g

x
g g

∂
= Γ δ + Γ δ

∂
= Γ + Γ

 (307) 

 
Note that in the second (middle) equality, we have 
used the relation 
 

 
s

s
tt

x
x
∂

= δ
∂

 (308) 

 
by virtue of the linear independence of the respective 
coordinate axes. In a three-dimensional Cartesian 
coordinate system, we have 
 

 

1, 0, 0

0, 1, 0

0, 0, 1

x x x
x y z
y y y
x y z
z z z
x y z

∂ ∂ ∂
= = =

∂ ∂ ∂
∂ ∂ ∂

= = =
∂ ∂ ∂
∂ ∂ ∂

= = =
∂ ∂ ∂

 (309) 

 
Similarly, in the polar coordinate system, we have 
 

 1, 0; 0,∂ρ ∂ρ ∂θ ∂θ
= = =

∂ρ ∂θ ∂ρ ∂θ
 (310) 

 
In the general case, we have 
 

d d d

d 0

s
ss t t
t t

s
s t
t t

xx x x
x

x x
x

⎛ ⎞∂
= δ = ⎜ ⎟∂⎝ ⎠

⎡ ⎤⎛ ⎞∂
→ δ − =⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

 (311) 

 
But dxt is an arbitrary vector (i.e., dxt ≠ 0 generally); 
therefore, δt

s = ∂xs/∂xt. Q.E.D. 
 

Note that the expression in equation (307) now has 
three free indexes. The third free index arose when 
we differentiated. Remember that every time you 
take a step in a tensor calculation, you must be 
careful not to repeat an index unless you 
deliberately intend a summation. 

 
 At this point, please pause again and go through 
what we have just done so that you are clear. We have 
done nothing new, despite the intimidating appearance 
of the symbol soup in the last few lines. When you 
think that you have gotten it, then go on. What is to 
come next is new and somewhat unusual. 
 Christoffel’s symbols.⎯To review, in the previous 
section, Introductory thoughts, we wrote an expression 
for de(k): 
 
 ( ) ( )d dk mm s

ks x= Γe e  (312) 
 
We then began to seek a form for m

ksΓ . First, we inner-
multiplied by e(w): 
 
 ( ) ( ) ( ) ( )d dw k w m s m

ks x⎡ ⎤⋅ = ⋅ Γ⎣ ⎦e e e e  (313) 

 
We then showed that  
 
 ( ) ( )d dw mm ms s

wmks ksx g x⎡ ⎤⋅ Γ = Γ⎣ ⎦e e  (314) 

 
and  
 
 ( ) ( ) ( )d d dw k m s

wk km wsg g x⋅ = − Γe e  (315) 
 
and we concluded that  
 

 
( )wk m m

km wmwt ktt

g
g g

x
∂

= Γ + Γ
∂

 (316) 
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It is by manipulating this new expression that we now 
will determine m

ksΓ .  
 However, before determining m

ksΓ , it is necessary to 
review briefly the idea of permutations. Consider the 
numbers 123. Form the following number string: 
123123. The first three numbers are our original 
grouping, 123. Now, remove the initial digit to leave 
23123. The first three numbers of this new string, 231, 
comprise the first even permutation of 123. Now 
remove the initial digit again to leave 3123. The first 
three numbers of this string, 312, comprise the second 
even permutation of 123. (Had we gone the other 
direction, the resulting permutations would have been 
the first and second odd permutations.) 
 Next, in place of 123, write wkt, the three free 
indexes in the last expression (eq. (316)) in the order 
that they occur from left to right. Now, find the first 
two even permutations: 
 

Original: wkt 
First permutations.: ktw 
Second permutations: twk 

 

We will now follow a technique introduced by Elwin 
Christoffel (1829–1900), the German mathematician 
who invented covariant differentiation (the process that 
we are developing here), and use these permutations to 
generate two more independent equations from our 
original ∂(gwk)/∂xt = gkm m

wtΓ  + gwm m
ktΓ . Remember that 

a change in free index is a change in what the equation 
is representing. By flipping indexes in this manner, we 
generate not a repeat of what we already have, but 
actual new information. Here are the results for the 
first and second permutations: 
 

 
( )kt m m

tm km twkww

g
g g

x
∂

= Γ + Γ
∂

 (317) 
 

and 
 

 
( )tw m m

wm tmtk wkk

g
g g

x
∂

= Γ + Γ
∂

 (318) 
 

 We will now impose another new requirement on 
m
ksΓ , namely, that it be symmetrical in the covariant 

indexes k and s (i.e., we require that Γsk
m  = Γks

m . We 
will have to check to make certain that we have 
actually satisfied this requirement when we are 
finished.) We now have three equations: 
 

 
( )wk m m

km wmwt ktt

g
g g

x
∂

= Γ + Γ
∂

 (319) 

 

 
( )kt m m

tm km twkww

g
g g

x
∂

= Γ + Γ
∂

 (320) 
 

and 
 

 
( )tw m m

wm tmtk wkk

g
g g

x
∂

= Γ + Γ
∂

 (321) 
 

If we add the first two equations and subtract the third 
using the new symmetry requirement, we obtain one 
new equation: 
 

 
( ) ( ) ( ) ( )2wk kt tw m

km wtt w k

g g g
g

x x x
∂ ∂ ∂

+ − = Γ
∂ ∂ ∂

 (322) 
 

This equation is important because it has a single 
isolated term involving m

wtΓ  and permits us to express 
this term entirely in terms of known quantities, namely, 
the fundamental tensor and its derivatives with respect 
to the coordinates.  
 We will finally isolate m

wtΓ  by left-operating on the 
equation with ½gbh, then setting h = k, and summing 
over the new repeated index. Please carry out each of 
these steps yourself on a scratch pad. Here is the result 
you should obtain: 
 

( ) ( ) ( )1
2

wk kt twb bk
wt t w k

g g g
g

x x x
⎡ ⎤∂ ∂ ∂

Γ = + −⎢ ⎥∂ ∂ ∂⎣ ⎦
 (323) 

 
Our task of determining the general form for the 
contravariant base vector differential de(k) is now 
complete. We have specified both the defining 
equation de(t) = b

wtΓ dxwe(b) and the term b
wtΓ , which 

we have expressed entirely in terms of known 
quantities. 
 If we formally set Γwkt = ½[∂(gwk)/∂xt + ∂(gkt)/∂xw − 

∂(gtw)/∂xk], then we have 
 
 b bk

wktwt gΓ = Γ  (324) 
 
By convention in tensor analysis, the symbol Γwkt is 
called Christoffel’s symbol of the first kind, and the 
symbol b

wtΓ  is called Christoffel’s symbol of the 
second kind. 
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 Symmetry of Christoffel’s symbol: Remember how 
we imposed a symmetry requirement on b

wtΓ ? Note 
that the result obtained for b

wtΓ  is indeed symmetrical 
in the covariant indexes w and t just as we required. 
Start with expression (323): 
 

( ) ( ) ( )1
2

wk kt twb bk
wt t w k

g g g
g

x x x
⎡ ⎤∂ ∂ ∂

Γ = + −⎢ ⎥∂ ∂ ∂⎣ ⎦
 (323) 

 

Now interchange the indexes w and t: 
 

( ) ( ) ( )1
2

tk kw wtb bk
tw w t k

g g g
g

x x x
⎡ ⎤∂ ∂ ∂

Γ = + −⎢ ⎥∂ ∂ ∂⎣ ⎦
 (325) 

 

Since the fundamental tensor is symmetric, that is, 
since 
 
 for all andjk kjg g j k=  (326) 
 

we also have 
 

( ) ( ) ( )1
2

kt wk twb bk
tw w t k

g g g
g

x x x
⎡ ⎤∂ ∂ ∂

Γ = + −⎢ ⎥∂ ∂ ∂⎣ ⎦
 (327) 

 

But this expression is identical to that for b
wtΓ , and we 

must conclude that b
wtΓ  = b

twΓ . Q.E.D. 
 The terms b

wtΓ  as functions of the coordinate values: 
We indicated earlier that the terms b

wtΓ  may be a 
function of the coordinate values. Looking again at the 
expression (eq. (327)) 
 

( ) ( ) ( )1
2

kt wk twb bk
tw w t k

g g g
g

x x x
⎡ ⎤∂ ∂ ∂

Γ = + −⎢ ⎥∂ ∂ ∂⎣ ⎦
 (327) 

 

it is apparent that b
wtΓ  will be a function of the 

coordinate values provided that the gij and/or the 
derivatives of the gst are functions of the coordinate 
values. For the components of the fundamental tensor 
and their derivatives to be functions of the coordinate 
values, it is sufficient to argue that there exists a 
system K in which the values of the fundamental tensor 
and its derivatives change as we move about from 
point to point. However, such a system would involve 
the base vectors changing from point to point in such a 
way as to make their inner products vary from point to 
point. Without going into an actual proof, it should not 

be too difficult to imagine that this not only can but 
certainly will be the case in any number of 
systems⎯in fact, it is the exception when it is not. So, 
we may convince ourselves that the terms b

wtΓ  may be 
and usually are functions of the coordinate values. 
 Differential of a covariant base vector.⎯Now that 
we have an expression for the differential of the 
contravariant base vector, the expression for the 
differential of a covariant base vector is readily 
obtained. We start with a simple expression that we 
already know: 
 
 ( )

( )
a b

ab⋅ = δe e  (328) 
 

Next, we differentiate: 
 
 ( )

( )
( )

( )d d 0a a
b b⎡ ⎤⎡ ⎤ ⋅ + ⋅ =⎣ ⎦ ⎣ ⎦e e e e  (329) 

 

Then we substitute for de(a): 
 
 ( )

( )
( )

( )d d 0s as t
at b bx ⎡ ⎤Γ ⋅ + ⋅ =⎣ ⎦e e e e  (330) 

We simplify: 
 
 ( )

( )d d da s bb t t
s at atb x x⎡ ⎤⋅ = −δ Γ = −Γ⎣ ⎦e e  (331) 

 

We finally observe that if we set 
 
 ( ) ( )d db t

mtb mx= −Γe e  (332) 
 

then we automatically satisfy the inner product since 
 
( )

( )
( )

( )d d

d d

a ab t
mtb m

b bm t t
a mt at

x

x x

⎡ ⎤⋅ = −Γ ⋅⎣ ⎦
= −δ Γ = −Γ

e e e e
 (333) 

 

The expression de(b) = − Γmt
b dxte(m) is the expression 

sought for the differential of a covariant base vector. 
Q.E.D. 
 
Tensor Differentiation: Absolute and Covariant 
Derivatives 
 
 Let us repeat our formulas for the differentials of a 
contravariant and a covariant base vector: 
 
 ( ) ( )d db tt w

wb x= Γe e  (334a) 
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 ( ) ( )d db w
wmb mx= −Γe e  (334b) 

 
Next, we write the full expressions for the differential 
of the vector V in both its contravariant and its 
covariant forms: 
 
 ( ) ( ) ( )d d dk ttk k w

wkv v x= + ΓV e e  (335a) 
 
 ( ) ( ) ( )d d dk w

k k wmk mv v x= − ΓV e e  (335b) 

 
Since there are no free indexes in either of these two 
equations, we may do some index swapping and write 
 
 ( ) ( )d d d kkk t w

wtv v x= + ΓV e  (336a) 

 
 ( ) ( )d d dm w

k m kwkv v x= − ΓV e  (336b) 

 
Students should examine these expressions and be 
certain that they understand how the results were 
obtained. 
 Look at the two forms of the vector differential dV 
more closely. Note that as written, the terms enclosed 
in parentheses are components of a contravariant 
vector and a covariant vector, respectively. We call 
these components dck and dck. Then, 
 
 d d dkk k t w

wtc v v x= + Γ  (337a) 
 
 d d dm w

k k m wkc v v x= − Γ  (337b) 
 
These last two expressions are the standard form 
usually seen in text books. Using these expressions, we 
may now introduce two types of tensor derivatives, the 
absolute and the covariant. 
 Absolute derivative.⎯Let ds be the differential of a 
rank 0 tensor and form the derivative of the vector V, 
that is, dV/ds. This derivative is the absolute derivative 
of the vector and has for its contravariant and covariant 
components, respectively, 
 

 d d d
d d d

k k w
kt
wt

c v xv
s s s

⎛ ⎞ ⎛ ⎞
= + Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (338a) 

 

 d d d
d d d

w
k k m

m wk
c v xv
s s s

⎛ ⎞⎛ ⎞= − Γ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (338b) 

 

Acceleration is an absolute derivative. If we set  
ds = dt, the time differential, then the derivative of the 
velocity vector with components ck or ck is given 
above (eqs. (338a) and 338(b)). The term with k

wtΓ  in 
each of the expressions above is the term that 
contributes the components of the pseudoacceleration. 
(Note that the derivative of the coordinate values in the 
second term represents a component of the velocity.) 
In an inertial system, the terms k

wtΓ  vanish 
everywhere, that is, k

wtΓ  = 0. 
 Covariant derivative.⎯Let us now differentiate the 
vector V with respect to one of the coordinate values, 
say dxq; that is, we wish now to form the partial 
derivative ∂V/∂xq. The components of this derivative 
form the so-called covariant derivative of the vector, 
which has for its contravariant and covariant 
components, respectively, 
 

 
k k

kt
qtq q

c v v
x x

⎛ ⎞∂ ∂
= + Γ⎜ ⎟∂ ∂⎝ ⎠

 (339a) 

 

 k k m
m qkq q

c v v
x x
∂ ∂⎛ ⎞= − Γ⎜ ⎟∂ ∂⎝ ⎠

 (339b) 

 

These components are often abbreviated as 
 

 ,
k

kk t
q qtq

vv v
x

⎛ ⎞∂
= + Γ⎜ ⎟∂⎝ ⎠

 (340a) 

 

 ,
k m

k q m qkq
vv v
x
∂⎛ ⎞= − Γ⎜ ⎟∂⎝ ⎠

 (340b) 

 

The placement of the differentiation index q in the 
covariant position in both cases is what drives the 
name “covariant derivative.” 
 We now return to the absolute derivatives and write 
still further: 
 

,

d d
d d

d d
d d

k k w
kt
wtw

w w
k
w

c v x v
s x s

x xv
s s

⎛ ⎞⎛ ⎞∂
= + Γ⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
× =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (341a) 
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,

d d
d d

d d
d d

w
k k m

m wkw

w w
k w

c v x v
s x s

x xv
s s

×

⎛ ⎞∂⎛ ⎞= − Γ⎜ ⎟⎜ ⎟∂⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (341b) 

 

and for the differentials dck and dck, 
 
 ,d dk k w

wc v x=  (342a) 
 
 ,d d w

k k wc v x=  (342a) 
 

We can demonstrate the coordinate independence of 
,
k
wv  and vk,w by noting that the vector differential dck is 

a tensor as is the coordinate differential dxw. Therefore, 
 
 d d *k kc c=  (343a) 
 
 d d *w wx x=  (343a) 
 

so that 
 
 , , ,d * d * * dk w k w k w

w w wv x v x v x= =  (344) 
 

and 
 
 ( ), , * d 0k k w

w wv v x− =  (345) 
 
Since dxw is an arbitrary vector (i.e., dxw ≠ 0 
generally), we must conclude that (vk,w − vk,w*) = 0 or 
that vk,w = vk,w*. Q.E.D. 
 The argument for vk,q is similar and is left as an 
exercise for the reader. 
 
Tensor Character of k

wtΓ  
 

 Are the Christoffel symbols tensors? The quick 
answer is no, they are not. The Christoffel symbols are 
components of a triad, but the triad itself is not the 
same in all frames of reference; that is, it is coordinate 
dependent. 
 Recall that the base vectors are not tensors. They 
have the same type of coordinate dependence as  
the position vectors. Thus, in the expression  
de(k) = m

skΓ dxse(m), the right-hand side consists of a 
tensor dxs, a nontensor e(m), and the term m

skΓ . The left-
hand side de(k), on the other hand, is a tensor. This 

situation should make us suspect38 the “tensorhood” of 
m
skΓ . 

 Let us now show that m
skΓ  is not a tensor. We will 

use the fact that the covariant derivative of a covariant 
vector vk,q is a tensor. Then 
 

*
* * *, , *

k kt t
k q k q t tkq kqq q

v vv v v v
x x

⎛ ⎞∂ ∂⎛ ⎞= → − Γ = − Γ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (346) 

 

and, therefore, 
 

 *
*

*
*

k kt t
t tkq kq q q

v vv v
x x

⎛ ⎞∂ ∂⎛ ⎞Γ − Γ = + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (347) 

 

Now, even if *
t tv v=  (i.e., even if the vector with 

covariant components vt is a tensor), we still would 
only have 
 

 ( ) *
*

*
k kt t

t kq kq q q
v vv
x x

⎛ ⎞∂ ∂⎛ ⎞Γ − Γ = + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (348) 

 

and since we cannot guarantee the vanishing of the 
term (∂vk/∂xq) + (∂vk*/∂xq*) everywhere throughout the 
frame of reference, we cannot directly establish that 

( )* 0t t
kq kqΓ −Γ = . Thus, the terms t

kqΓ  are not 

coordinate independent and may not be admitted into 
the class of objects called tensors. 
 If we wish to establish our argument even more 
firmly, we may seek out and find a single actual case 
where ( )* 0t t

kq kqΓ −Γ ≠ . One such case is sufficient to 

argue that t
kqΓ  is not a tensor39 by counterexample. To 

do so, let ∂vk/∂xq ≠ 0 and ∂vk/∂xq = * / *q
kv x∂ ∂ . In other 

words, let ∂vk/∂xq be a nonvanishing tensor.40 Then 

                                                 
38The term de(k) on the right-hand side is a tensor. The term m

skΓ dxse(m) on 
the left-hand side comprises a tensor dxs, a nontensor e(m), and an unknown 

m
skΓ . The unknown is either a tensor or it is not. If it is a tensor, then its 

combination with dxs produces another tensor m
skΓ dxs, whose product with 

e(m) results in the nontensor m
skΓ dxse(m). We then have the contradiction that 

a tensor de(k) is equal to a nontensor m
skΓ dxse(m). Therefore, by reductio ad 

absurdum, m
skΓ  cannot be a tensor. This argument is not a proof that m

skΓ  is 
not a tensor, but it certainly makes us suspect.  
39The relationship ( t

kqΓ  − *t
kqΓ ) = 0 must hold for all cases if kq

tΓ  is to be a 
tensor. Therefore, to demonstrate the existence of even one case to the 
contrary is sufficient to eliminate kq

tΓ from the tensor family. 
40Any vector field with a nonvanishing divergence, such as the gravitational 
field of a point mass or the electric field of an isolated point charge, 
satisfies this condition. The divergence is the contraction of ∂vk/∂xq, that is, 
the scalar obtained from setting k = q and summing over the repeated index. 
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** *

*
20

* *
k k k k k
q q q q q

v v v v v
x x x x x

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− = → + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (349) 

 
In this case, 

 * *
2 kt t

t tkq kq q
vv v

x
∂⎛ ⎞Γ = Γ +⎜ ⎟∂⎝ ⎠

 (350) 

 

Even if we set vt = *tv , this argument again shows that 
t
kqΓ  does not obey the usual transformation law for 

tensors in the particular case considered. There is an 
additional term on the right-hand side of the equation. 
Therefore, since t

kqΓ  is not a tensor in this case, it may 

not be regarded as a tensor in general. 
 We may also proceed to explore the tensor character 
of m

skΓ  by writing the complete transformation law for 
m
skΓ . The process is somewhat more tedious than what 

we have just done, but it involves nothing new or out 
of the ordinary. The result is 
 

2

**
* *

*
* *

k u w
k s

uwqt s q t

k a

a q t

x x x
x x x

x x
x x x

⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂
Γ = Γ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂
+⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

 (351) 

 

Again, the extra right-hand-side term (∂xk*/∂xa) 
(∂2xa/∂xq*∂xt*) shows that the transformation is not a 
tensor transformation and, therefore, that m

skΓ  is not a 
tensor. 
 To acquire the coordinate transformation for s

uwΓ , let 
us recognize that the individual terms that are summed 
to form s

uwΓ  are the coordinate derivatives of the 
components of the covariant fundamental tensor. We 
know that the fundamental tensor itself transforms 
according to the rule: 
 

 *
* *

i j
st ijs t

x xg g
x x

⎛ ⎞⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

 (352) 

 

If we form the coordinate derivative of this equation 
with respect to the coordinate xq*, we will have taken a 
first step towards obtaining the coordinate 
transformation of s

uwΓ . Thus, 

                                                                                   
The nonvanishing scalar divergence guarantees that at least one diagonal 
term in ∂vk/∂xq will be nonzero. 

 

( )

( )

*

2

2

* * *
*

* * *

* * *

* * *

i j
ijs tst

q q

i j
ijq s t

i j
ijs q t

i j ij
s t q

x x gg x x
x x

x x g
x x x

x x g
x x x

gx x
x x x

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂
∂ ⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦=

∂ ∂
⎛ ⎞⎛ ⎞∂ ∂

= ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂

+⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
⎡ ⎤∂⎛ ⎞⎛ ⎞∂ ∂ ⎢ ⎥+⎜ ⎟⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦

 (353) 

 
We now note that 
 

 
( ) ( )

* *

kij ij
q q k

g gx
x x x

⎡ ⎤∂ ∂⎛ ⎞∂
⎢ ⎥= ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎣ ⎦

 (354) 

 
so that, upon substitution, we get 
 

( )

( )

2

2

*

* * * *

* * *

* * *

i jst
ijq q s t

i j
ijs q t

i j k ij
s t q k

g x x g
x x x x

x x g
x x x

gx x x
x x x x

∂ ⎛ ⎞⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂

+⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
⎡ ⎤∂⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂
⎢ ⎥+⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠ ⎣ ⎦

 (355) 

 
 Now, let us permute the indexes stq and ijk in this 
equation just as we permuted them when deriving the 
original expression for s

uwΓ . We will also take into 
account certain dummy indexes and the symmetry of 
gij in dealing with the right-hand side. We obtain this 
result: 
 

( )

( )

2

2

*

* * * *

* * *

* * *

i jst
ijq q s t

i j
ijs q t

i j k ij
s t q k

g x x g
x x x x

x x g
x x x

gx x x
x x x x

∂ ⎛ ⎞⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂

+⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
⎡ ⎤∂⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂
⎢ ⎥+⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠ ⎣ ⎦

 (356) 
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( )

( )

2

2

*

* * * *

* * *

* * *

i jtq
ijs s t q

i i
ijt s q

j k i jk
t q s i

g x x g
x x x x

x x g
x x x

gx x x
x x x x

∂ ⎛ ⎞⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂

+⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
⎡ ⎤∂⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂
⎢ ⎥+⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠ ⎣ ⎦

 (357) 

 

( )

( )

2

2

*

* * * *

* * *

* * *

i jqs
ijt t q s

i i
ijq t s

k i j ki
q s t j

g x x g
x x x x

x x g
x x x

gx x x
x x x x

∂ ⎛ ⎞⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞∂ ∂

+⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
⎡ ⎤∂⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂

+ ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠ ⎣ ⎦

 (358) 

 
 Adding the first two equations, subtracting the third, 
then substituting *qstΓ  and Γijk in the result gives 

2

*
* * *

* * *

k i j
qst ijkq s t

i j
ijq s t

x x x
x x x

x x g
x x x

⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂
Γ = Γ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂
+⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

 (359) 

 
And finally, using the relation k

qtΓ  = gksΓqst in both 
frames of reference gives 
 

2

**
* *

*
* *

k u w
uwqt s q t

k a

a q t

k s x x x
x x x

x x
x x x

⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂
Γ = Γ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂
+⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

 (360) 

 
Q.E.D. 
 
Differentials of Higher Rank Tensors 
 
 Once having established the basic pattern for vector 
(i.e., rank 1 tensor) differentials, it is a relatively 
straightforward process to write the differentials of a 
general rank n mixed tensor. We will provide an 
example that points directly to what the general case 
should look like. 
 Consider the triad 
 

 =T ABC  (361) 
 
The differential of T is 
 
 ( ) ( ) ( )D d d d= + +T A BC A B C AB C  (362) 
 
where D is used as the differential operator on the left-
hand side to indicate that the differential DT may 
become either an absolute or a covariant derivative 
once an appropriate denominator is specified. 
 Let us assume that the vectors A and B are given in 
contravariant representation whereas the vector C is 
given in covariant representation. We also assume that 
T, A, B, and C are all tensors and that the components 
of T are ij

kt , of A are au, of B are bs, and of C are ct. 
Then expressions (361) and (362) become 
 
 ij i j

kkt a b c=  (363) 
 
and 
 

 

( )
( )
( )

( )
( )
( )

( ) ( )
( )

D d d

d d

d d

d d

d d

d d

d d

d d

d d

d

ij i i u w j
uw kk

ji j s w
sw k

ti j w
k tkw

i j i u j w
k uw k

ji j i s w
k sw k

ti j i j w
k tkw

i j i j
k k

i j i u j w
k uw k

j ti s w i j w
sw k tkw
ij

uk

t a a x b c

a b b x c

a b c c x

a b c a b c x

a b c a b c x

a b c a b c x

a b c a b c

a b c a b c x

a b c x a b c x

t

= + Γ

+ + Γ

+ + Γ

= + Γ

+ + Γ

+ + Γ

= +

+ + Γ

+Γ + Γ

= + Γ d d

d

uj j isi w w
w swk k

ijt w
tkw

t x t x

t x

+ Γ

+Γ

 (364) 

 
Again, the use of D as the differential operator in D ij

kt  
is to indicate that the differential may become either an 
absolute or a covariant derivative once an appropriate 
denominator is specified. Careful examination of 
expression (364) shows that as a general rule in writing 
out the differential for the third rank mixed tensor ij

kt , 
one proceeds much as for a vector by writing first the 
total differential d ij

kt and then adding an extra and 
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appropriate Γ term for each index. You may work out 
as many additional examples as you wish and are 
encouraged to do so to gain facility with the notation. 
 
Product Rule for Covariant Derivatives 
 
 Just as there is a product rule for differentials of 
functions in basic college calculus, there is also a 
product rule for covariant and absolute derivatives. The 
classical product rule is usually written as 
 
 ( ) ( ) ( )d d duv u v v u= +  (365) 
 
with extension to total and partial derivatives. We will 
show that the same rule holds for covariant and 
absolute derivatives. We begin with the rank 2 
contravariant tensor ckm and form its covariant 
derivative with respect to the coordinate index s: 
 

 ,
km

km k wm m kq
s ws qss

cc c c
x

⎛ ⎞∂
= + Γ + Γ⎜ ⎟∂⎝ ⎠

 (366) 

 
Next, we observe that we can always find vectors ak 
and bm such that ckm = akbm. Therefore, 
 
 ( ), ,

km k m km k m
s s

c a b c a b= → =  (367) 

 
 We now substitute for ckm in the covariant derivative 
(366) and simplify: 
 

( ),
k m

k m k w m m k q
ws qsss

k m
m k k w m m k q

ws qss s

k m
m k w m k m k q

ws qss s

k m
k w m m q
ws qss s

a ba b a b a b
x

a bb a a b a b
x x

a bb a b a a b
x x

a ba b b
x x

⎛ ⎞∂
= + Γ + Γ⎜ ⎟∂⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂
= + + Γ + Γ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂

= + Γ + + Γ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂

= + Γ + + Γ⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

( ) ( ) ( ), ,,

k

k m k m k m
s ss

a

a b a b a b

⎥

= +

 (368) 

 
The last line is the sought-after product rule for 
covariant derivatives of a rank 2 contravariant tensor. 
The same operations may be repeated for rank 2 
covariant or rank 2 mixed tensors. Hence, the product 

rule is established for all possible cases. The extension 
to tensors of higher rank than 2 should be intuitive. 
 For the case of the absolute derivative, we simply 
observe that 
 

 ,
d d

d d

km w
km
w

c xc
s s

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (369) 

 
We set ckm = akbm and apply the results that we have 
just proven for covariant differentiation. 
 
Second Covariant Derivative of a Tensor 
 
 Covariant derivatives of order higher than one⎯that 
is, second and third covariant derivatives⎯are often 
required. Obtaining these derivatives is a 
straightforward process that is illustrated here again by 
way of an example. 
 Let us begin with the first covariant derivative of a 
contravariant tensor: 
 

 ,
k

kk t
q qtq

vv v
x

⎛ ⎞∂
= + Γ⎜ ⎟∂⎝ ⎠

 (370) 

We wish to obtain a second covariant derivative that 
we write as 
 
 ( ), ,,

k k
q qrr

v v=  (371) 

 
The term on the left-hand side makes it clear that we 
are dealing with the equivalent of a covariant 
derivative with respect to the index r of a rank 2 tensor 
(namely, the covariant derivative with respect to the 
index r of ,

k
qv  ) so that we may directly apply the 

results of the previous section to obtain 
 

 ( ) ,
, , ,,

k
qk k m s k

q qm r qr srr

v
v v v

x
⎛ ⎞∂

= + Γ + Γ⎜ ⎟⎜ ⎟∂⎝ ⎠
 (372) 

 
The same logic may be recursively applied to obtain 
covariant derivatives of any order. 
 
The Riemann-Christoffel Curvature Tensor 
 
 Having acquired the second covariant derivative of 
the tensor vk, it is important to observe that the order of 
differentiation is significant. Covariant differentiation 
is not commutative. Write the symbols ,

k
qrv  and ,

k
rqv . 
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Note that the order of the covariant indices is reversed 
between the two terms. Now it may be shown that 
 
 , ,

k k k s
qr rq rqsv v R v− =  (373) 

 

This equation expresses the difference between ,
k
qrv  

and ,
k
rqv  as a function of fourth-rank tensor k

rqsR  and 

the vector vs with summation over the index s. The 
tensor k

rqsR  is called the Riemann-Christoffel curvature 
tensor. It plays an essential role in the development of 
general relativity. Using equation (372), it may be 
shown that 
 

 
kk qsrsk k m k m

rqs rm qs qm rsq r
R

x x
∂Γ∂Γ

= − + Γ Γ − Γ Γ
∂ ∂

 (374) 

 
 Details of this calculation are left to the reader. This 
tensor vanishes everywhere in a Euclidean n-space 
(i.e., for all points in any En, k

rqsR  = 0). This tensor 
does not vanish in the general case of a non-Euclidean 
n-space. This fact means that the results of vector 
transport in non-Euclidean spaces is path dependent. 
 An easy example of such a transport (called parallel 
transport) is the transport of a tangent vector along a 
closed path (a spherical triangle) on the surface of a 
sphere. Recall that a sphere is a non-Euclidean two-
space. To form the path, start at a pole of the sphere 
and draw a geodesic line (great circle) to the equator. 
This leg of the triangle subtends an angle of 90° at the 
center of the sphere. Now turn at a right angle, and 
proceed another 90° along the equator. Turn again at 
right angles and return along a third great circle to the 
pole. 
 If properly drawn, the triangle will consist of three 
legs of equal length and three right angles. The sum of 
the interior angles of our spherical triangle is 270°. 
Remember that a spherical triangle is different from a 
Euclidean or planar triangle. The interior angles of all 
planar triangles add to 180°. The interior angles of a 
spherical triangle add to variable numbers of degrees 
depending on the triangle, but the sum is always 
greater that 180°. The difference is called the spherical 
excess. 
 In the case of our triangle, the spherical excess is 
90°. What is important to remember here is that our 
spherical triangle is completely contained within our 
chosen two-dimensional space (i.e., within the surface 
of the sphere). 

 Now imagine a vector tangent to the sphere at the 
pole. Let the vector point along the first leg of the 
triangle toward the equator. Move the vector, 
maintaining tangency, along the first leg of the 
triangle. Maintaining tangency (or equivalently, 
perpendicularity to a radial line attached to the tail of 
the vector) assures parallel transport in this case. When 
the vector reaches the equator, it will have already 
turned through an angle of 90° from its original 
position. It arrives perpendicular to the equator, 
pointing away from the pole from which it started. 
 Next, move the vector along the equator, maintaining 
perpendicularity to the equator, until it arrives at the 
next poleward leg. It will still be tangent to the sphere 
and will point along the third leg of the triangle. Now 
move it along this third leg back to the pole. When the 
vector returns to the pole, it will still point along the 
third leg, but note that the third leg of the triangle 
meets the first leg at an angle of 90°. The vector has 
been rotated through 90° on its journey around the 
spherical triangle. 
 In general, this characteristic of a vector to undergo a 
change when transported along a geodesic line in non-
Euclidean space is quantitatively represented by the 
Riemann-Christoffel curvature tensor. 
 
Derivatives of the Fundamental Tensor 
 

 We now recall the equation gikgkp = p
iδ . We will 

rewrite this equation in differential form: 
 
 ( ) ( )d d 0kp kp

ik ikg g g g+ =  (375) 
 
or equivalently, 
 
 ( ) ( )d dkp kp

ik ikg g g g= −  (376) 
 
Differentiating with respect to xs gives the result 
 

 
kp

ik kp
iks s

g gg g
x x

⎛ ⎞∂ ∂⎛ ⎞ = − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (377) 

 
This equation is very useful in building tensor proofs 
and/or in reducing complicated tensor equations. 
 Next let us write out the covariant derivative of gmk: 
 

 ,
mk rt

mk s ms tk mrkss
gg g g
x

∂
= − Γ − Γ

∂
 (378) 
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 For practice, let us derive the expression for gmk,k 
from the relationship vi = gikvk. We begin by writing 
the covariant derivative of vi with respect to the index 
s, and then we reduce the result. In the process, several 
important facets of basic “tensorship” will be revealed. 
 We form the covariant derivative with respect to the 
index s of the covariant rank 1 tensor vi: 
 
 ( ) ( ) ( ), , ,,

k k k
i s ik ik s ik ss

v g v g v g v= = +  (379) 
 

We expand just the left-hand term vi,s: 
 

( )
,

k
ik w k

i s wkiss

k
ik wk k

ik wkiss s

g v
v g v

x
g vv g g v
x x

∂
= − Γ

∂
∂ ∂

= + −Γ
∂ ∂

 (380) 

 
and next expand the second term on the right-hand 
side, (gik,s)vk + gik ( ),

k
sv : 

 

 ( ),
k

k k w
ik s ik wss

vg v g v
x

⎛ ⎞∂
= + Γ⎜ ⎟∂⎝ ⎠

 (381) 

 
Let us now combine the two results just obtained: 
 

( ),
k k

ik ik w k k
wk ik siss s

k
ik k w

ik wss

v g g v g v g v
x x

g v g v
x

∂ ∂
+ − Γ =

∂ ∂
∂

+ + Γ
∂

 (382) 

 
We then bring all terms to one side of the equal sign 
and simplify: 
 

( ),

0

k k
ik ik w k k

wk ik siss s

k
ik k w

ik wss

v g g v g v g v
x x

g v g v
x

∂ ∂
+ − Γ −

∂ ∂
∂

− − Γ =
∂

 (383a) 

 

( ), 0
k

ik w k k k w
wk ik s ik wsiss

v g g v g v g v
x
∂

− Γ − − Γ =
∂

 (383b) 

 

, 0ik w w k
wk ik s iwis kss

g g g g v
x

∂⎛ ⎞− Γ − − Γ =⎜ ⎟∂⎝ ⎠
 (383c) 

 
Note the switch in dummy indexes in the last term in 
the last step. Now, let us argue that since vk is an 

arbitrary vector, this last equation is only satisfied 
when 
 

 , 0ik w w
wk ik s iwis kss

g g g g
x

∂
− Γ − − Γ =

∂
 (384) 

 
from which we are able to obtain the sought-after 
relationship: 
 

 , Q.E.D.ik w w
wk iw ik sis kss

g g g g
x

∂
− Γ − Γ =

∂
 (385) 

 
Carefully review the steps in this calculation and be 
certain that you understand them. This type of exercise 
provides the best practice for becoming familiar with 
the exigencies of using tensor notation. 
 
Gradient, Divergence, and Curl of a Vector Field 
 

 This section presents the tensor forms of the vector 
operations that are frequently used in physics and 
engineering, namely, the gradient, divergence, and curl 
of a vector field. 
 First, consider a well-behaved scalar field φ over 
some region of space. Suppose that the scalar is 
temperature. It is clear that if the field is not perfectly 
uniform (i.e., φ = constant), there will be nonzero heat 
fluxes: thermal energy will “flow” down the thermal 
gradients, allowing the warmer regions to cool and the 
cooler regions to warm. 
 In conventional notation, the gradient of a scalar 
field is represented as 
 
 grad φ = ∇φ  (386) 
 
The gradient of a scalar field φ defined over some 
region of space is a vector field defined over the same 
region of space or at least over that subregion of the 
space in which the vector function represented by ∇φ 
exists. This new vector field has as its components the 
first-order coordinate derivatives of φ. The gradient, at 
every point, has the direction along which φ increases 
most rapidly. In tensor notation, the gradient is 
represented as a covariant derivative of a scalar or rank 
0 tensor: 
 

 ,r rx
∂φ

φ =
∂

 (387) 

 
Since φ is a rank 0 tensor, there are no Γ terms added 
to the partial derivative, and the gradient appears 
essentially the same in tensor notation as it does in 
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conventional notation. Thus, whatever coordinate 
system we choose to work with, the coordinate 
derivatives of the scalar field φ are components of the 
gradient field associated with φ.  
 

Be careful to make appropriate metric adjustments 
when applying this rule. Remember that 
dimensional consistency is still of paramount 
importance in the formulations of physical and 
engineering equations. The units associated with 
the gradient field comprise the units associated 
with the scalar field divided by distance. Thus, if φ 
represents a temperature field in degrees kelvin 
(°K), grad φ represents a temperature gradient field 
in degrees kelvin per meter (°K/m). 

 

 Next, consider the divergence of a vector field V. 
The divergence is represented in conventional notation 
as 
 
 div = ∇ ⋅V V  (388) 
 

The divergence of a vector field is a scalar field. The 
divergence is a measure of the net outflow from or 
inflow to a source, preferably a point source. The 
electric field of a point charge has a nonzero 
divergence at the site of the charge itself. An 
imponderable fluid called the electric flux was once 
thought to flow from the charge through the 
surrounding space. A negative divergence is 
sometimes called a convergence. 
 A nice interpretation of the divergence field derives 
from Green’s theorem that states 
 

The volume integral of the divergence of a 
vector field is equal to the area integral of the 
same vector field over the closed surface that 
bounds the volume: 

 

 ( )d dv∇ ⋅ = ⋅∫ ∫V V S  (389) 
 
where dv is a volume element and dS is an area 
element. In other words, if there is a nonzero flow 
source contained somewhere within a closed volume, 
the total outflow from that source must cross through 
the closed surface which surrounds (bounds) the 
volume. 
 Recall that in tensor notation, inner products are 
represented by repeated indexes with summation. Let 
V be a covariant vector with components vs. To obtain 
the divergence of this field, let us first form the rank  
2 tensor vs,r. The values vs,r are components of the 

dyad ∇V, which represents the gradient of the vector 
field. We now set s = r and sum over the repeated 
index. However, to carry out this operation, we require 
a covariant and a contravariant index. We know how to 
find the contravariant components of V given the 
covariant components; we apply the fundamental 
tensor and contract 
 

 q qs
sv g v=  (390) 

 
We can now write the divergence of V directly as 
 

 ,div q
qv=V  (391) 

 
 This exercise reiterates an important point: 
summation indexes must always occur on covariant-
contravariant pairs. One important reason for writing 
the equations relating the covariant and contravariant 
components of a tensor through the fundamental tensor 
is illustrated in the example just given. 
 Finally, we consider the curl of a vector field V. The 
curl of a vector field is another vector field, sometimes 
called an axial field. In conventional notation and 
using Cartesian coordinates, the curl of V is written 
 

 curl

x y z

x y z
V V V

∂ ∂ ∂= ∇× =
∂ ∂ ∂

i j k

V V  (392) 

 
 An older name for curl V is the rotation of V, 
abbreviated “rot V.” This name refers back to the time 
when physicists thought light transmission occurred as 
oscillations in a mechanical medium called the 
luminiferous ether. The curl of any physical vector 
field, such as the magnetic field, was imagined to 
represent an actual rotation or vortex in the ether. In 
the representation of a vortex, the rotational axis is the 
most natural vector direction to choose. That is why 
the curl at any given point in the field is treated as an 
axial vector. Similarly in fluid dynamics, if V is the 
velocity vector in a fluid, then ∇ × V represents the 
rotation or vorticity of the flow. 
 A nice interpretation of the curl field derives from 
the theorem that states 
 

The area integral of the curl of a vector field is 
equal to the line integral of the same vector 
field over the closed curve that bounds the 
area. 
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In other words, if there are nonzero rotations contained 
within a closed area, the total circulation around the 
closed perimeter of the area is the (vector) sum of the 
individual rotations. 
 In tensor notation, the components of the curl are 
written as 
 
 , ,Components of curl i j j iv v→ −V  (393) 
 
where the indexes i and j take on the values 1, 2, 3 
sequentially in pairs: 
 
 ( ) ( ) ( ) ( ), 1,2 , 2,3 , and 3,1i j =  (394) 

 
Relativity 
 
Statement of Core Idea 
 

 Every mathematical hypersurface has an intrinsic 
geometry. Spacetime also has an intrinsic geometry 
that is measurable by physical measuring rods and 
physical clocks. Light plays a pivotal role in making 
these measurements in astronomy and astrophysics 
because light provides the single means of 
investigating the characteristics and distributions of 
objects found in distant regions. If the overall 
geometry of spacetime determined by light beams 
cannot be made to match the classical geometry of 
Euclid, then Euclidean geometry cannot be the intrinsic 
geometry of spacetime, and another geometry must be 
discovered from which to draw a mathematical 
description. Tensor analysis allows us to consider very 
generalized differential geometries and to investigate 
how they apply to the universe at large. The merger of 
differential geometry and spacetime was accomplished 
in the early 20th century by Dr. Albert Einstein. 
 
From Classical Physics to the Theory of Relativity 
 

 The theory of relativity was introduced to the world 
in 1905. It had been developed initially to correct a 
contradiction that had developed in physics during the 
19th century. The contradiction occurred between the 
classical mechanics of Newton and the 
electrodynamics of Maxwell. Maxwell’s theory very 
naturally gave the speed of light as a universal 
constant; according to Newton, no such universal 
constant could exist. 

 When a contradiction occurs in any deductive 
system,41 it is typically necessary to examine the 
postulates on which the system is built. Changing or 
eliminating one or more of them will usually eliminate 
the contradiction. The special or limited theory of 
relativity published in 1905 accomplished its purpose 
by eliminating two fundamental concepts upon which 
all classical mechanics rested. These concepts were 
 

1. The existence of absolute space 
2. The existence of absolute time 

 

Later, another revision would be introduced: in 1917, 
the general theory would eliminate the insistence that 
spacetime be thought of strictly in terms of Euclidean 
geometry. General relativity took the unprecedented 
step of conceiving spacetime as curved. 
 Special relativity essentially agrees with classical 
mechanics for all speeds except those approaching the 
speed of light. As a moving system approaches this 
enormous speed, predictable if somewhat surprising, 
divergences from classical predictions begin to make 
themselves felt. Also, whereas classical mechanics 
imposes no speed restrictions on moving systems, 
relativity provides that nothing but light itself ever 
move at the speed of light. Everything else may 
approach arbitrarily close to the speed of light but must 
always move at least incrementally slower. 
 Most students do not grasp the enormity of the  
speed of light c. Numerically, it is easily written as  
c = 3×108 m/s. Physically, it is the equivalent of 
circumnavigating the Earth at the equator just under 
eight complete circuits in 1 sec. If an object is moving 
at some speed v < c, then the error between classical 
physics and relativity is of the order42 ½(v/c)2. For the 
orbiting space shuttle, which travels at a nominal speed 
of 7.4 km/s, ½(v/c)2 = 3×10−16. For the Earth’s motion 
about the Sun, 30 km/s, ½(v/c)2 = 5×10−15. 
 These numbers demonstrate that relativity does not 
impose significant restrictions at “everyday” speeds, 
even those speeds we consider “astronomical.” But, for 
a fundamental particle traveling at 3×107 m/s or 0.1 
times the speed of light, ½(v/c)2 = 0.005. This error is 
12 orders of magnitude larger than that for the Earth in 
its orbit. Laboratory measurements of fundamental 
particles can detect differences of this size and 
therefore used to support the theory of relativity. 
                                                 
41As a whole, physics includes classical mechanics and classical 
electrodynamics and is the deductive system referred to herein. 
42Actually, √[1 – (v/c)2]. This term is often referred to as the “contraction 
factor.” By approximation, √[1 – (v/c)2] ~ 1 – ½(v/c)2. The error is taken 
here as the second term, ½(v/c)2. 
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 Astrophysical measurements also lend credence to 
relativity. Shortly after its initial publication, general 
relativity predicted a general expansion of the universe. 
Einstein seriously doubted this result but it was soon 
confirmed by observation. The expansion is such that 
galaxies seen from Earth appear to be receding at 
speeds proportional to their distances. As one looks 
outward farther and farther, one reaches a distance at 
which the speed of recession approaches that of light. 
Beyond this distance, no telescope will ever be able to 
see. In other words, there is an observational horizon to 
the universe as we see it.43 
 Today, NASA’s Hubble space telescope sees to 
somewhere around 75 percent of this distance. Hubble 
telescope observations allow us to answer some of the 
most perplexing questions about the large-scale 
structure of the universe and of spacetime itself. 
Hubble photographs of distant galaxy fields provide 
tantalizing clues to the large-scale distribution of 
matter throughout the universe, the overall curvature of 
the cosmos, and the conditions that prevailed in the 
early universe. Hubble’s descendants, if any, will 
enable more information to be gathered as 
astrophysicists gradually piece together the greatest 
jigsaw puzzle of them all. 
 In his 1917 paper introducing general relativity, 
Einstein laid a radical new foundation for the physics 
of gravitational fields. Whereas Newton conceived of 
gravity as an action at a distance between individual 
pieces of matter, Einstein conceived of it as a location 
and local time-dependent curvature of spacetime. The 
notion of curved spacetime can be daunting to the 
student who is not familiar with it. To grasp the 
concept, it is helpful on one hand to understand non-
Euclidean geometry and on the other hand to 
understand how non-Euclidean geometry is applied to 
the world at large. 
 Until the 19th century, the only geometry available 
to mathematicians and physicists was that of Euclid. 
Many investigators had long believed that other 
geometries were possible, but the first of these other 
geometries did not appear until the 19th century. The 
point in question was almost always Euclid’s parallel 
line postulate: 
 

                                                 
43This statement is true for every observer at every location in the universe. 
Thus, an observer on my horizon will be able to see objects that lie beyond, 
objects barred from my instruments by the general expansion. I, in turn, am 
able to see objects barred from his. 

Through any point outside a given line in space, 
there is one and only one line that can be drawn 
which is parallel to the given line. 

 
 Some mathematicians believed that this postulate 
could actually be derived as a theorem and therefore 
should not be called a postulate. Others believed that it 
was a postulate but that it could be replaced with a 
different postulate and the result would be a geometry 
different from that of Euclid. 
 In fact, in the 19th century, two such postulates 
emerged, and they produced two very different but 
internally consistent non-Euclidean geometries: 
 

5.1: Through any point outside a given straight line 
in space, there is no line that can be drawn which 
is parallel to the given line; all lines drawn through 
the point will intersect the given line at some finite 
distance from the point. 
5.2: Through any point outside a given straight line 
in space, there are an infinite number of other lines 
that can be drawn parallel to the given line. These 
other lines exist between two lines which intersect 
at a finite angle at the point and which themselves 
are parallel to the given line (intersecting it, one at 
+∞ and the other at −∞). 

 
 The simplest of the new geometries that resulted 
from these postulates involved the geometry of 
spherical surfaces on the one hand (5.1) and 
pseudospherical surfaces (“saddles”) on the other (5.2). 
Both spheres and pseudospheres are two-dimensional 
surfaces. The concepts developed about their 
geometries are readily extended to spaces of n-
dimensions. Spherical geometries are geometries of 
positive curvature44 and collectively are included under 
the more general title “elliptical geometry.” 
Pseudospherical geometries are geometries of negative 
curvature and go collectively under the general title 
“hyperbolic geometry.” 
 To understand how elliptical geometry is applied, 
one need look no farther than a ship’s navigator. He 
has to apply the concepts of spherical geometry in his 
calculations because the geometry of the plane does 
not work over large distances on the surface of the 
Earth. The shortest distances between various locations 
                                                 
44The difference between positive and negative curvatures in this case can 
be understood in the placement of radii of the surface. All the radii of the 
sphere lie on the concave side of the surface. The radii of the saddle lie on 
both sides of the surface. Another way of saying this is that the center of the 
sphere is a single point in space a finite distance from the surface. The two 
centers of the pseudosphere lie on opposite sides of the surface. 
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are not straight lines but the curves of great circles. 
Two ships on parallel paths along two different 
constant longitudes will eventually approach each 
other and collide. These characteristics are easily 
demonstrated with a felt pen on a toy ball. And a quick 
glance at any mathematics handbook will reveal the 
trigonometric formulas for spherical triangles and other 
figures drawn on the surface of a sphere. 
 Exploring the geometry of a sphere by drawing 
figures on a ball will reveal the geometry of the 
spherical surface but will not necessarily demonstrate 
that that geometry is intrinsic to the surface. The 
demonstration with the ball is the equivalent of 
developing spherical geometry by imagining a 
mathematical two-dimensional sphere embedded in a 
three-dimensional Euclidean space. However, the 
geometry of the spherical surface does not require the 
three-dimensional Euclidean space for its 
development; it can be worked out entirely from 
measurements made within the spherical surface. 
Hence, we say that it is intrinsic to the surface. 
 As with the sphere, one can also explore the 
geometry of the pseudosphere by drawing figures on a 
saddle. Again, the demonstration involves the saddle 
being in a Euclidean space, but as with the sphere, the 
geometry of the saddle is also intrinsic. The usual 
heuristic model for developing the intrinsic geometry 
of the sphere and the saddle is to imagine 
measurements made by a two-dimensional being 
entirely confined to the surface, in other words, “a 
shadow person” whose entire universe is the two-
dimensional surface.45 
 Although we have been speaking of the sphere and 
the saddle, the development of elliptic and hyperbolic 
geometry is not confined to two dimensions. 
Geometries of an arbitrary number of dimensions are 
possible and have been developed. It is worthwhile to 
study two-dimensional surfaces at the beginning 
because examples of them are so readily available. 
Once the general concepts begin to be grasped, the 
extension to higher numbers of dimensions is not 
altogether difficult. 
 In general relativity, non-Euclidean geometries 
become the norm for describing the gravitational field. 
We say that spacetime is curved, and we are now in a 
position to grasp what this idea means. First, we assert 
that there must exist a mathematical space that 
describes the universe. Elements of the space must 
                                                 
45The analogue in modern astrophysics is ourselves, four-dimensional 
beings entirely confined to the four-dimensional hypersurface called 
spacetime. Our entire universe is the four-dimensional hypersurface. 

correspond with elements or properties of the universe. 
For Newton, this space perforce was Euclidean. For 
Einstein, it was non-Euclidean. 
 

We say that spacetime is curved if and only if the 
mathematical space that best describes it is non-
Euclidean. 

 
In other words, the property of curvature or flatness 
assigned to spacetime derives from a combination of 
measurements made within spacetime and the specific 
geometry to which those measurements can best be 
fitted. 
 Let us return momentarily to the sphere. We know 
from the calculus that an incrementally small element 
of area behaves as though it were flat. In fact, this 
behavior is true of any curve, surface, hypersurface, 
and so on that we encounter in the calculus. A similar 
statement may be made about spacetime. A carefully 
chosen local region may be considered Euclidean 
without incurring a large error in calculation or 
measurement. This is one important property of 
spacetime in relativity. 
 The overall curvature of the sphere is constant; in 
other words, measurements of curvature made on any 
portion of the sphere will produce results that match 
measurements made on any other portion. The overall 
curvature of the saddle is also constant, but the 
situation is more complicated for spacetime. A simple 
heuristic statement of Einstein’s law of gravity states 
that local curvature is logically equivalent to local 
gravity. But we already know from our classical 
studies that gravity varies from place to place. Thus, it 
should be no surprise that curvature varies from place 
to place and time to time in relativity. It is exactly here 
that tensor analysis enters the picture. 
 In the 19th century, a generalized differential 
geometry was developed to include as special cases the 
hyperbolic and elliptical geometries we have already 
encountered and to include all other possibilities as 
well. That differential geometry is exactly represented 
in the tensor formalisms that we have been exploring. 
In general relativity, Einstein essentially fused 
differential geometry with the physics of the 
gravitational field. In the process, he produced one of 
the great revolutions in 20th century thought. 
 It is reasonable to ask whether nature provides 
motivation for making such a step into the abstract. 
The answer is that nature, as understood in the present 
paradigm of physics, certainly does. The following  
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sections will explore some of those motivations using 
our understanding as derived from classical mechanics 
and special relativity. 
 Parallel straight lines.⎯In considering the geometry 
of the universe, one question that I must answer is 
whether I can produce Euclidean parallel lines (two 
straight lines with some separation) that may be 
extended indefinitely without changing their separation 
and without causing their intersection. We have 
already established that light is the primary means 
available for exploring the universe, so I will choose to 
build my lines out of light “pencils,” straight, 
divergence-free beams of light. To do so, I will choose 
two divergence-free lasers46 from my stockroom of 
ideal physics supplies. From my laboratory on Earth, I 
then fire two laser beams into space, taking every 
precaution to ensure that the beams are locally parallel 
(i.e., they make the same angle locally with a third 
laser beam set up to intersect the other two), and if 
these beams were gradually to come together and 
intersect anyway, even at a distance of hundreds or 
thousands of light years from Earth, then for a cosmic 
geometry measured with laser beams, the geometry 
would be non-Euclidean and space would have to be 
regarded as something other than classically flat. That 
is, it would have to be thought of as curved. 
 Why would I ever expect the beams to come 
together? Newton certainly was not worried about this 
problem, but he did not know that light paths are 
influenced by gravity. He thought that light propagated 
everywhere in straight lines. The influence of gravity 
on light propagation was not known until the early 
20th century, and then it was worked and reworked by 
Einstein until it assumed its final form in general 
relativity. 
 In special relativity, Einstein showed that mass and 
energy are equivalent and expressed this equivalence 
in the famous equation 
 
 2E mc=  (395) 
 
He also merged the conservation laws of mass and 
energy into one law: 
 
 
 2 2 2 A constantE p c+ =  (396) 

                                                 
46Real laser beams diverge over distance (i.e., their beam diameter 
increases). A laser fired from the Earth to the Moon will illuminate a spot 
on the Moon many times larger in diameter than the original beam. For the 
sake of this argument, such divergence is to be ignored. 

where E is total energy, m is mass, c is the speed of 
light, and p is momentum. Elsewhere, it was 
demonstrated that light was particulate in nature, 
propagating in discreet “chunks” called quanta. For 
light of a given frequency (color) ν in inverse seconds, 
the associated quantum of energy is hν, where h is 
Planck’s constant, 6.626×10−34 J-sec. Using equation 
(395), we see immediately that a light quantum must 
possess a mass equivalent 
 

 
2

hm
c
ν

=  (397) 

 
For blue light with a wavelength of 4000 Å, hν is 
approximately 5×10−19 J and m is approximately 
5×10−36 kg. Since the photons in the laser beams have 
mass, they must exert a gravitational influence on each 
other, however small. We should therefore expect the 
photons in each beam to attract the photons in the other 
beam so that the two beams will gradually approach 
one another and eventually intersect. 
 The conditions and measurements that we made in 
our Earth-bound laboratory gave no evidence of such a 
large-scale curvature, at least to within the accuracy of 
our apparatus. Certainly, Newton could not have been 
expected to produce any experimental evidence that it 
existed. And in our day and age, even if we had 
tracked the beams to well beyond the orbit of Pluto, we 
might not have detected a significant departure from 
spatial flatness. Even if we had tracked the laser beams 
out past Alpha Centauri,47 we would probably have 
seen nothing to deter us from a sound conviction that 
Euclid’s geometry applied perfectly well to the 
geometry of space as measured by laser beams. 
However, if we follow them far enough, eventually we 
will be able to observe that they really do approach one 
another and finally intersect. The overall average 
curvature of the universe can only be determined by 
making observations over cosmological distances.  
 We might argue that using laser beams to observe 
the geometry of the universe was a bad choice. Surely, 
there must be some means to make observations 
without invoking curvature. But what else could we 
use? Light beams are the straightest beams that we can 
produce. Since even they curve, then the Euclidean  
 

                                                 
47A very rough approximation shows that for an initial separation of 1 mm, 
baring all other perturbing factors, the laser beams would intersect at a 
nominal distance of 5×109 light years from Earth. 
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straight line is reduced to a mere theoretical abstraction 
with no counterpart at all in nature. It appears that even 
a naïve argument is sufficient to bring our classical 
notions of geometry as it relates to the universe into 
serious question, at least insofar as understanding 
observations made with light beams over cosmological 
distances. 
  The finite speed of light imposes another constraint 
on the geometry of the straight line. In college, we took 
no issue with the idea of extending a line to infinity. To 
do so would imply either infinite time or an 
instantaneous extension. We do not have infinite time, 
and nothing known to physics can exceed the speed of 
light. So, the idea of infinite extension has no 
counterpart in physics. Even the gravitational influence 
cannot propagate from place to place at greater than 
light speed. A mass disturbance48 in one part of the 
universe is felt in another part removed from the 
disturbance by a distance x only at a time x/c after it 
originally occurred. 
 The geometrical point.⎯As with the physical 
production of Euclidean parallel lines, we now ask 
about the physical production of Euclidean geometrical 
points. Classical physics uses point mass 
representations of extended objects as the sites to 
which external forces and torques attach. It also uses 
point masses and point charges to represent 
fundamental particles. 
 A geometrical point has no size at all; its radius is 
zero. Consider a point mass. The definition of a point 
mass is a single field point with a mass value attached 
to it. For example, if the field point is the center of 
mass of a launch vehicle, then all the forces on the 
vehicle are assumed to act through the point. 
 Now consider a sphere of radius r possessing a mass 
m distributed in some arbitrary way throughout its 
volume. Take the limit as r → 0 and the result should 
be a point mass. But what other characteristics should 
we examine before blithely accepting this idea? 
Consider mass density, mass per unit volume. As r → 
0, density → ∞, regardless of how much or how little 
 
 

                                                 
48Physicists have sought to measure gravitational waves propagating from 
mass dipoles, such as large binary stars. Newtonian physics was silent on 
the issue of gravitational propagation. Most undergraduate physics students 
are taught to assume that the gravitational influence is felt everywhere at the 
same time. Some think that the issue of propagation is best reserved for 
more advanced cosmological discussions. However, a disturbance on our 
Sun would not be felt by an observer on the planet Pluto until 5.5 hr after it 
had occurred⎯and the distance to Pluto is hardly cosmological.  

mass we start out with. Anything other than zero initial 
mass produces an infinite density in the limit. 
 Physical theories are built of numbers and their 
relationships. Can we admit an infinite quantity into 
the realm of physics? We can only if infinity is also a 
number. Mathematicians have investigated infinity for 
a long time. Although they have a great deal to say 
about its unusual properties, it seems clear that it 
cannot be regarded as a number. Thus, it can have no 
place in physics. The point mass with infinite density, 
therefore, cannot be admitted into physical theory. 
 The point mass also has an infinite surface energy 
density and an infinite surface gravity. There would 
seem to be many strokes against the point mass as 
being anything other than a theoretical abstraction or a 
kind of fiction that can be used in doing calculations 
based on the dubious premise that it works. Einstein 
sought a way around this dilemma in his later work by 
trying to write the equations of general relativity such 
that finite-sized fundamental particles would emerge as 
natural solutions to the field equations. He never 
succeeded. 
 Fundamental particles are another concept that 
should give physicists heartburn. For a particle to be 
fundamental, it must exist in the simplest possible 
terms in the sense that such irreducible ratios of 
integers as 2/3 or 4/15 exist in the simplest possible 
terms. Let us assume that fundamental particles do 
exist in nature. We then inquire specifically about their 
size. There are two possibilities: 
 

1. They possess no size, having zero radius, so they 
are truly point objects. On the basis of the infinities 
already cited, we have already argued against point 
objects in nature. A similar argument could have been 
made for charge or for any other quantity. 

2. They possess finite size; however, if they possess 
finite size, however small, then they can no longer be 
fundamental because they can be reduced to parts, an 
interior and a surface. One may then ask about the 
structure, state, and composition of the surface and, 
similarly, about the overall constitution of the interior. 
 
Thus, it appears that neither point objects nor 
fundamental particles have realizations in the physical 
world. They exist in the realm of theoretical concepts 
only. As such, it is arguable that they have no formal 
place in physics if the concepts of physics are to 
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correspond with measurable aspects of the world at 
large.49 
 Ability to move figures about without any distortion 
in their shape and size.⎯We have already spoken of 
spherical and hyperbolic geometry. The sphere and the 
pseudosphere specifically are spaces of constant 
curvature, as is the plane (a space of zero curvature). In 
each of these surfaces, figures can be moved about 
without experiencing any distortion in shape and size. 
But we also know of surfaces that do not possess this 
property, surfaces that have variable curvature, such as 
the surface of an egg. What geometry applies to the 
surface of an egg? If we were to begin by considering a 
small enough region (an elemental area) of the egg 
over which the curvature could be thought of as 
approximately constant, then spherical or even 
Euclidean geometry could be used throughout that 
region to whatever level of accuracy we wished. We 
could map the entire egg by carefully selecting small 
adjacent regions and making similar applications of 
geometry in each. But the overall geometry of the egg, 
the one obtained when we tried to put all the individual 
results together into one piece, would be something 
quite different from what our local observations on 
their own might have suggested. 
 With regard to mapping the entire egg, we would 
find, for example, that there were certain directions on 
the egg along which geometrical figures could be 
transported without distortion. Along these directions 
we would be able to prove concepts such as theorems 
of congruency and similarity just as we do in the plane, 
the sphere, and the saddle. However, there would be 
other directions, orthogonal to this first group, along 
which transportation of figures could not be 
accomplished without their requiring significant 
bending, stretching, or even tearing. Along these 
directions, theorems of congruency and similarity 
would be strictly out of the question. 
 So what about real world figures? Can they be 
moved about without distortion to their shape and size? 
                                                 
49If we define an interaction boundary as any n-dimensional surface across 
which dynamical information (such as momentum or energy) is exchanged 
and specify that this information may only be exchanged in discreet bundles 
or quanta of finite size, then we have a natural definition of a particle as the 
smallest bundle of information that may be exchanged across a given 
boundary under a given set of conditions. We may have particles of spin, 
translational energy, momentum, mass, charge, and so on. This type of 
definition eliminates all questions about what (if anything) actually moves 
through space from point to point or region to region. We cannot note the 
progress of a particle through space (as a little hard object, the classical 
view) without perturbing it in some way, that is, without placing an 
interaction boundary or a whole series of interaction boundaries in its path. 
Doing so destroys the very motion that we are trying to observe 
(Heisenberg’s uncertainty principle). 

A perfectly rigid object can be so moved. In fact, we 
could define a perfectly rigid object as being one that 
could be taken from place to place without 
experiencing any distortions in shape and size. 
However, perfectly rigid objects do not exist, or if they 
do, we have no knowledge of them. All real material 
objects experience nonzero stresses and strains when 
subjected to material transport. The stresses arise 
because of time-variable external forces that play 
across the object. The strains are concomitant 
geometric distortions. Even objects left stationary will 
sag with time simply because of their own weight, an 
example being the wavy glass so highly prized by 
antique collectors. 
 These changes in real objects suggest that not only is 
space curved but, perhaps, so is time. Euclidean 
geometry has now failed to provide an adequate 
foundation for thinking about the real world on several 
counts. The errors in correspondence may be small, but 
they are not negligible. Einstein’s response was to 
eliminate Euclidean geometry from physical theory 
and to replace it with non-Euclidean geometry, 
specifically, a differentially metric geometry wherein 
local curvature depended on the observer’s position 
and time. 
 The geometry of general relativity was the brainchild 
of Bernhard Riemann (1826−1866) and others. The 
differential geometry that they formulated resulted 
from their mapping the various individual non-
Euclidean geometries onto the theory of partial 
differential equations. The result, differential 
geometry, was a grand abstraction that stood in relation 
to non-Euclidean geometry much as René Descartes’ 
(1506−1650) mapping of planar geometry onto the 
theory of algebra stood in relation to Euclid. Also, just 
as earlier investigators in physics spoke of motion in 
the plane or in a Cartesian space, so 20th century 
investigators learned to speak of motion in a 
Riemannian differentially metric spacetime. 
 The geometry of the theory of relativity cannot be 
drawn out on paper except for a few special cases. The 
beauty of differential geometry is that drawing is not 
necessary because it can represent the most general and 
most complicated geometric concepts using only pure 
mathematics. This symbology is incorporated in the 
indicial notation (along with the associated concepts) 
that we have been learning in the algebra and calculus 
sections of this work.  
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Relativity 
 
 The special theory of relativity was introduced by 
Einstein in 1905. In reformulating the laws of physics, 
the theory eliminated absolute space and time. Newton 
had introduced absolute space and time to serve as a 
reference system in which events took place. Absolute 
space was rigid and Euclidean. Absolute time ticked 
away throughout all the ages, independent of events in 
the universe at large. 
 Absolute space and time were akin to a theatrical 
stage on which the actors played out their roles. 
Remove all matter from the universe and the stage 
remained behind unaffected. For Newton, empty space 
had a reality independent of matter. Together, absolute 
space and time formed an inertial frame of reference. 
Any frame of reference in unaccelerated relative 
motion with respect to the absolute frame was also 
inertial. All accelerated frames were non-inertial and 
subject to pseudoaccelerations, such as Coriolis and 
centrifugal. 
 We see the ideas of Newton aptly played out in the 
television series Star Trek in which it is possible to 
bring the ship to absolute rest. The command “All 
stop” might well be issued on a ship or a submarine on 
Earth, and in terms of Newtonian philosophy, it makes 
sense for motion in space as well. But in terms of 
modern physics, the command has no meaning. 
Modern physics eliminates all absolute reference 
systems; thus, it only makes sense to stop relative to 
some known spatial marker whose motion relative to 
other markers may or may not be known. 
 Newton argued that the inertia of a body, its 
resistance to a change in its state of rest or absolute 
motion in a straight line, arose when the body was 
subjected to a nonzero net force that made it accelerate 
relative to absolute space. The inertia of any given 
object was for Newton a constant associated with that 
object. In an accelerated frame, he claimed that so-
called inertial forces (pseudoaccelerations times mass) 
appear and become operative. He tried to demonstrate 
this notion by using a rotating bucket of water 
(Hawking, 2002).  
 Recall that rotation involves centripetal acceleration. 
The bucket and water were initially placed at rest. The 
surface of the water was observed to be flat. Then the 
bucket was set rotating. At first the water initially 
remained at rest. But as the bucket continued to spin, 
the water began to acquire a rotation of its own. 
Finally, the bucket and the water rotated at the same 
rate. Newton observed that as the water’s rotation 

increased, its surface become more concave due to 
centrifugal forces operating in the rotating frame of 
reference. He argued that this response was due to the 
water’s motion relative to absolute space, not relative 
to the bucket since the water was initially unaffected 
by the bucket’s motion. 
 Ernst Mach (Mach, 1960) argued against absolute 
space and time. He correctly noted that there was no 
adequate means for demonstrating their existence. He 
believed, however, that acceleration relative to the 
fixed stars could account for the inertial forces in 
accelerated frames. The fixed stars set up an “inertial 
field” throughout all space. Objects responded locally 
to that field. Einstein noted that such a concept 
distinguished itself from that of Newton in that the 
inertia of an object would increase if ponderable 
masses were piled up in its neighborhood. Such an 
increase in inertia had no place in Newton’s system. 
 Einstein appreciated Mach’s thoroughly modern idea 
and tried hard to incorporate it in his general theory but 
never had complete success. Mach’s principle (so 
called by Einstein) stated that distant matter in the 
universe determined those local conditions under 
which objects exhibited inertia. Remove all matter 
from the universe except one test piece, and the inertia 
of the test piece vanishes. In the case of rotation, with 
all the rest of the matter gone, there is simply nothing 
left relative to which to rotate! Remember that Einstein 
had abandoned Newton’s absolute time and space right 
from the outset. 
 The consequences of the rotating bucket experiment 
are very different for Einstein than for Newton. For 
Einstein and Newton both, the water recedes the same 
from the axis of rotation as the rate of spin increases. 
However, if all the matter in the universe were 
removed except for the bucket, Newton’s theory would 
predict that the water would behave exactly the same 
as it had with the matter present; Einstein’s theory 
predicts that there would be no change in the surface 
from its initial flat state. 
 Unfortunately, there is no way to directly test these 
notions, but recent experiments with orbiting 
spacecraft have tested a related phenomenon: 
gravitational frame dragging. The idea is that a large 
rotating mass sets up a gravitational field whose 
overall geometry is affected by the rotation. Newton’s 
theory predicts that the rotation should have no effect 
on the field geometry. Experiment appears to have 
decided in favor of Einstein and relativity. 
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The Special Theory 
 
 In the 18th and 19th centuries, a definite ferment was 
brewing in physics. Many brilliant thinkers sought 
alternate formulations of Newton’s laws to allow 
classical mechanics to be placed on a foundation other 
than that chosen by Newton. They believed that the 
predictions of classical mechanics were correct but that 
the basic laws themselves needed reformulation. Of 
these other systems of mechanics, those attributed to 
Joseph Lagrange (1736−1813) and William Rowen 
Hamilton (1805−1865) are the best known and most 
often used. As the advanced student of physics already 
knows, each man’s theory of mechanics involves 
finding the extremum of an integral involving either 
energy or momentum. The solutions in each particular 
case provide the investigator with equations of motion 
for that case. 
 Also, in the 19th century, James Clerk Maxwell, a 
Scottish mathematician and physicist (1831−1879), 
developed the theory of electromagnetism. This theory 
made the astonishing prediction that the speed of 
propagation of electromagnetic waves in free space 
was a universal constant. That any speed could have 
this property directly contradicted Newton’s 
kinematics and posed a major problem for the unity of 
physics. Other issues in physics were also to arise with 
the advent of Maxwell’s theory but they do not directly 
concern us here. Suffice it to say, physics was 
suddenly confronted with a startling contradiction that 
arose despite the apparently complete success of both 
theories to explain nature in all other aspects. 
 We have already shown that from the point of view 
of classical mechanics, the velocity v of a particle as 
observed from an inertial reference frame K differs 
from the velocity v* of the same particle as observed 
from another inertial reference frame K* in uniform 
relative motion at velocity v0 by v0: 
 
 0* = +v v v  (398) 
 
This equation is sometimes referred to as the law of 
combining velocities or the law of addition of 
velocities. As a law of physics (even though the term 
law applies loosely here), it must hold in all possible 
circumstances. If even a single instance can be found 
for which it does not hold, then it must be declared 
false by counterexample, regardless of how well it 
works in all other cases. If false, then it must also be 

replaced by another law that holds in all the original 
cases and holds for the counterexample, too. 
 The counterexample to the law of combining 
velocities (and therefore to classical mechanics) arose 
directly from electromagnetic theory. James Clerk 
Maxwell gave us the now-famous four equations 
(laws) relating electric and magnetic fields. These laws 
are to the science of electromagnetics what Newton’s 
three laws of motion are to classical mechanics. Both 
sets of laws are so fundamental that they may be 
regarded as foundational to physics as a whole. In 
other words, it should be possible to derive all the 
phenomena of physics from either set taken alone. To 
do so appeared possible except for the phenomenon of 
light. Maxwell’s theory predicted a universal speed for 
light propagation that had no place in Newton’s theory. 
Newton’s theory applied the law of combining 
velocities to light as it did to everything else with 
results that had no place in Maxwell’s theory. Here is 
how Maxwell’s prediction came about. 
 From the four equations of the electromagnetic field, 
Maxwell derived a single wave equation from which a 
complete theoretical description of the properties of 
light and other electromagnetic phenomena was made 
possible. The veracity of this brilliant effort was first 
attested to experimentally by Heinrich Hertz 
(1857−1894), the first experimenter to generate and 
detect electromagnetic waves in the laboratory and to 
characterize their properties. From the combined work 
of Maxwell and Hertz, the age of radio broadcasting 
had its humble beginnings. 
 Maxwell’s wave equation appears at first glance like 
any other wave equation, involving second partial 
derivatives of field parameters with respect to space 
and time. The issue that concerns us here first arises 
with the incorporation of certain electromagnetic 
constants in the equation. These constants are also 
present in the original four equations and provide 
fundamental descriptions of the electric and magnetic 
characteristics of spacetime. From the outset of solving 
the wave equation, these constants combine to give a 
speed, which is specifically the speed of 
electromagnetic wave propagation. The constants are 
the permittivity ε0 and the permeability µ0 of free 
space. They combine to give a speed of propagation c 
in free space where 
 

 2

0 0

1c =
ε µ

 (399) 
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Because ε0 and µ0 are universal constants, the speed c 
must be a universal constant, which means that it must 
have exactly the same value for all observers 
regardless of their states of relative motion. 
 In Newton’s theory, a light source traveling at speed 
v relative to an observer ought to produce light waves 
along the direction of motion whose speed c* is given 
by c* = c ± v, a result to which Maxwell’s theory 
issues a resounding “no!” A fundamental disagreement 
between two foundational theories of physics meant 
that somewhere in the vast body of mechanical and 
electromagnetic thought there must exist a flaw. 
Something required revision, but what? As the century 
turned, this question was addressed on a variety of 
fronts simultaneously and without success. 
 The necessary revision in physics was ultimately 
accomplished by Albert Einstein. In 1905 he published 
in the German physics journal Annalen der Physik his 
paper entitled “On the Electrodynamics of Moving 
Bodies,” and the new theory it advanced became 
known as the theory of special relativity. Special 
relativity is built upon only two postulates: 
 

1. All motion is relative (i.e., there is no absolute 
frame of reference). 

2. The speed of light in vacuo is a universal constant 
for all observers. 
 
The first postulate eliminates absolute space and 
absolute time. The second postulate places the 
constancy of the speed of light beyond all question in 
relativity since the postulates of a given system of 
thought must be accepted as true a priori. 
 Since light speed must be the same for all observers, 
Einstein sought a set of coordinate transformations 
between observers in uniform relative motion in a 
Euclidean spacetime for which the constancy of light 
speed would hold true in a “natural” way. The 
transformations he derived were later named the 
Einstein-Lorentz transformations or, simply, the 
Lorentz transformations after Hendrik Antoon Lorentz 
(1853−1928), who had earlier derived the same 
transformations but for entirely the wrong reasons. 
 One immediate outcome of Einstein’s new theory 
was that space and time could no longer be considered 
separate entities but must now be thought of as a single 
fused entity, first christened “spacetime” in the early 
20th century by Hermann Minkowski (1864−1909). As 
for the constancy of the speed of light in spacetime, 
spacetime must have an intrinsic geometry such that 

the speed of light being a universal constant emerges 
quite naturally as a consequence. 
 In the simple case of two spacetime coordinate 
systems (Cartesian) in uniform relative motion v along 
their common x-axes, the Lorentz transformations look 
like 
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In essence, the three components of space (x, y, z) and 
the single component of time t are now to be thought 
of as components of a four-dimensional rank 1 tensor 
called (in some texts) a four-vector usually represented 
(x, y, z, ct).50 What remains the same for all observers 
is the four-vector because it is coordinate independent 
and its components (which are coordinate dependent) 
are the components of a tensor in Euclidean four-
space. With the advent of special relativity, all time 
and space measurements become subject to “peculiar” 
variations depending on the relative uniform motions 
of the observers. The famous time dilatation and length 
contraction are two such effects. 
 The magnitude of the spacetime four-vector is a rank 
0 tensor s that satisfies the relation 
 
 2 2 2 2 2 2s x y z c t= − − − +  (401) 
 
You may verify that s = s* by using the transformation 
equations (400).51 The usual form of the Lorentz 
transformations uses the differential quantity ds rather 
than the integral quantity s. We may reformulate the 
Lorentz transformations using coordinate differentials: 
 

                                                 
50The speed of light is used to multiply the time component for dimensional 
consistency. Thus, time is measured in meters rather than in seconds. 
51On the other hand, the usual Pythagorean theorem does not work with the 
Lorentz transformations; that is, the quantity x2 + y2 + z2 + c2t2 is not an 
invariant. 
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Then  
 
( ) ( ) ( ) ( ) ( )2 2 2 2 2 2d d d d ds x y z c t= − − − +  (403) 
 
and for observers K and K*, we write 
 
 d * ds s=  (404) 
 
Using the fundamental tensor and recalling that  
(ds)2 = gjkdxjdxk, we may equivalently write 
 
 * d d d d* *s j ktst jkg x x g x x=  (405) 
 
The expression (ds)2 = gjkdxjdxk is usually presented as 
the generalized Lorentz transformation. 
 By examining the expression for (ds)2, we see that in 
special relativity, the fundamental tensor G must have 
the form 
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−
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−

G  (406) 

 
and that it must be the same for all observers (since 
each of its nonzero components is a constant). 
 As with previous arguments that we have already 
encountered throughout this text, it is reasonable to 
imagine that this tensor might be generalized in both 
its diagonal and off-diagonal terms. This generalization 
is necessary for representing accelerated motion in 
special relativity and for representing the action of the 
gravitational field in general relativity. Special 
relativity, with the fundamental tensor given by 
equation (406), is correct only for unaccelerated 

motion. The first generalization would involve 
replacing three of the diagonal terms with the more 
general symbols g11, g22, g33, leaving the c2 term and 
the zeros as they appear in equation (406). The second 
generalization would involve replacing the zeros and 
the c2 term with terms of the form gij, where the 
indices i and j each range over the values 1 through 4. 
This latter generalization was worked out by Einstein 
over the years between 1905 and 1917. (The history of 
his thinking throughout these years makes interesting 
reading.)  
 

An equivalent way of saying what we just said 
above is that in special relativity, the gravitational 
field is tacitly assumed to vanish (to equal zero 
everywhere throughout the space of consideration). 
Equivalently, the spacetime of special relativity is 
flat; that is, it is a Euclidean manifold. 

 
The vanishing of the gravitational field imposes a very 
definite and unrealistic physical limitation on the 
overall theory. It was long accepted from astronomical 
observations that gravity plays a ubiquitous role 
throughout the universe. Therefore, a gravity-free 
spacetime, while teaching us a great deal about local 
phenomena (where the effects of gravity may be 
ignored), could never be equal to the task of providing 
an adequate model of the universe at large. 
 The next question after the founding of special 
relativity, therefore, became how to overcome this 
limitation and to introduce gravity into relativity. 
Einstein’s thinking on this problem makes fascinating 
reading, but here I will just summarize his conclusions: 
 

Special relativity deals largely with uniform 
motion in gravity-free spacetime. The spacetime of 
special relativity is a four-dimensional Euclidean 
manifold or E4. As such, it is flat in the sense that 
the Euclidean plane is flat: it has a curvature equal 
to 0 inverse square meters (0 m−2). The postulates 
of Euclidean geometry hold throughout the 
spacetime. Parallel lines exist in the usual way; 
figures may be moved without distortion, and so 
on. If zero curvature corresponds to zero 
gravitational field, then what does nonzero 
curvature correspond to? Einstein discovered, after 
years of tedious calculation, that the key to 
understanding the gravitational field was to relax 
the restriction of using only a flat or Euclidean 
spacetime and to use non-Euclidean or curved 
spacetime. The gravitational field is equivalent to 
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the curvature field everywhere throughout the 
spacetime. This concept is a cornerstone of general 
relativity. The curvature at any point in the field is 
dependent on the mass-energy density at that point; 
hence, geometry and the material universe become 
fused into a single entity. No longer do we speak 
of the geometry of spacetime independently of 
matter or of matter independently of geometry. 

 
The General Theory 
 
 The classical gravitational field is peculiar among 
the fields of classical physics in that it is an 
acceleration field. The field term g is a radially 
oriented vector with kinematic units of acceleration 
(meters per square second). Other fields have dynamic 
units, such as the electric field E (volts per meter, 
where the volt is equivalent to a joule per coulomb of 
electric charge) and the magnetic field H (amperes per 
meter, where the ampere is equivalent to the flow of a 
coulomb of electric charge per second past a given 
point). 
 Although the theory of magnetism does not admit the 
existence of magnetic charges,52 the theory of 
electricity does.53 So it is possible to select an isolated 
charge (often called a test charge), place it into an 
electric field, and observe its response to local field 
conditions. Since, but for exceptional cases, the charge 
accelerates, we assert that a force must be exerted on 
the charge by (through) the field. For example, the 
force f on a test charge q in an electric field E is a 
vector given by 
 
 q=f E  (407) 
 

Since, by Newton’s Law, the acceleration a of the test 
charge due to any force acting on it is given by f = ma, 
where m is the inertial mass of the test charge, we must 
have 
 

 q
m

⎛ ⎞= ⎜ ⎟
⎝ ⎠

a E  (408) 

 

In other words, to acquire the acceleration of the test 
charge at a point, the field term must be multiplied by a 
scalar term representing the ratio of charge to mass. 
This ratio is important since it represents the ratio of 

                                                 
52It does not admit to the existence of separate magnetic charges because of 
Maxwell’s equation ∇ · H = 0; that is, there is nowhere a point from which 
the field diverges. 
53By contrast, ∇ · E = ρ/ε0, where ρ is the local charge density. 

the quantity (charge) being acted upon by the field to 
the inertia (resistance to acceleration) associated with 
the particular quantity. 
 For the magnetic field, the situation is complicated 
by the nonexistence of free magnetic charges. 
However, it is possible to speak of magnetic pole 
strength p and to use it in a way analogous to the test 
electric charge.54 A magnetic test pole p in a magnetic 
field H will experience a force f such that 
 
 p=f H  (409) 
 

This expression yields a formal acceleration for the 
pole of 
 

 p
m

⎛ ⎞= ⎜ ⎟
⎝ ⎠

a H  (410) 

 

where m is the inertial mass associated with the 
magnetic pole. Again, to acquire the acceleration of the 
test pole at a point, the field term must be multiplied by 
a scalar term representing the ratio of pole strength to 
mass.  
 For the gravitational field, we again have free 
masses, analogous to the free charges encountered in 
the electric field. Therefore, we may speak of a 
gravitational test mass µ as the mass acted upon by the 
gravitational field exactly as the test charge q was 
acted upon by the electric field or the test pole p was 
acted upon by the magnetic field. We then have 
 
 = µf g  (411) 
 Since, by Newton’s Law, the acceleration of the test 
mass due to any force acting on it is a = f/m, we must 
have 
 

 
m
µ⎛ ⎞= ⎜ ⎟

⎝ ⎠
a g  (412) 

 
As before, the field term is multiplied by a scalar term 
representing the ratio of gravitational mass to inertial 
mass (the ratio of the mass being acted upon by the 
gravitational field to the inertia of the test object). 
 With the argument presented in this fashion, there is 
no apparent reason for demanding that gravitational 
mass be equal to inertial mass or µ = m. In fact, 
experience with the electric and magnetic fields 
teaches us to expect just the opposite. So, that this 

                                                 
54Magnetic pole strength is found more in older physics texts. Modern texts 
treat these problems in such a way as to not invoke this idea. 
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equality actually exists in nature and has been 
demonstrated experimentally in a variety of ways, is 
most amazing. The gravitational field becomes even 
more peculiar in having not only a kinematical field 
term but the identity of the gravitational and inertial 
masses.55 
 The identity of gravitational and inertial masses 
means that µ/m = 1 and that the acceleration of the test 
mass is actually identical to the field term multiplied 
by the dimensionless scalar unity: 
 
 =a g  (413) 
 
Thus, no other measurement is necessary for 
determining the local gravitational field than directly 
observing the acceleration of a test particle. Not only 
that, all test particles will have the same acceleration 
regardless of the inertial mass that they carry. An 
elephant and a feather will both accelerate at the same 
rate in a gravitational field, even though in an electric 
field, a charged elephant would accelerate at a 
ponderously slow rate while an equally charged feather 
would be whisked out of sight in the blink of an eye. 
 Another way to state the same argument is to say that 
the force on a test object at a point in the gravitational 
field is proportional to its mass.56 The greater the mass, 
the greater the force; the acceleration remains the same 
for all. This is not the case with either the electric field 
or the magnetic field. For these latter two fields, mass 
does not enter the picture at all until one seeks to find 
the acceleration; then it enters as a ratio only as the 
charge to mass or pole strength to mass. 
 At this point, you are asked to reread the earlier 
section entitled “First Steps Toward a Tensor Calculus: 
An Example From Classical Mechanics.” The Coriolis 
and centrifugal fields that arose in the rotating frame of 
reference are strangely similar to the gravitational field 
in terms of what we have just been talking about. The 
Coriolis field term is an acceleration that has a 
magnitude 2ωv and kinematic units of acceleration 
(meters per square second). The same statement holds 
true for the centrifugal field term ω2r. 

                                                 
55Another way to see this argument is to understand that inertia is the 
resistance of a particle of matter to a change in its state of rest or uniform 
motion. This resistance has nothing whatsoever to do with gravity. 
Gravitational mass, on the other hand, is that mass which is acted upon by 
an external gravitational field (and is also responsible for the particle’s own 
gravitational field). From the classical point of view, that these two should 
be the same quantity is even more astonishing. 
56This statement inverts the customary roles played by mass and 
acceleration: mass is usually the constant of proportionality and force is 
usually said to be proportional to the acceleration. 

 Also, in a rotating frame of reference, if the force 
acting on a test object is due to the presence of a 
Coriolis or a centrifugal field, it is proportional to the 
inertial mass of the test object. Any test object placed 
at a point in a Coriolis or centrifugal field will 
experience the same acceleration regardless of the 
amount of mass it possesses. The pseudoaccelerations 
and the gravitational field seem to possess suspiciously 
similar properties. Gravitation behaves more like a 
pseudoacceleration than as the type of field obtained 
from a point charge or magnetic pole. 
 These statements hold the clue to Einstein’s revision 
of the mechanics and mathematics of gravitation and 
the gravitational field. Mathematically, the 
pseudofields arise in accelerated frames of reference 
because the base vectors in those frames have nonzero 
derivatives. Gravitation arises in the space surrounding 
a mass concentration for exactly the same reason. The 
nonzero derivatives in the rotating frame of reference 
arose because of the rotation; the nonzero derivatives 
in the gravitational field arise because of the local 
curvature of the intrinsic geometry. 
 Now, how does the foregoing discussion relate to 
tensors? We simply observe here that the tensor 
algebra and tensor calculus that we have been 
developing had no restrictions whatever imposed upon 
them with regard to the types of spaces to which they 
would apply. I will here state without proof that they 
apply to all possible spaces no matter how they are 
curved and that their equations appear in exactly the 
same form as we have already seen them developed in 
the preceding pages. One of the real powers of tensor 
analysis is that it is extremely general. 
 Curvature of space around the Sun.⎯Let us 
demonstrate that space in the vicinity of the Sun is 
curved. We will assume a Newtonian context and the 
result that light has mass. First, imagine the Sun alone 
in space. Now pass a Euclidean straight line through 
the poles of the Sun and extend the line outward in 
either direction to an arbitrary distance. Place three 
astronauts (α, β, and ε) far from the Sun at the vertices 
of a triangle such that the line from the Sun passes 
through the centroid of the triangle. Let the triangle be 
sufficiently large so that we may pass the Sun through 
the center without its actually touching the legs of the 
triangle. 
 Now, let each astronaut have a mirror and one 
astronaut also have an ideal57 laser. The astronaut 
shines the laser at her neighbor who reflects it to his 

                                                 
57Ideal laser has a beam divergence of zero. 
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neighbor who, in turn, reflects it back to the first 
astronaut. We have now physically constructed a 
triangle in space. Each astronaut measures the angle 
between the local incident and reflected beams. When 
the three angles are added together, their sum is 180°, 
which we should expect. 
 Next, move the center of the Sun onto the centroid of 
the triangle without disturbing the positions of the 
astronauts (we can do so because this is a thought 
experiment only). We know from special relativity that 
light has mass and that it must therefore be affected by 
the Sun’s gravitational field. In fact, using nothing 
more than classical calculations,58 we find that the legs 
of the triangle now curve inward toward the Sun (see 
the following sketch). For the astronauts to keep their 
beams aimed at each other’s mirrors, they must slightly 
adjust their mirrors to reflect each of the triangle legs 
outward relative to its original position.  
 

 
 

The triangle itself now appears to have outwardly 
curved rather than straight legs, and the sum of its 
interior angles is more than 180°. If we shrink the 
triangle, bringing everybody closer to the Sun, the 
discrepancy grows larger. If we move everybody 
outward away from the Sun, the discrepancy becomes 
smaller. In this naïve argument, the triangle looks like 
a spherical triangle and space near the Sun appears to 
be bent into an elliptical geometry, the more so the 
closer to the Sun. 
 This thought experiment clearly illustrates that space 
near the Sun (or by extension near any star or mass 
concentration) should be expected to be curved, the 
more so the closer to the Sun or field-generating mass. 
It also suggests that space far from any field-generating 
mass should be Euclidean or approximately Euclidean. 
Special relativity, when linked with Newton’s theory 
of gravity, was already pointing the way to the revision 

                                                 
58 Einstein actually made a similar calculation for light grazing the surface 
of the Sun. Although correct qualitatively, the result he obtained using this 
method differed by a factor of 2 from that later obtained from the general 
theory. 

in our concept of space and time, which was finally 
completed in general relativity. 
 Now that we know to expect curvature near a 
massive object, the question becomes one of restating 
this expectation in rigorous mathematical terms. It was 
this restatement that cost Einstein so many years of 
investigation until he arrived at the correct formulation 
of general relativity. 
 Curvature of time near a black hole.⎯Time near a 
field-generating mass is also curved. The most extreme 
case of curvature is that near the event horizon of a 
black hole. A black hole is the remnant of a star that 
has undergone catastrophic gravitational collapse. The 
event horizon is the finite (ideally spherically 
symmetric) region upon whose surface the escape 
speed equals the speed of light in free space. (Free 
space is an ideal space in which there are no fields of 
any kind or for which all the field values equal zero; 
there is no such space in nature according to most 
modern thinkers). 
 The speed of light varies from its free-space value 
when a gravitational field is present. D. W. Sciama 
(1926−1969), in The Physical Foundations of General 
Relativity (Sciama, 1969), visualized the gravitational 
field as possessing an index of refraction n analogous 
to the index of refraction possessed by matter. In 
matter, the index of refraction is a number that permits 
us to estimate how much the path of a beam of light 
will bend (refract) at the surface. For free space, the 
index is set at unity: n0 = 1. For all other matter, n > 1. 
For glass, n ~ 1.6 and for diamond, n ~ 2.5. 
 Light also travels more slowly in matter than it does 
in free space. The speed of light in matter with  
an index of refraction n is c/n where c is the speed of  
light in free space, or 3×108 m/s. Thus, in glass,  
cg = (3×108 m/s)/1.6 = 1.9×108 m/s; in diamond,  
cd = 1.2×108 m/s. The more refractive the substance, 
the greater its index of refraction. 
 The refractivity of space in the gravitational field 
varies directly with the gravitational field strength: it 
increases as one approaches the field-generating mass. 
The bending of light spoken of in the previous section 
may be thought of as being due to the astronauts’ light 
pencils passing through a region of variable refractive 
index, increasing as the pencil approached and 
decreasing as the pencil receded from the Sun. Along 
with bending, there would also be a variation in the 
speed of light.59 This variation may be used to illustrate 
the curvature of time. 
                                                 
59Satellite radar measurements involving the Sun and inner planets have 
confirmed this variation. 
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 Assume that there are two astronauts stationed in the 
vicinity of a black hole. One astronaut α is safely at an 
observation post well outside the hole’s gravitational 
influence (i.e., where the field of the hole does not 
differ significantly from the fields of other nearby 
objects in the astronaut’s vicinity). The other astronaut 
β is at a post close to the hole’s event horizon.  
 Each astronaut has a clock and a mechanism for 
signaling her partner. When the astronauts were 
together (i.e., before they parted company to go to their 
respective observation posts), they compared their 
clocks and found them to be identical in every way; 
particularly, they found them to run at identical, 
uniform rates of exactly one tick per second. Each 
clock was also equipped with a signaling device: at 
each tick, the clock would emit a pulse of directed 
laser light that would be sent to the partner astronaut 
for observation. 
 Now settled in at their respective stations, the 
individual astronauts each record that their situations 
are nominal from their respective points of view. We 
might be surprised at this, particularly in the case of 
astronaut β. But then we realize that both astronauts 
are in orbit around the hole (lest they plummet into the 
hole) and that being in orbit is equivalent to being in 
free fall. The astronaut near the hole is therefore not 
particularly disturbed by the immense gravitational 
field in her vicinity. Only the fact that the local field 
varies significantly in magnitude from her head to her 
toes60 causes any real discomfort. She feels that she is 
being mercilessly stretched and realizes that there is 
nothing she can do about it.61 
 Now each astronaut observes the other. Astronaut α 
records that β’s clock appears very red in color and is 
running very slowly compared with her own. By her 
own local measure, many minutes slip by between 
respective pulses from β’s clock. Astronaut α’s own 
clock, of course, continues to run quite normally, 
emitting one pulse each second as the seconds tick by.  
 Astronaut α evaluates the situation. She realizes that 
the light photons are red shifted as they climb out of 
the immense gravity well below her because they are 
conserving energy. As gravitational potential energy 
increases, photon energy decreases.62 Photon energy is 

                                                 
60The gradient of the field becomes extremely steep as the event horizon of 
a black hole is approached. 
61Over a distance commensurate with the size of the astronaut, the local 
gravitational field cannot be “transformed away” (i.e., cannot be made to 
vanish everywhere at once). 
62Classically, the operative expression is hυ − Gm/r = E, where h is 
Planck’s constant, υ is the light frequency, G is Newton’s gravitational 
constant, m is the mass of the black hole, r is the distance, and E is the total 

directly measured by frequency. The lower the energy, 
the lower the frequency. She also remembers that the 
speed of light is much slower in the gravity well where 
β is situated than it is at her station. As β’s light pulses 
are emitted, therefore, they start out slowly then speed 
up as they ascend, and the distance x between 
successive pulses dramatically increases. Thus, the 
time interval x/c between arrival of individual pulses 
also increases. 
 Astronaut α further reasons that although the clocks 
were identical when they were side by side, they no 
longer appear to be identical and in fact no longer have 
to be thought of as being identical. Astronaut α is not 
in a classical universe. Refractive effects make direct 
telescopic observation of β’s exact distance from her 
quite impossible. And she has no other absolute 
standard of measure, no rigid ruler, to deploy toward 
the hole to ascertain β’s distance. Any material ruler 
dropped toward the hole would be stretched out of 
shape as it descended because of the severe local 
gravity gradients it would encounter. It would be 
misshapen beyond any usefulness long before ever 
reaching β’s position. 
 Still, astronaut α is able to compare the light pulses 
of astronaut β’s clock with those of her own as she 
observes them both in her local reference frame. She 
concludes that the clock near the event horizon may 
just as well be thought of as running slow compared 
with her own. Moreover, having observed β’s entire 
descent into the field, she concludes that the rate of β’s 
clock must have diminished monotonically as β 
descended into the field toward the hole. When they 
first parted, she observed no difference in β’s clock. It 
was only as β got farther away that the slowing of her 
clock became more and more noticeable. Astronaut α 
is entitled to think of time near the event horizon as 
being curved. She concludes that Einstein was right. 
 Meanwhile, astronaut β shifts uncomfortably in the 
strong local gravity gradient. She finally settles herself 
into the best position she can and records that α’s 
clock appears vibrantly blue in color and is running 
very rapidly compared with her own. Hundreds of light 
pulses from α’s clock register on her instruments 
between respective pulses from her own clock. 
Astronaut β’s clock continues to run quite normally, 
emitting one pulse each second as the seconds tick by.  
                                                                                   
energy. If β’s laser operates at frequency υ0 and she is stationed a distance 
r0 from the event horizon, then E = hυ0 − Gm/r0 and the frequency at any 
other place along the light path is υ = υ0 − [(Gm/r0 – Gm/r)]/h. This 
expression holds relativistically as well as classically. 
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 Astronaut β evaluates the situation. She realizes that 
the light photons are blue shifted as they descend into 
the immense gravity well in which she is immersed 
because they are conserving energy. As their 
gravitational potential energy decreases, the photon’s 
energy increases. She also remembers that the speed of 
light is much slower in a gravity well than in free 
space. As α’s light pulses are emitted, they start out at 
their free-space speed then slow up as they descend, 
piling up on one another. Astronaut α appears 
frenetically to rush about as she does her chores. 
 Astronaut β further reasons that although the clocks 
were identical when they were side by side, they no 
longer appear to be identical and in fact, no longer 
have to be thought of as being identical. Astronaut β 
engages on a line of reasoning that is essentially the 
same as that of astronaut α. She decides that she is 
entitled to think of time in her vicinity as being curved. 
She smiles. Einstein was right. 
 Base vector derivatives in curved space.⎯We have 
already said that the base vectors in a curved space 
have nonzero derivatives and that using the Coriolis 
and centrifugal accelerations as an example, we should 
expect nonzero base vector derivatives to play an 
important part in our overall formulation of a revised 
theory of the gravitational field. To understand how 
nonzero base vector derivatives arise in curved space, 
let us consider what happens on the surface of a 
sphere. 
 For this discussion, we will make use of the fact that 
a sphere is a two-dimensional elliptically curved space 
(surface) that can be viewed from a three-dimensional 
Euclidean space in which it is embedded. 
 First, we introduce the idea of parallel transport of a 
vector. In Euclidean space, a vector may be transported 
parallel to itself by moving it along a straight line 
while maintaining a constant angle between the vector 
and the line. If we wish to accomplish parallel 
transport along an arbitrary curve, we may subdivide 
the curve into straight line segments and parallel 
transport the vector along each of the segments. The 
finer the subdivision, the closer the approximation to 
the actual curve. In the limit of infinite subdivision, we 
have parallel transport along the curve exactly. 
 In Riemannian space, the geodesic or straightest 
possible curve replaces the straight line. The geodesic 
is a “line” that has the same curvature as the local 
space in which it is contained. In Riemannian space, 
parallel transport of a vector takes place along a 
geodesic by carefully maintaining a constant angle 
between the vector and the geodesic. (We may always 

assume that a differential region of Riemannian space 
is quasi-Euclidean and in that region apply the familiar 
concepts of our school geometry.) 
 Now we have a means of effecting parallel transport 
on the sphere. Let us consider the sphere as a whole 
and imagine a tangent vector V at a point P on the 
sphere. Pass a geodesic (a great circle) through P and 
move the vector a small distance δs (where δ is a small 
difference) along the geodesic. From the Euclidean 
space, we observe that for the vector to remain tangent 
to the sphere, it must change direction in the Euclidean 
space. From the point of view of a two-dimensional 
observer in the sphere, the vector has maintained a 
constant angle with the “line” along which it is being 
moved. 
 The change δV in V resulting from this change in 
direction as viewed from the Euclidean three-space 
must be a tensor and must be the same in all coordinate 
systems, including the two-dimensional coordinate 
system embedded in the sphere. Thus, the ratio δV/δs 
has a nonzero value in the Euclidean space and in the 
sphere. This value, in the limit of vanishing δs, is the 
nonzero vector derivative, and it arises solely because 
of the curvature of the sphere’s surface. Since V is any 
vector we like (provided that it is tangent to the 
sphere), we will let V be a base vector. Our argument 
is complete. 
 In reality, if the vector experiment just described 
were to be done by a two-dimensional observer whose 
entire world was the spherical surface and who had no 
recourse to the three-dimensional Euclidean space, it 
would proceed differently from what was described 
above. The test vector V would actually be carried 
around a closed loop (arbitrarily chosen) starting from 
P and ending at P. When it returned, V would be 
observed to have changed direction. If V had rotated 
through an angle δθ during its parallel transport around 
the closed loop and if δs were the area enclosed by the 
loop, then the derivative in question would be the real 
derivative δθ/δs rather than the path derivative 
originally described. The ratio δθ/δs would have units 
of inverse square meters (m−2), the proper units for 
measuring curvature. 
 That a vector actually changes direction when 
parallel transported around a closed loop on a sphere is 
easily seen if a macroscopic path is chosen. Let the 
path start at an arbitrarily chosen point P that we will 
call a pole of the sphere. Let the first section of the 
loop be a great circle extending from the pole to the 
equator (as a line of constant longitude would on 



NASA/TP—2005-213115 78

Earth). It will subtend 90° at the center of the sphere. 
Let the next section subtend another 90° at the center, 
but this time advance along the equator. The two 
sections will thus meet at an angle of 90° as observed 
by the two-dimensional observer in the sphere. Let the 
final section be another line of constant longitude 
returning to P. 
 Next, choose a vector tangent to the sphere and 
directed along the first great circle (e.g., with its head 
pointing in the direction it would have to advance 
toward the equator). When it reaches the equator, it 
will stand at right angles to the equator. Now, parallel 
transport the vector along the equator. When it reaches 
the third great circle, it will still be perpendicular to the 
equator. Now parallel transport it along the third great 
circle back toward P. When it reaches P again, it will 
have been rotated 90° relative to its initial position. 
 The area δs enclosed by the path is one-eighth the 
entire area of the sphere. Therefore, 
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where r is the radius of the sphere measured in the 
three-dimensional Euclidean space. The angle through 
which the vector is turned during its traverse around 
the loop is δθ = π/2. The ratio of these two quantities is 
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which is the measure of the sphere’s curvature as we 
first learned in calculus and analytical geometry. 
 The reader can conduct this experiment with a ball 
and a toothpick to grasp the idea of parallel transport, 
which is of paramount importance in more advanced 
texts where the concept of curvature is more rigorously 
developed than it will be here. 
 Geodesics in curved space.⎯We have used the term 
“geodesic” several times throughout this text and given 
examples of what we mean by using a great circle on a 
sphere. Let us now examine the concept of the 
geodesic more closely and, without delving into the 
detailed mathematics, learn enough about its general 
properties to become comfortable with it. To review 
what we have already said, the geodesic in a given 
Riemannian space is equivalent in every way to the 
straight line in Euclidean space: 
 

1. It is the straightest curve possible between two 
points of the space in question. 

2. It is an extremal distance between two points 
(either maximal or minimal; the straight line of 
Euclidean space happens to be minimal). 

3. At every point in the space, it possesses the same 
curvature as the space itself (the line possesses the 
same curvature as the plane, zero). 

4. Geometric figures, such as triangles, rectangles, 
and so on, are always constructed of geodesics; thus, 
on the sphere for which the geodesic is the great circle, 
we speak of spherical triangles and spherical geometry. 
 
The general equation expressing the geodesic is a 
second-order differential equation obtained by 
applying the calculus of variations to the invariant 
differential element 
 
 ( )2d d dj k

jks g x x=  (416) 
 
In the calculus of variations, one seeks a path along 
which a particular integral is external. That path is 
usually given as a function of the coordinates, the 
coordinate derivatives, and some other parameter, 
usually time. Historically, the original problem to be 
solved with variational techniques was the 
bachistochrone problem, which sought the particular 
path between any two points in a gravitational field 
along which a free particle would move in minimum 
time63. 
 If between two points P and P*, we have an infinite 
number of nonintersecting possible (homologous) 
paths along which to integrate the differential ds, at 
least one of those paths will yield a maximal or 
minimal solution for the integral.64 It is the task of the 
calculus of variations to determine the general equation 
for finding that path. Typically, the integral of concern 
is represented in its general form as 
 

 d, , d
d

yf y t t
t

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦∫  (417) 

 
The calculus of variations uses concepts very similar to 
those used in the maximum-minimum problems 
encountered in basic calculus. Recall that given a 
function y(x), a minimum or a maximum of the 
function could be found by forming the derivative of 
                                                 
63Newton solved the problem in a single night. The account is fascinating, 
and I recommend that you find it and read it. 
64Either all the paths will yield the same value, in which case all are 
extremal, or all paths will not yield the same result, in which case there 
must be at least one path for which an extremal value is obtained. 
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y(x) with respect to x and setting the result equal to 
zero: 
 

 d 0
d

y
x
=  (418) 

 
 The process of forming the derivative at a point P on 
the curve y = y(x) involved taking a point to the right 
of P and another point to the left of P, connecting the 
two points with a straight line, determining the slope of 
that line, then finding the limit of the sequence of 
slopes formed as the two points converged on P. 
 The calculus of variations works in much the same 
way. For any given path P, we choose two adjacent 
paths (one to the right and one to the left, 
metaphorically) and determine the integral along each 
of those paths. The integrals are compared by forming 
their difference. The path P for which the difference 
approaches zero in the limit of convergence of the 
adjacent paths is the extremal path sought. In the 
notation of the calculus of variations, we write 
 

 d, , d 0
d

yf y t t
t

⎡ ⎤⎛ ⎞δ =⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦∫  (419) 

 
where δ means the difference between the values of the 
integral taken along slightly different (and adjacent) 
paths connected only at their end points. To find the 
general equation of the geodesic, we begin with the 
differential arc length ds, which we have already 
represented in general form via equation (416), 
repeated here:  
 
 ( )2d d dj k

jks g x x=  (416) 
 
Recall that ds is the physical length associated with the 
differential position vector dr whose components are 
the coordinate differentials dxw. By applying the 
calculus of variations to this expression, we are 
seeking the minimal (or maximal) distance between 
two points in the space under consideration. The 
straight line is a special case of this more general 
situation. 
 The integral of interest65 is ∫ds where  
 

                                                 
65Careful examination of the integrand in the second integral above shows 
the identity gjk(dxj/ds)(dxk/ds) = 1. 

( )d d d

d d d
d d

j k
jk

j k
jk

s g x x

x xg s
s s

=

⎡ ⎤⎛ ⎞⎛ ⎞
= ⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦

∫ ∫

∫
 (420) 

 
And the variation of interest is 
 

 d d d 0
d d

j k
jk

x xg s
s s

⎡ ⎤⎛ ⎞⎛ ⎞
δ =⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦
∫  (421) 

 

When the variation is carried out, we obtain the 
second-order differential equation 
 

 
2

2
d d d 0
d d d

t j k
t
jk

x x x
s s s

⎛ ⎞ ⎛ ⎞⎛ ⎞
+ Γ =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 (422) 

 

whose solutions xw = xw(s) are the required geodesics.66 
Since the solution of this equation in the plane is the 
straight line, we may argue (nonrigorously) that the 
equation represents an equation of motion for particles 
upon which no forces are acting. (This statement can 
actually be proven by rigorous methods.) We may then 
write a more general equation of the form 
 

 
2

2
d d d
d d d

t j k
t t
jk

x x x a
s s s

⎛ ⎞ ⎛ ⎞⎛ ⎞
+ Γ =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 (423) 

 

where at are the contravariant components of the 
particle’s acceleration (classically, s represents 
absolute time). We now have the equations of motion 
for any particle on which some force is acting 
(including the force f = 0 for which at = 0 for all values 
of the index t). Einstein used this equation, with at = 0 
as his equation of motion for all particles in the 
gravitational field. Note that the more general quantity 
ds replaces the quantity dt in Einstein’s formulation. 
 In general relativity, it is strictly the curvature of 
space that comprises the gravitational field. Unlike 
classical mechanics, there is no gravitational force in 
general relativity. Particles in the gravitational field 
undergo force-free (acceleration-free) motion (at = 0) 
along their local four-dimensional spacetime geodesic. 
The spatial part of this motion is typically seen as a 
curved path. For “small” gravitational fields, such as 

                                                 
66Note that in Euclidean space, all the values of Γ vanish; that is, 0.t

jkΓ =  

The resulting differential equation is simply d2xt/ds2 = 0, the differential 
equation of the straight lines xt = αts + βt, where αt and βt are constants. 
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our Sun’s, this path is approximately a Keplerian conic 
section.67 
 The spacetime of general relativity is differentially 
curved: the curvature varies smoothly from place to 
place. In a differentially curved geometry, figures 
cannot be moved from place to place without bending, 
stretching, and sometimes even tearing. This property 
of the geometry is mirrored in the spacetime of general 
relativity by the nonexistence of rigid matter. All 
matter in general relativity undergoes variations in 
stress and strain as it moves from region to region. The 
deformations (strains) reflect the fact that no absolute 
measurement of space or time is possible. All 
measurements are local; all are related through the 
generalized Lorentz transformation repeated here: 
 

 ( )2d d dj k
jks g x x=  (416) 

 
Locally, spacetime always appears flat to the observer. 
More distant observations (in space and time) reveal 
the curvature. The “differential” region in general 
relativity over which the observer may assume quasi-
flatness must be carefully chosen. Within that region, 
the observer is entitled to apply special relativity to his 
or her observations. 
 Let us now try to gain some further insight into 
Einstein’s concept of the gravitational field. We will 
begin with the foregoing equation of motion: 
 

 
2

2
d d d 0
d d d

t j k
t
jk

x x x
s s s

⎛ ⎞ ⎛ ⎞⎛ ⎞
+ Γ =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
 (422) 

 
and rewrite it as 
 

 
2

2
d d d
d d d

t j k
t
jk

x x x
s s s

⎛ ⎞⎛ ⎞
= −Γ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 (424) 

 
We will consider only the spatial components of the 
motion for the moment. These components correspond 
to the index t having values equal to 1, 2, and 3. (The 
value t = 4 is reserved for the time component.) It 
should be apparent that the terms d2xt/ds2 are 

                                                 
67The approximation is most noticeable in the case of Mercury’s orbit. 
Kepler’s law predicts a closed ellipse. Einstein’s law predicts an open 
ellipse, one that does not return upon itself. As a result, Einstein’s theory 
predicts that the perihelion of Mercury rotates around the Sun at a rate of 
about 64 sec of arc per century. This advance of perihelion has been 
observed and in fact was first discovered and reported in the late 19th 
century by the French astronomer Leverrier (1811−1877). At that time, an 
intramercurial planet named Vulcan was postulated to account for the 
“perturbation” in Mercury’s orbit. Needless to say, Vulcan was never seen. 

equivalent to the components of classical acceleration. 
In classical theory, we have 
 

 t ta g=  (425) 
 

where t = 1, 2, 3. The terms t
jkΓ (dxj/ds)(dxk/ds) must 

therefore be the relativistic equivalent of the classical 
gt; that is, they must represent either the gravitational 
field components or something closely related to them. 
The terms dxj/ds and dxk/ds on the right-hand side are 
apparently velocities (reminiscent of the Coriolis term 
that also involved velocity); therefore, the actual field 
terms must be t

jkΓ . The Christoffel symbols in the 

equation of motion carry information about the 
gravitational field and are in fact its components. 
 In general relativity, these symbols are evaluated in a 
Riemannian spacetime with variable curvature. Recall 
that the Christoffel symbols are related to the 
coordinate derivatives of the fundamental tensor: 
 

( ) ( ) ( )1
2

kt wk twb bk
tw w t k

g g g
g

x x x
⎡ ⎤∂ ∂ ∂

Γ = + −⎢ ⎥∂ ∂ ∂⎣ ⎦
 (426) 

 
The 10 independent components68 of the fundamental 
tensor therefore become 10 gravitational potentials in 
general relativity. Why? Consider the classical 
equation relating gravitational acceleration g (i.e., the 
gravitational field term) and the gravitational scalar 
potential φ: 
 

 
x y z

⎡ ⎤⎛ ⎞∂φ ∂φ ∂φ⎛ ⎞ ⎛ ⎞= −κ∇φ = −κ + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
g i j k  (427) 

 
where κ = 4πG is a universal constant involving 
Newton’s gravitational constant G. The field term 
derives from the first coordinate derivatives of the 
potential term with a constant of proportionality. In 
general relativity, the field terms t

jkΓ  derive from the 

first coordinate derivatives of the 10 gravitational 
potentials guv. Only the differential operator is much 
more complicated, involving both space and time.69 

                                                 
68There are 10 independent components in this case because the gjk are 
symmetric and the space is four dimensional. 
69The rough classical equivalent of a spacetime operator is the 
d’Alembertian operator 92 = ∇2 − (1/c2)∂2/∂t2 where ∇2 is the Laplacian 
operator, ∇2 = ∇ · ∇. 
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 How do we acquire the 10 potentials? In general 
relativity, there is a field equation that involves 
curvature and is roughly akin to the classical 
 

 
2

Gmg
r

=  (428) 

 
with which we calculate the classical field term from 
the magnitude of the field-generating mass and its 
radius. To glimpse the more general equation, we must 
recall how curvature is expressed as a tensor. 
 Recall that curvature is a rank 4 tensor i

jkmR  that 

satisfies 
 

 , ,
i i i m
jk kj jkmv v R v− =  (429) 

 

The tensor i
jkmR  is called the Riemann curvature 

tensor. It relates the difference between the second 
covariant derivative of a rank 1 tensor vi taken with 
respect to the indices first j then k and the second 
covariant derivative of the same vector taken with 
respect to the indices first k then j to the actual 
components of the vector itself. Equation (429) tells us 
that in a non-Euclidean space, the order of 
differentiation in a second covariant derivative makes a 
difference to the result. Recall that in Euclidean space, 
the order of differentiation made no difference; that is, 
that 
 

 
( ) ( )2 2, ,f x y f x y
x y y x

∂ ∂
=

∂ ∂ ∂ ∂
 (430) 

 
This simple and convenient rule is not true in the 
general case. In Euclidean four-space, i

jkmR  = 0; that 

is, all 256 components of i
jkmR  vanish everywhere 

throughout the space. This vanishing is the equivalent 
of saying that Euclidean space is everywhere flat. 
 The general form of the curvature tensor may be 
obtained by writing out the expressions for the two 
second covariant derivatives, forming their difference, 
and simplifying the result. To do so requires nothing 
more than you have already learned from this text. The 
procedure becomes untidy because of the number of 
symbols to keep track of, but a little care in 
bookkeeping will pay off for the student who is willing 
to try. Here is the result you should obtain: 
 

 
i i
jk jmi s i s i

smjmjkm sk jkm k
R

x x
∂Γ ∂Γ

= Γ Γ − −Γ Γ +
∂ ∂

 (431) 

 
 Once we have the curvature tensor, we may contract 
it to form a rank 2 tensor: 
 

 k
jmjkmR R=  (432) 

 
Einstein did so because the 256 independent equations 
that the full tensor i

jkmR  provided overly constrained 

the theory. He next separated the contracted curvature 
tensor into two terms: 
 
 jm jm jmR G H= +  (433) 
 
One of these terms involved the derivatives of the 
fundamental tensor components that were considered 
necessary for a proper generalization of Newton’s own 
theory of gravity. He set up the following expression: 
 
 jm jm jmH g H T−α = −  (434) 
 
where H = gjmHjm and α is a constant to be determined. 
The right-hand side term Tjm is the stress-energy tensor 
(referred to as an “empirical” term in the 1917 paper). 
It is symmetrical and has 10 independent components. 
He next required the vanishing of the divergence of Tjm 
to ensure the conservation of stress energy everywhere 
in the universe. This condition constrained the constant 
α to assume the value ½. The result was the field 
equation 
 

 1
2jm jm jmH g H T− = −  (435) 

 
One of the first solutions of this equation for the case 
of locally vanishing stress energy was attributed to 
Karl Schwarzschild (1873−1916), a German 
astronomer, mathematician, and physicist, who set Tjm 
= 0 to approximate the spacetime conditions outside a 
large field-generating mass, such as our Sun or a 
particular planet. Following his lead, we obtain 
 

 1 0
2jm jmH g H− =  (436) 

 
Rewriting this expression in mixed form yields 
 

 1 0
2

s s
m mH H− δ =  (437) 
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Setting s = m and summing, we find that 
 
 0H =  (438) 
 
so that the gravitational field equation reduces to 
 

 0s
mH =  (439)  

 

that is, the second rank tensor s
mH  vanishes 

everywhere in the space under consideration. This 
Schwarzschild equation has yielded the following three 
famous effects in which predictions from general 
relativity differ from those of Newtonian theory. The 
observation of these effects by astronomers has lent 
considerable support to the veracity of the general 
theory: 
 

1. Rotation of a planet’s perihelion with time 
2. Deflection of starlight passing near a massive 

object 
3. Red shift of light moving away from a massive 

object 

Of the three, the first was observed in the orbital 
motion of the planet Mercury and accounts for the 
anomaly in the planet’s orbit (Leverrier, 1811−1877); 
the second was first observed during the famous 1919 
eclipse expedition of Sir Arthur Stanley Eddington 
(English astronomer, 1882−1944); the third has not 
been definitively observed, although from observations 
of massive stars, there is spectral line-shift evidence 
that tends to agree with relativity. 
 Later, Schwarzschild’s equation also led to the first 
prediction of radical gravitational collapse of massive 
stars and to the theoretical existence of black holes. 
 
Glenn Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio, January 18, 2005 
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