
BASIC-PLUS-2
User's Guide
Order Number: AA-JP35B-TK

May 1991

This manual provides tutorial information on BASIC-PLUS-2 language
features . It also contains information on advanced program development
techniques .

Revision/Update Information :

	

This manual is a revision .

Operating System and Version : RSX-11M Version 4.6 or higher
RSX-11M-PLUS Version 4 .3 or higher
Micro/RSX Version 4 .3 or higher
RSTS/E Version 9.7 or higher

Software Version :

	

BASIC-PLUS-2 Version 2 .7

Digital Equipment Corporation
Maynard, Massachusetts

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation . Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document .

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license .

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies .

Restricted Rights: Use, duplication, or disclosure by the U .S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252 .227-7013 .

© Digital Equipment Corporation 1987, 1991 .

All Rights Reserved .
Printed in U .S .A.

The postpaid Reader's Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation .

The following are trademarks of Digital Equipment Corporation : BASIC-PLUS, BASIC-PLUS-2,
DEC, DECnet, DECUS, Digital, DOCUMENT, Micro/RSX, PDP, PDP-11, RMS, RMS-11, RSTS,
RSTS/E, RSX, RSX-11M, RSX-11M-PLUS, RX50, TK50, UNIBUS, VAX, VAXcluster, VAXinfo,
VMS, and the Digital logo .

BASIC is a trademark of Dartmouth College .

This document was prepared using VAX DOCUMENT, Version 2 .0 .

Contents

iii

Preface	 xix

xxvSummary of Technical Changes	

1 Developing Programs in the BASIC Environment

1 .1 Entering the Environment	 1-1
1 .2 Creating Programs	 1-3
1 .2.1 Creating a Program Interactively	 1-3
1 .2.2 Creating a Program Using a Text Editor	 1-4
1 .3 Running Programs	 1-4
1 .4 Indirect Command Files	 1-5
1 .5 Multiple-Unit Programs	 1-6
1 .6 Exiting from the Environment	 1-7
1 .7 Immediate Mode	 1-8
1 .8 Environment Commands	 1-10
1 .8.1 The $ System-Command	 1-12
1 .8 .2 The APPEND Command	 1-13
1 .8 .3 The BRLRES Command	 1-13
1 .8 .4 The BUILD Command	 1-13
1 .8 .5 The COMPILE Command	 1-14
1 .8 .6 The DELETE Command	 1-15
1 .8 .7 The DSKLIB Command	 1-15
1 .8.8 The EDIT Command	 1-15
1 .8.9 The EXIT Command	 1-16
1 .8.10 The EXTRACT Command	 1-16
1 .8.11 The HELP Command	 1-17
1 .8.12 The IDENTIFY Command	 1-17
1 .8.13 The INQUIRE Command	 1-17
1 .8.14 The LIBRARY Command	 1-17
1 .8.15 The LIST and LISTNH Commands	 1-18
1 .8.16 The LOAD Command	 1-18

iv

1 .8.17 The LOCK Command	 1-19
1 .8.18 The NEW Command	 1-19
1 .8.19 The ODLRMS Command	 1-19
1 .8.20 The OLD Command	 1-20
1 .8.21 The RENAME Command	 1-20
1 .8.22 The REPLACE Command	 1-20
1 .8.23 The RUN and RUNNH Commands	 1-20
1 .8.24 The SAVE Command	 1-21
1 .8.25 The SCALE Command	 1-22
1 .8.26 The SCRATCH Command	 1-22
1 .8.27 The SEQUENCE Command	 1-22
1 .8.28 The SET Command	 1-23
1 .8.29 The SHOW Command	 1-23
1 .8.30 The UNSAVE Command	 1-25
1 .9 Setting Environment Defaults with an Initialization File	 1-26

2 Developing Programs at DCL Command Level
2.1 Using EDT to Create a BASIC-PLUS-2 Program	 2-1
2.2 Compiling a BASIC-PLUS-2 Program	 2-2
2.2.1 The BASIC Command	 2-3
2.2.2 BASIC Command Qualifiers	 2-3
2.2.3 Compiler Listings	 2-7
2.2.3 .1 Source Program Listing	 2-7
2.2.3.2 Cross-Reference Listing	 2-9
2.2.3.3 Qualifier Summary	 2-11
2.3 Linking a BASIC-PLUS-2 Program	 2-12
2.3 .1 The TKB Command	 2-12
2.3 .2 The LINK Command	 2-13
2.4 Executing a BASIC-PLUS-2 Program	 2-14

3 Debugging Programs
3.1 Introduction	 3-1
3.2 Invoking the Debugger	 3-1
3.3 Sample Debugging Session in the BASIC-PLUS-2

Environment	 3-5
3.4 Sample Debugging Session at DCL Command Level	 3-7
3.5 Debugger Error Messages	 3-18

4 Program Elements
4.1

	

Line Numbers	 4-1
4 .2

	

Labels	 4-2
4.3

	

Continuing Long Program Statements	 4-2
4.4

	

Identifying Program Units	 4-3
4.5

	

The BASIC-PLUS-2 Character Set	 4-4
4.6

	

Program Documentation	 4-4
4.7

	

Declarations and Data Types	 4-5
4.7.1

	

Implicit Data Typing	 4-6
4.7 .2

	

Explicit Data Typing	 4-7
4.8

	

Constants	 4-7
4.9

	

Variables	 4-9
4.9 .1

	

Floating-Point Variables	 4-9
4.9 .2

	

Integer Variables	 4-10
4.9 .3

	

String Variables	 4-10
4.9.4

	

Subscripted Variables	 4-10
4 .9.5

	

Initialization of Variables	 4-11
4 .10 Keywords and Reserved Words	 4-11
4 .11

	

Operands, Operators and Expressions	 4-12
4 .12 Assignment Statements	 4-13

5 Simple Input-Output

5.1

	

Program Input	 5-1
5.1 .1

	

Providing Input Interactively	 5-1
5.1 .1 .1

	

The INPUT Statement	 5-1
5.1 .1 .2

	

The INPUT LINE and LINPUT Statements	5-4
5.1 .1 .3 Enabling and Disabling the Question Mark Prompt 5-4
5.1 .2

	

Providing Input from the Source Program	5-5
5.1 .2.1

	

The READ and DATA Statements	5-6
5.1 .2.2

	

The RESTORE Statement	 5-7
5 .2

	

Program Output	 5-8
5 .2.1

	

Print Zones-the Comma and the Semicolon	5-9
5 .2.2

	

Output Format for Numbers and Strings	5-12
5 .3

	

Terminal-Format Files	 5-14
5 .3.1

	

Opening and Closing a Terminal-Format File	5-14
5 .3.2

	

Writing Records to a Terminal-Format File	5-14

v

vi

6 Control Statements
6 .1 Statement Modifiers	 6-1
6 .1 .1 The IF Modifier	 6-2
6 .1 .2 The UNLESS Modifier	 6-2
6 .1 .3 The FOR Modifier	 6-2
6.1 .4 The UNTIL Modifier	 6-2
6.1 .5 The WHILE Modifier	 6-3
6.1 .6 Nested Modifiers	 6-3
6.2 Loops	 6-3
6.2.1 FOR. . .NEXT Loops	 6-4
6.2.2 WHILE . . .NEXT Loops	 6-7
6.2.3 UNTIL . . .NEXT Loops	 6-8
6.2 .4 Nested Loops	 6-9
6.3 Unconditional Branching	 6-9
6.4 Conditional Branching	 6-9
6.4 .1 The ON . ..GOTO . . .OTHERWISE Statement	 6-10
6.4 .2 The IF. . . THEN . . .ELSE Statement	 6-10
6.4.3 The SELECT. . .CASE Statement	 6-13
6.5 The EXIT and ITERATE Statements	 6-15
6.6 Executing Local Subroutines	 6-16
6.6.1 The GO SUB and RETURN Statements	 6-17
6.6.2 The ON . ..GOSUB. . .OTHERWISE Statement	 6-18
6.7 Suspending and Halting Program Execution	 6-19
6.7.1 The SLEEP Statement	 6-19
6.7.2 The WAIT Statement	 6-20
6.7.3 The STOP Statement	 6-20
6.7.4 The END Statement	 6-21

7 Declarations and Data Types
7.1 Declarative Statements	 7-1
7.2 Data Types	 7-1
7.3 Setting the Default Data Type and Size	 7-4
7.4 Declaring Variables Explicitly	 7-5
7.5 Declaring Named Constants Explicitly	 7-6
7.5.1 Declaring Constants Within a Program Unit	 7-7
7.5.2 Declaring Constants External to the Program Unit	 7-7
7.6 Operations with Multiple Data Types	 7-7
7.7 Allocating Static Storage	 7-9
7.7 .1 The COMMON Statement	 7-9

7 .7.2

	

The MAP Statement	 7-10
7 .7.2 .1

	

Single Maps	 7-10
7.7.2.2

	

Multiple Maps	 7-12
7 .7.3

	

FILL Items	 7-13
7.7.4

	

Using COMMON and MAP in Subprograms	7-14
7.8

	

Dynamic Mapping	 7-17

8 Functions
8.1

	

Built-In Functions	 8-1
8.1 .1

	

Using Numeric Functions	 8-2
8.1 .1 .1

	

The ABS Function	 8-2
8.1 .1 .2

	

The INT and FIX Functions	 8-2
8.1 .1 .3

	

The SIN, COS, and TAN Functions	8-3
8 .1 .1 .4

	

The LOG10 Function	 8-4
8.1 .1 .5

	

The EXP Function	 8-5
8.1 .1 .6

	

The RND Function	 8-5
8 .1 .2

	

Using Data Conversion Functions	 8-7
8.1 .2 .1

	

The ASCII Function	 8-7
8.1 .2.2

	

The CHR$ Function	 8-7
8 .1 .3

	

Using String Numeric Functions	 8-8
8.1 .3 .1

	

The FORMAT$ Function	 8-8
8.1 .3.2

	

The NUM$ and NUM1$ Functions	8-8
8 .1 .3 .3

	

The VAL% and VAL Functions	 8-10
8.1 .4

	

Using String Arithmetic Functions	 8-10
8.1 .4 .1

	

The PLACE$ Function	 8-13
8 .1 .4 .2

	

The PROD$ Function	 8-14
8.1 .5

	

Using Date and Time Functions	 8-14
8.1 .5 .1

	

The DATE$ Function	 8-14
8.1 .5 .2

	

The TIME$ Function	 8-15
8.1 .5 .3

	

The TIME Function	 8-15
8 .1 .6

	

Using Terminal Control Functions	 8-16
8.1 .6 .1

	

The CTRLC and RCTRLC Functions	8-16
8.1 .6 .2

	

The ECHO and NOECHO Functions	8-17
8 .2

	

User-Defined Functions	 8-17
8.2.1

	

Single-Line DEF Functions	 8-18
8.2.2

	

Multi-Line DEF Functions	 8-19
8 .3

	

External Functions	 8-24
8.3.1

	

The FUNCTION, EXIT FUNCTION, and END FUNCTION
Statements	 8-24

8 .3.2

	

The EXTERNAL Statement	 8-25

vii

9 String Handling
9.1

	

Introduction	 9-1
9.2

	

Using Dynamic Strings	 9-2
9.3

	

Using Fixed-Length Strings	 9-4
9.4

	

String Virtual Arrays	 9-5
9.5

	

Assigning String Data	 9-6
9.5 .1

	

The LET Statement	 9-6
9.5 .2

	

The LSET Statement	 9-7
9.5 .3

	

The RSET Statement	 9-8
9.6

	

Manipulating String Data with String Functions	9-9
9 .6.1

	

The LEN Function	 9-9
9 .6.2

	

The POS Function	 9-10
9 .6.3

	

The SEG$ Function	 9-12
9 .6.4

	

The MID$ Function	 9-14
9 .6.5

	

The STRING$ Function	 9-15
9 .6.6

	

The SPACE$ Function	 9-15
9 .6.7

	

The TRM$ Function	 9-16
9 .6.8

	

The EDIT$ Function	 9-16
9 .7

	

Manipulating String Data with Multiple Maps	9-18

10 Arrays
10.1

	

Introduction	 10-1
10.2

	

Creating Arrays Explicitly	 10-2
10.2.1

	

Creating Arrays with the DECLARE Statement	10-3
10.2.2

	

Creating Arrays with the DIM Statement	10-4
10.2 .2 .1

	

Declarative DIM Statements	 10-5
10.2 .2.2

	

Executable DIM Statements	 10-5
10.2 .3

	

Creating Arrays with the COMMON Statement	10-6
10.2 .4

	

Creating Arrays with the MAP Statement	10-7
10.3

	

Creating Arrays Implicitly	 10-7
10.3 .1

	

Referencing an Undeclared Array Element	10-7
10.3 .2

	

Using MAT Statements	 10-9
10.3 .2 .1

	

The MAT Statement	 10-10
10.3 .2.2

	

The MAT READ Statement	 10-12
10.3 .2.3

	

The MAT INPUT [#] Statement	10-13
10.3 .2.4

	

The MAT LINPUT [#] Statement	10-15
10.3 .2.5

	

The MAT PRINT [#] Statement	 10-16
10.3 .2.6

	

Matrix I/O Functions	 10-17
10.4 Array Input and Output	 10-18
10.4 .1

	

Assigning Values with the LET Statement	10-18
10.4 .2

	

Listing Array Elements with the PRINT Statement	10-19

ix

10-19
10.5.1

	

Arithmetic Matrix Operations	 10-19
10.5 .1 .1

	

Assignment	 10-20
10.5 .1 .2

	

Addition and Subtraction	 10-20
10.5 .1 .3

	

Multiplication	 10-20
10 .5.2

	

Matrix Functions	 10-21
10 .5.2 .1

	

The TRN Function	 10-22
10 .5.2.2

	

The INV Function	 10-22
10.5.2.3

	

The DET Function	 10-23

11 Program Segmentation

11 .1 Introduction	 11-1
11 .2 BASIC-PLUS-2 Subprograms	 11-2
11 .2.1 SUB Subprograms	 11-3
11 .2.2 FUNCTION Subprograms	 11-4
11 .3 Declaring BASIC-PLUS-2 Subprograms	 11-5
11 .4 Accessing BASIC-PLUS-2 Subprograms	 11-6
11 .5 Passing Parameters to a BASIC-PLUS-2 Subprogram	 11-8
11 .6 Sharing Data Between Program Modules	 11-12
11 .6 .1 Common Blocks and Maps	 11-13
11 .6 .2 Files	 11-17
11 .7 Building Task Images	 11-18
11 .8 Non-BASIC-PLUS-2 Subprograms	 11-24
11 .8 .1 Parameter-Passing Mechanisms	 11-25
11 .8.2 Declaring Non-BASIC-PLUS-2 Subprograms	 11-27
11 .8.3 Calling Non-BASIC-PLUS-2 Subprograms	 11-29
11 .9 MACRO Subprograms	 11-30
11 .9.1 Passing Parameters	 11-30
11 .9.2 Common Blocks and Maps	 11-38
11 .9.3 Initializing COMMONs and MAPs	 11-41
11 .9.4 Building Task Images	 11-42
11 .9.5 Handling Errors	 11-45

12 File Input-Output
12.1 Introduction	 12-1
12.2 Record Formats	 12-2
12.2 .1 Fixed-Length Records	 12-2
12.2 .2 Variable-Length Records	 12-2
12 .2 .3 Stream Records	 12-3
12 .3 File Organizations	 12-3
12 .3 .1 Terminal-Format Files	 12-3

x

12 .3.2 Sequential Files	 12-3
12 .3.3 Relative Files	 12-4
12 .3.4 Indexed Files	 12-4
12 .3.5 Virtual Files	 12-5
12 .4 Record Access and Record Context	 12-5
12 .5 I/O and Record Buffers	 12-6
12 .6 Accessing the Contents of a Record	 12-7
12 .6.1 The MAP Statement	 12-7
12 .6.2 The MAP DYNAMIC and REMAP Statements	 12-7
12 .6.3 The MOVE Statement	 12-9
12 .7 File and Record Operations	 12-11
12.7.1 Opening Files	 12-12
12.7.2 Creating Virtual Array Files	 12-14
12.7.3 Locating Records	 12-15
12.7.4 Reading Records	 12-16
12.7.5 Writing Records	 12-18
12.7.6 Deleting Records	 12-20
12.7.7 Updating Records	 12-21
12.7.8 Controlling Record Access	 12-23
12.7.9 Accessing Records by Record File Address	 12-24
12 .7.10 Transferring Data to Terminal-Format Files	 12-26
12 .7.11 Resetting the File Position	 12-26
12 .7.12 Truncating Files	 12-26
12 .7.13 Renaming Files	 12-27
12 .7.14 Closing Files and Ending I/O	 12-27
12 .7.15 Deleting Files	 12-28
12 .8 File-Related Functions	 12-28
12.8.1 The FSP$ Function	 12-28
12.8.2 The FSS$ Function	 12-29
12.8.3 The RECOUNT Function	 12-36
12.8.4 The STATUS Function	 12-37
12.9 OPEN Statement Clauses	 12-37
12.9.1 The BUCKETSIZE Clause	 12-37
12.9.2 The BUFFER Clause	 12-39
12.9.3 The CLUSTERSIZE Clause	 12-39
12.9.4 The CONNECT Clause	 12-39
12.9.5 The CONTIGUOUS Clause	 12-40
12.9.6 The DEFAULTNAME Clause	 12-40
12.9.7 The EXTENDSIZE Clause	 12-41
12.9.8 The FILESIZE Clause	 12-41
12.9.9 The NOSPAN Clause	 12-42
12.9.10 The RECORDTYPE Clause	 12-42
12.9.11 The TEMPORARY Clause	 12-43

xi

12 .9.12

	

The USEROPEN Clause	 12-43
12.9.13

	

The WINDOWSIZE Clause	 12-46

13 Formatting Output
13.1

	

Introduction	 13-1
13 .2 Using Format Strings	 13-2
13 .3 Printing Numbers	 13-3
13 .3.1

	

Specifying the Number of Digits	 13-4
13.3.2

	

Specifying Decimal Point Location	 13-5
13.3.3

	

Printing Numbers with Special Symbols	 13-6
13.3 .3 .1

	

Commas	 13-7
13.3 .3 .2

	

Asterisk Fill Fields	 13-8
13.3 .3.3

	

Currency Symbols	 13-9
13.3 .3.4

	

Negative Fields	 13-10
13.3.3.5

	

E (Exponential) Format	 13-10
13.3.3.6

	

Leading Zeros	 13-11
13 .3.3.7

	

Blank-If-Zero Fields	 13-12
13 .3.3.8

	

Debits and Credits	 13-12
13 .4

	

Printing Strings	 13-12
13 .4.1

	

Left-Justified Format	 13-14
13.4.2

	

Right-Justified Format	 13-14
13.4.3

	

Centered Fields	 13-15
13.4.4

	

Extended Fields	 13-15
13.5

	

Error Conditions	 13-17

14 Compiler Directives

14 .1

	

Introduction	 14-1
14 .2

	

Controlling the Compilation Listing	 14-2
14 .2 .1

	

The %TITLE and %SBTTL Directives	 14-2
14 .2.2

	

The %IDENT Directive	 14-4
14.2.3

	

The %PAGE Directive	 14-4
14.2.4

	

The %LIST and %NOLIST Directives	 14-5
14.2.5

	

The %CROSS and %NOCROSS Directives	 14-6
14.3 Accessing External Source Files (%INCLUDE)	 14-7
14.4

	

Controlling Compilation	 14-8
14.4 .1

	

Lexical Constants and Expressions (%LET)	 14-9
14.4 .2

	

The %VARIANT Directive	 14-9
14.4 .3

	

The %ABORT Directive	 14-9
14 .4 .4

	

The %PRINT Directive	 14-10
14 .4 .5

	

The %IF-%THEN-%ELSE-%END %IF Directive	 14-10

15 Error Handling
15.1

	

Error Handlers	 15-1
15.1 .1

	

BASIC-PLUS-2 Default Error Handling	15-2
15.1 .2

	

User-Written Error Handlers	 15-2
15.2

	

Identifying Errors	 15-4
15.2 .1

	

Determining the Error Number (ERR)	15-4
15 .2 .2

	

Determining the Error Line Number (ERL)	15-5
15 .2 .3

	

Determining Where the Error Occurred (ERN$)	15-6
15 .2 .4

	

Determining the Error Message Text (ERT$)	15-6
15 .2 .5

	

Ctrl/C Trapping	 15-7
15 .3 Handling Errors in Multiple-Unit Programs	15-8
15 .4 Returning to BASIC-PLUS-2 Error Handling	15-10
15 .5 Leaving an Error Handler	 15-11

16 Instruction and Data Space
16 .1

	

Introduction	 16-1
16.2 Building Tasks in Instruction and Data Space	16-1
16 .2.1

	

MACRO Subprograms	 16-3
16 .2.2

	

Overlaid Tasks	 16-4

17 Advanced Input-Output
17.1

	

Introduction	 17-1
17.2 RMS I/O to Magnetic Tape	 17-2
17.2.1

	

Allocating a Tape	 17-2
17.2.2

	

Initializing a Tape on RSX-11M Systems	17-2
17.2.3

	

Initializing a Tape on RSX-11M-PLUS Systems	17-3
17.2.3 .1

	

The MOUNT Command	 17-3
17.2.3 .2

	

The INITIALIZE Command	 17-4
17.2.3 .3

	

The DISMOUNT Command	 17-4
17.2.3 .4

	

Example of Initializing a Tape on RSX-11M-PLUS	17-4
17.2.4

	

Initializing a Tape on RSTS/E Systems	17-5
17.2.4 .1

	

The INITIALIZE Command	 17-5
17.2.4 .2

	

The MOUNT Command	 17-5
17.2.4 .3

	

Example of Initializing a Tape on RSTS/E	17-6
17.2.5

	

Opening a File on Tape	 17-7
17.2.5 .1

	

ACCESS Clause	 17-8
17.2.5 .2

	

BLOCKSIZE Clause	 17-8
17.2.5 .3

	

MAP Clause	 17-8
17.2.5 .4

	

RECORDSIZE Clause	 17-9
17.2.5 .5

	

NOREWIND Clause	 17-9

xii

xm

17.2.6

	

Writing Records to Tape	 17-10
17.2.7

	

Adding New Records to Tape	 17-11
17.2.8

	

Reading Records on Tape	 17-12
17.2.9

	

Locating Records on Tape	 17-14
17.2.10

	

Truncating Files on Tape	 17-15
17.2 .11

	

Dismounting a Tape	 17-17
17.2 .12

	

Closing a File on Tape	 17-18
17.3

	

Device-Specific I/O	 17-18
17.3 .1

	

Device-Specific I/O to Unit Record Devices	 17-19
17 .3.2

	

Device-Specific I/O to Magnetic Tape Devices	 17-19
17 .3.2 .1

	

Allocating and Mounting a Tape	 17-20
17 .3.2.2

	

Opening a File on Tape	 17-20
17.3.2 .3

	

Opening a Tape File for Output	 17-22
17.3.2 .4

	

Opening a Tape File for Input	 17-22
17.3.2 .5

	

Closing a File on Tape	 17-23
17.3.2 .6

	

Using the MAGTAPE Function	 17-23
17.3.2 .7

	

Writing Records to Tape	 17-27
17.3.2 .8

	

Adding New Records to Tape	 17-29
17.3.2 .9

	

Reading Records on Tape	 17-30
17.3.2 .10

	

Locating Records on Tape	 17-31
17.3.2 .11

	

Deleting Records on Tape	 17-33
17.3.2.12

	

Dismounting a Tape	 17-34
17.3 .3

	

Device-Specific I/O to Disk Devices	 17-34
17.3 .3 .1

	

Allocating and Mounting a Disk	 17-35
17.3 .3.2

	

Opening a File on Disk	 17-35
17.3 .3.3

	

Writing Records to Disk	 17-36
17.3 .3.4

	

Adding New Records to Disk	 17-37
17.3 .3.5

	

Reading Records on Disk	 17-38
17.3 .3.6

	

Locating Records on Disk	 17-40
17.3.3.7

	

Deleting Records on Disk	 17-40
17.3.3.8

	

Dismounting a Disk	 17-41
17.4 Network 1/0	 17-41

18 Libraries
18 .1

	

Introduction	 18-1
18 .2 BASIC-PLUS-2 Libraries	 18-1
18 .2.1

	

BASIC-PLUS-2 Memory-Resident Libraries	 18-1
18 .2.2

	

BASIC-PLUS-2 Object Module Libraries	 18-3
18 .3

	

User-Created Libraries	 18-3
18 .3.1

	

Creating a Memory-Resident Library	 18-4
18.3.2

	

Selecting a Memory-Resident Library	 18-4
18.3.3

	

Creating an Object Module Library	 18-5

xiv

18 .3.4 Selecting an Object Module Library	 18-5
18 .3.4 .1 Selecting Both the Default and a User-Created Object

Module Library	 18-6
18 .3.4.2 Selecting a User-Created Object Module Library	 18-6
18 .4 RMS-11 Libraries	 18-7
18.4.1 The RMS-11 Memory-Resident Libraries	 18-7
18.4.2 Selecting an RMS-11 Memory-Resident Library	 18-8
18.4.3 The RMS-11 Object Module Library	 18-9
18.4.4 RMS-11 ODL Files	 18-9
18.4.5 Selecting an RMS-11 ODL File	 18-10
18.5 Clustering Memory-Resident Libraries	 18-11
18.6 Remote File Access	 18-12

19 Utilities
19-119 .1 The Optimizer Utility	

19 .1 .1 Invoking the Optimizer Utility	 19-1
19 .1 .1 .1 The OPT Command	 19-2
19 .1 .1 .2 The RUN $BP2OPT Command	 19-3
19 .1 .2 Choosing a Segment Size	 19-4
19 .1 .3 Optimizer Error Messages	 19-9
19 .2 The Dump Analyzer Utility	 19-12
19 .3 The Resequencer Utility	 19-13
19 .3 .1 Creating a Resequencer Command File	 19-15
19 .3.2 Formatting Commands in a Resequencer Command File 19-15
19 .3.3 Resequencer Utility Error Messages	 19-16

20 Optimization Techniques

20.1 Writing Transportable Programs	 20-1
20.2 Optimizing Your Program	 20-2
20.2.1 I/O Operations	 20-2
20.2.2 Assigning Variables	 20-3
20.2.3 Choosing Compiler Options	 20-3
20.2.4 Selecting Data Types	 20-3
20.2.5 Arithmetic Operations	 20-4
20.2 .6 Using Control Structures	 20-4
20.2 .7 Selecting Libraries	 20-7
20.2 .8 RMS-11 Operations	 20-7
20 .2 .9 Static and Dynamic Storage	 20-8
20 .2 .10 Extending Memory	 20-9

A Compile-Time and Environment Error Messages

A.1 Diagnosing Compile-Time and Environment Errors	 A-1
A.2 Error Message Format	 A-2
A.3 Alphabetical List of Error Messages	 A-2

B Run-Time Error Messages
B-1B.1 Diagnosing Run-Time Errors	

B.2 Error Message Format	 B-2
B.3 Numerical List of Error Messages	 B-2
B.4 Alphabetical List of Error Messages	 B-25
B.5 Non-BASIC Errors	 B-29

C ASCII Codes and Data Representation
C-6C.1 Radix-50 Character Set	

C.2 BYTE Integer Format	 C-9
C.3 WORD Integer Format	 C-10
C.4 LONGWORD Integer Format	 C-10
C.5 Floating-Point Formats	 C-11
C.5 .1 Single-Precision Format	 C-12
C.5.2 Double-Precision Format	 C-13
C.6 String and Array Formats	 C-14
C.6.1 Array Formats	 C-14
C.6.2 Array Descriptor Word 2	 C-18

Index

Examples

16-1 Map File Illustrating Instruction and Data Space	 16-2
19-1 Example of an Optimizer Listing File	 19-5

xv

Figures
1-1

	

Running Multiple-Unit Programs	 1-6
7-1

	

Multiple Maps	 7-12
11-1

	

Tree Figure Representing the Overlay Structure	11-20
11-2

	

Example of Overlay Structure	 11-21
11-3

	

Nonoverlay and Overlay Memory Requirements	11-22
11-4

	

Argument List Format	 11-32
16-1

	

Task Layout	 16-4
20-1

	

Comparison of Static Storage to Dynamic Storage	20-9
C-1

	

Byte-Length Integer Format	 C-9
C-2

	

Word-Length Integer Format	 C-10
C-3

	

Longword Integer Format	 C-11
C-4

	

Floating-Point Format	 C-12
C-5

	

Single-Precision Format	 C-12
C-6

	

Double-Precision Format	 C-13
C-7

	

Dynamic String Format	 C-14
C-8

	

Format of Arrays in Memory	 C-15
C-9

	

Format of Arrays in Virtual Memory	C-16
C-10

	

Dynamic Arrays	 C-17
C-11

	

Dynamic String Array Pointers	 C-18
C-12

	

Array Descriptor Word 2	 C-19

Tables
1-1

	

Environment Commands	 1-11
1-2

	

Commands Allowed in an Initialization File	1-27
3-1

	

Debugger Commands	 3-3
4-1

	

Predefined Constants	 4-8
7-1

	

BASIC-PLUS-2 Data Types	 7-3
7-2

	

Result Data Types in Expressions	 7-8
7-3

	

FILL Item Formats, Representations, and Default
Allocations	 7-13

8-1

	

String Arithmetic Functions	 8-11
8-2

	

Precision of String Arithmetic Functions	8-11
9-1

	

String Modification	 9-2
9-2

	

EDIT$ Options	 9-16
10-1

	

MAT Statements	 10-9

xvi

10-2 MAT Statement Keywords	 10-10
11-1 BASIC-PLUS-2 Parameter-Passing Mechanisms	 11-26
12-1 Record Context After a FIND Operation	 12-16
12-2 Record Context After a GET Operation	 12-17
12-3 Record Context After a PUT Operation	 12-18
12-4 File Name String : Flag Word Bytes 1-30	 12-30
12-5 File Name String : Scan Flag Word 1	 12-31
12-6 File Name String : Scan Flag Word 2	 12-32
13-1 Format Characters for Numeric Fields	 13-7
13-2 Format Characters for String Fields	 13-13
17-1 MODE Values	 17-22
17-2 MAGTAPE Function Codes	 17-24
17-3 Tape Status Word	 17-27
18-1 ODL Files Supplied by RMS-11	 18-9
19-1 Resequencer Commands	 19-15
20-1 BASIC-PLUS-2 Substitutes for System Services	 20-1
B-1 Alphabetical List of Run-Time Errors	 B-25
C-1 ASCII Codes	 C-2
C-2 Radix-50 Character Set	 C-7
C-3 ASCII and Radix-50 Equivalents	 C-8

Preface

Intended Audience
This manual provides tutorial information on BASIC-PLUS-2 language
features . Readers are presumed to have some previous knowledge of BASIC or
another high-level programming language . This manual should be used with
the other manual in the documentation set .

Operating Systems and Versions
BASIC-PLUS-2 Version 2 .7 runs on the following operating systems and
versions :

RSX-11M Version 4 .6 or higher
RSX-11M-PLUS Version 4 .3 or higher
Micro/RSX Version 4 .3 or higher
RSTS/E Version 9 .7 or higher

Associated Documents
This manual is one of two manuals that form the BASIC-PLUS-2 document
set. The other manual in the document set, the BASIC-PLUS-2 Reference
Manual, provides reference material and examples on all BASIC-PLUS-2
commands, directives, statements, and functions . If you are unfamiliar with a
topic, you may want to read the information contained in this manual before
consulting the BASIC-PLUS-2 Reference Manual .
If you are an inexperienced BASIC programmer, you should read the following
manuals before using the BASIC-PLUS-2 document set:
•

	

Introduction to BASIC
•

	

BASIC for Beginners
•

	

More BASIC for Beginners

xix

Document Structure
This manual has 20 chapters and three appendixes .

Chapter 1

	

Describes how to develop programs in the BASIC environment
Chapter 2

	

Describes how to develop programs from DCL command level
Chapter 3

	

Describes how to use BASIC-PLUS-2 debugger to debug programs
Chapter 4

	

Explains the fundamental elements of BASIC-PLUS-2 programs
Chapter 5

	

Explains simple input and output procedures
Chapter 6

	

Shows how to control the flow of program execution
Chapter 7

	

Explains data definitions
Chapter 8

	

Explains how to use functions
Chapter 9

	

Explains how to handle strings
Chapter 10

	

Shows how to use arrays
Chapter 11

	

Describes how to write modular programs and include calls to
MACRO subprograms

Chapter 12

	

Explains how to manage RMS files
Chapter 13

	

Describes how to format output with the PRINT USING statement
Chapter 14

	

Shows how to use compiler directives
Chapter 15

	

Explains error handling techniques
Chapter 16

	

Describes how to use Instruction and Data Space to enable you to
run larger tasks

Chapter 17

	

Describes device-specific input and output on the RSTS/E and RSX
operating systems

Chapter 18

	

Describes how to use memory-resident and object-module libraries
Chapter 19

	

Describes BASIC-PLUS-2 utilities that you can use to facilitate
program development

Chapter 20

	

Describes techniques you can use to decrease the execution time of
your programs

Appendix A

	

Lists and describes the BASIC-PLUS-2 compile-time error
messages

Appendix B

	

Lists and describes the BASIC-PLUS-2 run-time error messages
Appendix C

	

Lists the ASCII and RAD-50 character codes and describes data
representation formats

Please use the Reader's Comments form in the back of this book to report
documentation errors, to comment on how information is presented, or to
provide suggestions for future publications .

xx

Conventions
This manual uses lower and uppercase letters, symbols, and mnemonics in
syntax diagrams . This symbology aids in providing more concise and exact
descriptions of syntactic variables, rules, and formats .

Note

This manual uses DCL as an example of a command-line interpreter .
However, MCR is also supported on RSX systems as a command-line
interpreter. If you prefer to use MCR as a command-line interpreter,
please consult the RSX-11M/MPLUS MCR Operations Manual for
the MCR equivalent to DCL commands in this manual .

Convention

	

Meaning

Color

	

Color in code examples denotes user input .

UPPERCASE

	

Uppercase letters in language syntax denote BASIC-PLUS-2
letters

	

keywords and must be spelled exactly as shown ; you can enter
them in either upper or lower case in actual coding.

lowercase letters

	

Lowercase letters in language syntax denote mnemonics
representing user-supplied names or characters .

[]

	

Brackets enclose an optional portion of a format . Brackets
around vertically stacked items indicate that you can select one
of the enclosed items . You must include all punctuation as it
appears in the brackets .

{y Braces enclose a mandatory portion of a format. Braces around
vertically stacked items indicate that you must choose one of the
enclosed items . You must include all punctuation as it appears
in the braces .
A vertical ellipsis indicates that code which would normally be
present is not shown .

An ellipsis indicates that the immediately preceding item can be
repeated . An ellipsis following a format unit enclosed in brackets
or braces means that you can repeat the entire unit . If repeated
items or format units must be separated by commas, the ellipsis
is preceded by a comma (, . . .) .

xxi

The following mnemonics are used in the syntax diagrams :

Mnemonic

	

Meaning

angle

	

An angle in radians
array

	

An array; syntax rules specify whether the bounds or dimensions
can be specified

chnl-exp

	

An I/O channel associated with a file
com

	

Specific to a COMMON block
cond

	

Conditional expression ; indicates that an expression can be either
logical or relational

const

	

A constant value
data-type

	

A data type keyword
def

	

Specific to a DEF function
exp

	

An expression
file-spec

	

A file specification
func

	

Specific to a FUNCTION subprogram
int

	

An integer value
int-exp

	

An expression that represents an integer value
int-var

	

A variable that contains an integer value
label

	

An alphanumeric statement label
lex

	

Lexical; used to indicate a component of a compiler directive
line

	

A statement line ; may or may not be numbered
line-n um

	

A statement line number
lit

	

A literal value, in quotation marks
log-exp

	

Logical expression
map

	

Specific to a MAP statement
matrix

	

A two-dimensional array
name

	

A name or identifier ; indicates the declaration of a name or the
name of a BASIC-PLUS-2 structure, such as a SUB subprogram

num

	

A numeric value
param-list

	

A parameter list, such as for a SUB subprogram
pass-mech

	

A valid BASIC-PLUS-2 passing mechanism
real

	

A floating-point value
rel-exp

	

Relational expression

Mnemonic

	

Meaning

str

	

A character string

str-exp

	

An expression that represents a character string

str-var

	

A variable that contains a character string

sub

	

Specific to a SUB subprogram

target

	

The target point of a branch statement; either a line number or a
label

unsubs-var

	

Unsubscripted variable, as opposed to an array element

var

	

A variable

Summary of Technical Changes

The following is a list of the major changes for Version 2 .7 of BASIC-PLUS-2 :

• The BASIC-PLUS-2 compiler can now run in Instruction and Data (I & D)
memory space, thereby improving compilation performance . I & D support
is selected when the compiler is built and installed ; it does not impact the
language syntax.

•

	

The DCL compilation command BASIC has been expanded to allow you to
compile multiple BASIC-PLUS-2 programs from DCL .

•

	

A new qualifier, /[NO]BOUNDS, has been added to the environment
COMPILE command and to the DCL command BASIC . If you specify
/NOBOUNDS, the processing overhead of checking array boundaries on
arrays of one or two dimensions is eliminated .

•

	

Command line support has been expanded to allow longer command strings
than was previously allowed .

• Several additional performance enhancements have been incorporated to
allow faster compilation and run time execution . These enhancements are
primarily internal and are not reflected in the language syntax ; therefore,
they do not require documentation in the manuals .

xxv

1
Developing Programs in the BASIC

Environment

The BASIC environment has capabilities and features that make the process
of program development easier for both novice and expert users . This chapter
describes how to work within the BASIC environment .

1 .1 Entering the Environment
To enter the BASIC environment, log into the system, enter the DCL command
BASIC and press Return . The BASIC command has the following format :

BASIC [/qualifier] . . . [@file-spec [/qualifier] . . .]

@file-spec
The name of an indirect command file containing environment commands .
This file specification is optional ; it merely gives you a quick way to execute a
particular set of environment commands without reentering them each time .
The name of the indirect command file must be preceded by an at sign (@) .
If you do not specify a file type, BASIC-PLUS-2 assumes the file has a file
type of CMD . See Section 1 .4 for more information about specifying indirect
command files with the BASIC command .
Note that there is another version of the BASIC command that compiles one
or more BASIC-PLUS-2 source files (.B2S) at the DCL command level . In the
BASIC compilation command, the (@) does not precede the file specification
and all activity occurs at DCL command level; the BASIC environment is not
entered .

/qualifier
The name of a qualifier that sets an environment default . The default remains
in effect until you either use the SET command to override the default or exit
from the environment .

Developing Programs in the BASIC Environment 1-1

Command Qualifier

/[NO]BOUND
/[NO]CHAIN
/[NO]CROSS-REFERENCE [_ [NO]KEYWORDS]
/[NO]DEBUG
/[NO]FLAG[= [NO]DECLINING]
/[NO]LINES
/[NO]LIST
/[NO]MACRO
/[NO]OBJECT
/SCALE = int-const
NARIANT = int-const
/[NO]WARNINGS

Default

/BOUND
See text .
/NOCROSS_REFERENCE
/NODEBUG
/FLAG=DECLINING
/LINES
/NOLIST
/NOMACRO
/OBJECT
/SCALE=O
NARIANT=O
/WARNINGS

See Chapter 2 for a description of each of these qualifiers .
When you specify the BASIC command, BASIC-PLUS-2 responds with an
identification line and the BASIC2 prompt . For example :
$ BASIC
PDP-11 BASIC-PLUS-2 V2 .7-00

BASIC2

Note

BP2 is the default name for the BASIC-PLUS-2 compiler. However,
your system manager may have chosen another name for the compiler
while installing BASIC-PLUS-2 . If you have trouble entering the
BASIC environment while using the BASIC command, see your system
manager for help .

Once you are in the BASIC environment, you interact directly with the
compiler. In this mode of operation, you can enter any of the following :

•

	

BASIC-PLUS-2 program lines
•

	

Immediate mode statements
•

	

Compiler commands and qualifiers
When you enter program statements, BASIC-PLUS-2 stores them in
ascending line number sequence as part of the current program in memory . If
you enter a program line with the same line number as an existing program
line, the new line replaces the old one .

1-2 Developing Programs in the BASIC Environment

When you create a program in the environment, the first line of the program
must have a line number. If you enter a subsequent program line without
a line number, you must precede it with a space or a tab . Inside the
environment, only those program lines that begin with line numbers can
start in the first character position on a line .
If a program line is too long for one text line, you can continue it by entering
an ampersand (&) and pressing Return. (Note that only spaces and tabs are
valid between the ampersand and the carriage return .)

See Section 1.7 for more information about immediate mode statements
and Section 1 .8 for more information about commands you can use in the
BASIC-PLUS-2 environment .

1 .2 Creating Programs
There are two ways to create a program you can use in the environment. You
can create the program interactively while inside the environment or you can
create the program using a text editor from DCL level .

1 .2.1 Creating a Program Interactively
To create a new program, enter the BASIC environment and specify the NEW
command with the file specification of the program you want to create . For
example :
Example
$ BASIC

PDP-11 BASIC-PLUS-2 V2 .7-00

BASIC2

NEW FIRSTTRY

In this example, the NEW command creates the program FIRSTRY.B2S .

If you do not specify a file specification with the NEW command,
BASIC-PLUS-2 assigns the name NONAME .B2S to the program. If you
supply a file name but do not specify a file type, BASIC-PLUS-2 assigns a file
type of B2S, by default .
Once you enter the NEW command, you can enter in your program . When you
finish the program, you can keep it for future use with the SAVE command .
The SAVE command writes the program to your current default directory .

Developing Programs in the BASIC Environment 1-3

The following environment session creates the program FIRSTTRYB2S
then saves it for future use :

Example
$ BASIC
PDP-11 BASIC-PLUS-2 V2 .7-00
BASIC2
NEW FIRSTTRY
BASIC2
10 PRINT "Please enter three numbers"

INPUT A, B, C
PRINT "Their average i " ; (A + B + C) / 3
END

SAVE

When you create a program in the environment, that program remains in
memory until you either use the OLD command to bring another program into
memory or until you exit from the environment . You can display the program
currently in memory by using the LIST command .

If you make an error in your program, you can either re-enter the program
line containing the error, or you can edit the program line by using the
EDIT command. If you specify the EDIT command with no parameters,
BASIC-PLUS-2 places you in editing mode where you can enter editing mode
commands. See the BASIC-PLUS-2 Reference Manual for a description of the
EDIT command as well as the BASIC-PLUS-2 editing mode commands .

1 .2 .2 Creating a Program Using a Text Editor
Instead of entering your program directly in the environment, you have the
option of creating your program with a text editor accessed from DCL . Once
you create the program, you can either enter the BASIC environment and
use the OLD command to read your program into memory, or compile your
program at DCL level . Chapter 2 discusses how to compile your programs at
DCL level .

1 .3 Running Programs

Once you create a program, you can enter the RUN or RUNNH command
to compile, link, and execute your program . (RUNNH suppresses header
information such as the name of the program and the time of day .) For
example :

1-4 Developing Programs in the BASIC Environment

and

BASIC2

OLD FIRSTTRY

BASIC2

RUN

The RUN command compiles, links, and executes the program you create .

1 .4 Indirect Command Files
Instead of entering the BASIC environment and entering commands
interactively, you have the option of placing your environment commands
in an indirect command file . An indirect command saves you time because
you can use it over and over again to execute the same sequence of commands
without having to enter them in .
To create an indirect command file, you use a text editor and enter each
command you want to execute on a separate line . Then, you exit from
the indirect command file and execute it from DCL level with the BASIC
command. For example :
$BASIC @MYIND

You must precede the file specification of an indirect command with an at
sign (@) . If you do not specify a file type with the indirect command file,
BASIC-PLUS-2 assumes a file type of CMD by default .

The following indirect command file, for example, creates the program
AVER.B2S, saves it, and then executes it :
NEW AVER
10 PRINT "Please enter three numbers"

INPUT A, B, C
PRINT "Their average is" ; (A + B + C) / 3
END

SAVE
RUN

When you execute an indirect command file, you remain at DCL level . You
cannot invoke an indirect command file from within another indirect command
file .

Developing Programs in the BASIC Environment 1-5

1 .5 Multiple-Unit Programs
You can execute multiple-unit programs while in the BASIC environment . To
execute multiple-unit programs, follow these steps :
1 . Compile all subprograms to generate object modules
2 . Use the OLD command to read the main program into memory

3 . Use the LOAD command to read the subprogram object modules into
memory

4 . Enter the RUN command
Figure 1-1 illustrates how to execute multiple-unit programs .

Figure 1-1 Running Multiple-Unit Programs

S

	

\~ ource
Program

(Subprogram
One) OLD

Source
OLD

10.

Program
(Subprogram

Two)

BASIC

CompiI

1-6 Developing Programs in the BASIC Environment

Object
Module

Compile

Object LOADD
Module

Source
Program
(Main

Program)

LOAD

OLD 0.

The following is an example of a program that contains multiple units :

BASIC RUN

NU-2180A-RA

Example
Main Program
10

	

REM This program calls SUBPROGRAM SB1
20

	

PRINT "NOW IN MAIN PROGRAM"
30

	

CALL SBI
40

	

PRINT "BACK IN MAIN PROGRAM"
50

	

END

Subprogram
10

	

SUB SBI
20

	

PRINT "NOW IN SUBPROGRAM"
30

	

SUBEND

To execute these programs in the BASIC environment, enter the following
commands :
OLD SB1
BASIC2

COMPILE
BASIC2

OLD MAIN
BASIC2

LOAD SB1
BASIC2

RUN

Output
NOW IN MAIN PROGRAM
NOW IN SUBPROGRAM
BACK IN MAIN PROGRAM
BASIC2

1 .6 Exiting from the Environment
When you exit from the BASIC-PLUS-2 environment, the program you are
currently working on is erased . Therefore, before you exit you should make
certain to save your program if you want to use it again . If you are entering
a new program, you can use the BASIC-PLUS-2 SAVE command . If you
are revising an old program, you should use the BASIC-PLUS-2 REPLACE
command.
To exit from the BASIC-PLUS-2 environment, specify the EXIT command .
For example :
EXIT

Developing Programs in the BASIC Environment 1-7

Once you exit from the BASIC-PLUS-2 environment, the operating system
displays the DCL dollar sign ($) prompt where you can enter DCL commands .

1 .7 Immediate Mode
You do not have to write a complete program in order to use BASIC-PLUS-2 .
Many statements are executable in immediate mode .

Immediate mode statements are BASIC statements that are executed
immediately after you press the Return key. Immediate mode statements
cannot be preceded by a line number, space, or tab and can be used only if you
are working directly in the environment .
In the following example, BASIC-PLUS-2 interprets the first line as a part
of a larger program because it begins with a line number. This line will not
execute until a RUN command is specified . The second line does not begin with
a line number, a space, or a tab . Therefore, BASIC-PLUS-2 treats the line as
an immediate mode statement and immediately displays the specified text .

Example
10 PRINT 'This is an executable BASIC--PLUS--2 statement'
PRINT 'This is an immediate mode statement'

Output
This is an immediate mode statement

BASIC2

The BASIC2 prompt indicates that BASIC-PLUS-2 is ready to receive
compiler commands, immediate mode statements, or new program lines .

You can precede each executable statement with a backslash (\) . You can also
have more than one BASIC-PLUS-2 statement on a line if you separate them
with a backslash ; however, programs with backslashes are often difficult to
read as seen in the following example :
Example
BASIC2

A = (54 .37 / 1 .25) \ B = (328 .15^2) \ PRINT (B / A)
2475 .69

BASIC-PLUS-2 compiles and executes each immediate mode statement as if it
were a self-contained program. For example :

1-8 Developing Programs in the BASIC Environment

Example
BASIC2
PRINT PI * 67 .3
211 .421

Each immediate mode line exists by itself, and any variables used by the
statements on that line are temporary . For example :
Example
BASIC2
A = 2^5 \ PRINT A
32

BASIC2

PRINT A
0

In this example, the second PRINT statement causes BASIC-PLUS-2 to
display a zero because the compiler treats A as a new variable, and initializes
it to zero .
You can use the IF, WHILE, UNTIL, UNLESS, and FOR statement modifiers
in immediate mode statements . The following example, for instance, uses the
FOR statement modifier to generate a table of square roots :
Example

Certain statements are invalid in immediate mode. In general, invalid
statements are statements that require the allocation of new storage, or
statements that make no sense in the context of a single line . If you try
to execute such a statement, BASIC-PLUS-2 signals the error Illegal in
immediate mode- , .

Developing Programs in the BASIC Environment 1-9

BASIC2

PRINT I, SQR (I) FOR I = 1 TO 10
1 1
2 1 .41421
3 1 .73205
4 2
5 2 .23607
6 2 .44949
7 2 .64575
8 2 .82843
9 3
10

BASIC2
3 .16228

1 .8 Environment Commands
Compiling is the process of translating a source program to an object module .
An object module is an intermediate step between source code and an
executable image . It contains information that the linker uses to create an
image .
You can compile, link, and execute your programs in the environment by
entering the RUN command . This greatly reduces the number of steps you
have to go through to develop BASIC-PLUS-2 programs . When you are
satisfied with a portion of code, you can simply run that program to examine
whether or not it functions as expected . If you use the COMPILE command
instead, you can eliminate all compile-time errors before you link and execute
the program .
BASIC-PLUS-2 has certain defaults that are in effect each time you enter
the BASIC environment . Unless you explicitly override these defaults, they
remain in effect until you leave the environment . You can see a listing of
these defaults by entering the SHOW command when in the environment . The
following example displays the standard BASIC environment defaults that are
in effect when you enter the environment :

BASIC2

1-10 Developing Programs in the BASIC Environment

DEFAULT DATA TYPE INFORMATION :
Data type : REAL
Real size : SINGLE
Integer size : WORD
Scale factor : 0

COMPILATION QUALIFIERS :
Object

NO Macro
Lines
Warnings

LISTING FILE INFORMATION :
NO Source
NO Cross Reference
NO Keywords

60 lines by 132 columns

BUILD QUALIFIERS :
NO Dump
NO Map
NO Cluster
NO I- and D-Space

NO Debug records
NO Syntax checking
Flag : Declining
Variant : 0

Task extend :
RMS ODL file :
BP2 Disk lib :

512
LB :[1,1]RMS11X
LB :[l,l]v270TS

RMS Resident lib : NONE
BP2 Resident lib : NONE

SHOW
PDP-11 BASIC-PLUS-2 V2 .7-00 using EIS with run support

ENVIRONMENT INFORMATION :
Current edit line :
NO Modules loaded

0
RMS FILE ORGANIZATION :

NO Index
NO Relative
NO Sequential
NO Virtual

NO Main module loaded

You can override any of these defaults with qualifiers to the COMPILE,
BUILD, or SET commands, or with the OPTION statement in your program .
You can also change the environment defaults you receive by creating an
initialization file . See Section 1 .9 for more information .

Table 1-1 lists the BASIC-PLUS-2 environment commands and defines their
function . The sections following the table describe each environment command
and provide an example of its use .

Table 1-1 Environment Commands

Command

	

Description

$ system-

	

Starts a subprocess to execute the specified DCL command .
command
APPEND

	

Merges the specified program with the program currently in memory .
BRLRES

	

Changes the default memory-resident library.
BUILD

	

Generates an overlay description file and a command file .
COMPILE

	

Generates an object module (file type OBJ) from a BASIC-PLUS-2
source program .

DELETE

	

Erases the specified line or lines from a BASIC-PLUS-2 source
program .

DSKLIB

	

Changes the default BASIC-PLUS-2 disk-resident library.
EDIT

	

Changes source text or calls a text editor.
EXIT

	

Returns to DCL command level .
EXTRACT

	

Extracts the specified program line or lines from a BASIC-PLUS-2
source program and deletes the rest .

HELP

	

Provides online help .
IDENTIFY

	

Causes BASIC-PLUS-2 to print an identification header on your
screen .

INQUIRE

	

Identical to the HELP command .
LIBRARY

	

Changes the default BASIC-PLUS-2 memory-resident library .

LIST

	

Displays the current source program on your screen .
LISTNH

	

Displays the current source program without header information .
LOAD

	

Loads an object module into memory .
LOCK

	

Specifies default values for environment command qualifiers (identical
to the SET command) .

(continued on next page)

Developing Programs in the BASIC Environment 1-11

Table 1-1 (Cont .) Environment Commands

Command

	

Description

NEW

	

Clears memory for the creation of a new program and assigns a new
program name .

ODLRMS

	

Changes the default RMS overlay description file (ODL) .
OLD

	

Reads a specified BASIC-PLUS-2 source program into memory .

RENAME

	

Changes the name of the program currently in memory .
REPLACE

	

Replaces a stored program with the program currently in memory .

RMSRES

	

Changes the default RMS memory-resident library.
RUN

	

Executes the program currently in memory, or a specified
BASIC-PLUS-2 source program . The program in memory can be :

A BASIC-PLUS-2 source program placed in memory with the OLD
command

One or more object modules placed in memory with the LOAD
command

A combination of the first two

RUNNH

	

Identical to RUN but does not display header information .

SAVE

	

Creates a copy of the current source program on a specified device .

SCALE

	

Controls accumulated round-off errors for numeric operations .

SCRATCH

	

Erases the current program and any loaded object modules .

SEQUENCE Generates line numbers for input text .
SET

	

Specifies default values for environment command qualifiers .

SHOW

	

Displays the current default environment qualifiers .

UNSAVE

	

Deletes a specified file .

See the BASIC-PLUS-2 Reference Manual for a complete description of all
BASIC-PLUS-2 environment commands .

1 .8.1 The $ System-Command
You can enter a DCL command while in the environment by preceding it
with a dollar sign ($) . BASIC-PLUS-2 passes the command to the system
for execution . On RSX systems, the program currently in memory does not
change . When you enter a system-command on RSTS/E systems, however, the
program currently in memory is deleted . Therefore, you should specify the
SAVE command before entering a system-command on RSTS/E systems .

1-12 Developing Programs in the BASIC Environment

1 .8.2 The APPEND Command
The APPEND command merges a BASIC-PLUS-2 source program with
the program currently in memory. The program in memory must be a
BASIC-PLUS-2 source program that has been placed in memory with the
OLD command and entered in the environment . The program must also
contain at least one line number .
If both programs contain a line with the same number, the appended program
line replaces the current program line .
If you enter APPEND without specifying a file name, BASIC-PLUS-2 prompts
with :
Append file name--

You should respond with a file name . If you respond by entering the Return
key, BASIC-PLUS-2 searches for a file called NONAME with the default file
type of B2S . If the compiler cannot find the file, it signals an error .

The APPEND command does not change the name of the program in memory .

1 .8.3 The BRLRES Command
The BRLRES command allows you to specify a memory-resident library to
be used when you link a program. When you use the BUILD command,
BASIC-PLUS-2 includes the specified library in the Task Builder command
file. Your system manager chooses the default library for the BRLRES
command during installation .
If you enter BRLRES without specifying an argument, BASIC-PLUS-2
prompts with :
File spec [NONE]--

You can either specify a memory-resident library, or press Return to take the
default, NONE. NONE specifies that no memory-resident library is to be used
when linking the program .

1 .8.4 The BUILD Command
The BUILD command generates a command (CMD) file and an overlay
description language (ODL) file for the Task Builder . The CMD file contains
instructions that enable the Task Builder to link your program module
or modules with libraries and other routines . The ODL file specifies how
segments of the linked program are overlaid when you run it . For example,
the following BUILD command creates the files MAIN .CMD and MAIN.ODL .
The Task Builder uses these files to control the creation of an executable task
image .

Developing Programs in the BASIC Environment 1-13

BUILD MAIN,SUB'I,SU2

The BUILD command has several command qualifiers . For example, the /IDS
qualifier causes the Task Builder to build the task in I- and D-Space and
the /RELATIVE qualifier causes the Task Builder to include the code needed
for relative file operations . For a complete description of BUILD command
qualifiers, see the BASIC-PLUS-2 Reference Manual .

1 .8.5 The COMPILE Command
When you compile a program in the BASIC environment, there are three levels
at which you can specify options for the compiler :

•

	

You can accept the defaults of the BASIC environment as options

•

	

You can specify options with qualifiers to the COMPILE or SET command

•

	

You can specify options in the source program with the OPTION statement
The COMPILE command creates an object module from a source program in
memory. You can control the compilation of your program with the COMPILE
command and its qualifiers . These qualifiers duplicate many of the qualifiers
available to the DCL command BASIC . You can abbreviate all COMPILE
qualifiers to four letters . For example, you can compile a program currently in
memory and specify the creation of a listing file :
COMPILE/LIST

The following two commands both specify that a listing file should be created .
Note that the SET command sets a particular default until you leave the
BASIC environment or until you specify a different default for that value,
whereas the qualifiers to the COMPILE command set the defaults only for that
particular compilation .
SET/LIST

COMPILE/LIST

If you do not specify any qualifiers with the SET command, BASIC-PLUS-2
resets the defaults to the values that were in effect when you entered the
BASIC environment . If you do specify qualifiers with the COMPILE command,
the BASIC environment default values remain the same, but your program is
compiled using the specified defaults .
See the BASIC-PLUS-2 Reference Manual for a complete list and description
of the COMPILE command qualifiers .

1-14 Developing Programs in the BASIC Environment

1 .8.6 The DELETE Command
The DELETE command removes a specified line or lines from the source
program currently in memory. If you separate line numbers with commas,
BASIC-PLUS-2 deletes only the specified program lines . If you separate line
numbers with a hyphen (-), BASIC-PLUS-2 deletes the specified program
lines and all program lines between them . For example :

DELETE 10

	

Removes line 10 from the program
DELETE 50, 100

	

Removes lines 50 and 100 from the program
DELETE 50, 100-190

	

Removes line 50 and lines 100 through 190 from the program
If you do not specify a line number, the DELETE command is ignored .

1 .8.7 The DSKLIB Command
The DSKLIB command lets you select a disk-resident object module library to
be used when you build your program . When you use the BUILD command,
BASIC-PLUS-2 includes the specified library in the Task Builder command
file .
If you do not supply a file specification or library name with the DSKLIB
command, BASIC-PLUS-2 prompts with :
File spec [default-lib]--

If you press Return in response to this prompt, BASIC-PLUS-2 uses the
default disk-resident library.

1 .8 .8 The EDIT Command
The EDIT command replaces text in the current program with text you
supply in the command. When you supply text as an argument to the
EDIT command, you are editing in line mode . If you enter EDIT with no
argument, BASIC-PLUS-2 enters editing mode where you can enter editing
mode commands . See the BASIC-PLUS-2 Reference Manual for a complete
description of all editing mode commands .
The following are examples of editing in line mode :
EDIT 100 /LEFT$/RIGHT$/

	

Replaces the first occurrence of LEFT$ with RIGHT$
on line 100 .

EDIT

	

Invokes the default editor and reads the current
program into the editor's buffer .

Developing Programs in the BASIC Environment 1-15

EDIT 2000

	

Lists line 2000 (line 2000 becomes the default EDIT
line) .

EDIT 30 /LEFT$/RIGHT$/,3

	

Starts the search on the third text line of program line
30 and replaces the first occurrence of LEFT$ with
RIGHT$.

EDIT 300/LEFT$//2 Removes the second occurrence of the string LEFT$
from line 300 . Note that you must specify delimiters
around the null replacement string. Otherwise, the
EDIT command would replace the first occurrence of
LEFT$ with 2 .

The following is an example of editing in editing mode :

EDIT

	

Substitutes an exclamation mark (!) comment field for a
SUBSTITUTE /REM/!/

	

REM statement and exits from editing mode .
EXIT

1 .8.9 The EXIT Command
The EXIT command clears memory and returns control to DCL command
level. If you modify a program and issue the EXIT command before you copy
it to disk with the SAVE or REPLACE command, BASIC-PLUS-2 signals
"Unsaved change has been made, Ctrl/Z or EXIT to exit ." This message warns
you that any changes will be lost if you do not save the program . You can then
store the program or reenter the EXIT command (or press Ctrl/Z) to exit from
BASIC-PLUS-2 .

1 .8.10 The EXTRACT Command
The EXTRACT command removes a specified line or lines from the source
program currently in memory and deletes the rest . If you separate line
numbers with commas, BASIC-PLUS-2 extracts only the specified program
lines. If you separate line numbers with a hyphen (-), BASIC-PLUS-2
extracts the specified program lines and all program lines between them . For
example :

EXTRACT 10

	

Extracts line 10 from the program
EXTRACT 50, 100

	

Extracts lines 50 and 100 from the program
EXTRACT 50, 100-190 Extracts line 50 and lines 100 through 190 from the program

If you do not specify a line number, the EXTRACT command is ignored .

1-16 Developing Programs in the BASIC Environment

1 .8.11 The HELP Command
The HELP command lets you display the contents of the BASIC-PLUS-2
HELP library on the terminal . Entering HELP causes the HELP facility to
display a long list of BASIC-PLUS-2 commands and language topics for which
there is help available. You are then prompted to name a command or topic
with the following prompt :
Topic?

To obtain help on the environment commands, you can enter COMMANDS
at the Topic , prompt. A list of commands is displayed on your terminal
followed by the prompt COMMANDS Subtopic? . When you enter a command
name in response to this prompt, the HELP facility displays the following :
•

	

An explanation of the command's purpose
•

	

An example of its use
•

	

A list of any further subtopics available
You can also display help text for BASIC-PLUS-2 errors . Help for
BASIC-PLUS-2 errors is grouped in three categories : run-time errors,
debugger errors, and error handling.

1 .8.12 The IDENTIFY Command
The IDENTIFY command prints a header containing the BASIC-PLUS-2
compiler name and version number. For example :
IDENTIFY

PDP-11 BASIC-PLUS-2 V2 .7-00

BASIC2

1 .8.13 The INQUIRE Command
The INQUIRE command is identical to the HELP command . See the HELP
command for more information .

1 .8.14 The LIBRARY Command
The LIBRARY command allows you to specify a memory-resident library to
be used when you link your program . When you use the BUILD command,
BASIC-PLUS-2 includes the specified library in the Task Builder command
file. Your system manager chooses the default library for the LIBRARY
command during installation .

Developing Programs in the BASIC Environment 1-17

If you do not supply an argument to the library command, BASIC-PLUS-2
prompts with :
File spec [default-lib]--

You can either supply a library name or the keyword NONE in response to
this prompt. NONE specifies that no library is to be used when linking the
program. If you press Return in response to the prompt, BASIC-PLUS-2 uses
the default memory-resident library.

1 .8.15 The LIST and LISTNH Commands
The LIST and LISTNH commands display a specified line or lines . If you enter
LIST or LISTNH without specifying line numbers, BASIC-PLUS-2 displays
a copy of the source program currently in memory, in ascending line number
order.
The LIST command prints a header displaying the program name and the
current time and date before displaying the specified lines . The LISTNH
command suppresses the header information and prints the specified lines
only. For example :
LIST 10

	

Displays header information, then displays line 10 .
LISTNH 50, 100

	

Displays lines 50 and 100 .
LIST 50, 90, 100-190 Displays header information, then displays lines 50, 90, and

100 through 190 .

1 .8.16 The LOAD Command
The LOAD command makes an object module available for execution with the
RUN command. You can load only object files created by BASIC-PLUS-2 .
The LOAD command accepts multiple device, directory, and file specifications .
The LOAD command deletes all previously loaded object files ; therefore, to load
several files at the same time, you must separate the file specifications with
plus signs . Multiple file specifications separated with commas cause each file
to be loaded separately, thereby deleting the previously loaded file .
LOAD OLD1 + OLD2 + OLD3

BASIC2

RUN

The above example loads the files OLDI.OBJ, OLD2.OBJ, and OLD3.OBJ
for execution . These object files are not linked with the current program or
executed until you issue the RUN command . Therefore, run-time errors in the
loaded modules are not detected until you execute the program .

1-18 Developing Programs in the BASIC Environment

Each device and directory specification applies to all following file specifications
until you specify a new directory or device. For example :
LOAD DU1 :[SMITH]PROG3+[JONES]PROG4+DU2 :PROG5

This command loads three object files :
•

	

PROG3 from the directory SMITH on the device DU1 :
•

	

PROG4 from the directory JONES on DU1 :
•

	

PROG5 from the directory JONES on DU2 :

1 .8 .17 The LOCK Command
The LOCK command changes default values for COMPILE command qualifiers .
It is equivalent to the SET command . The following command specifies that
all subsequent compilations use double-precision floating-point numbers as the
default. You can use any valid COMPILE command qualifier as an argument
to LOCK .
LOCK /DOUBLE

BASIC2

1 .8.18 The NEW Command
The NEW command clears the memory and assigns a name to a program to
be entered. The following command assigns the name PROG1 to the program .
You can then enter program lines .
NEW PROG1

If you do not specify a name, BASIC-PLUS-2 issues the following prompt :
New file name--

You should respond with a name . If you press the Return key in response to
the prompt, BASIC-PLUS-2 assigns the name NONAME .

1 .8.19 The ODLRMS Command
The ODLRMS command allows you to select an overlay description (ODL) file
to describe the RMS overlay structure to be used when you link your program .
When you use the BUILD command, BASIC-PLUS-2 includes the specified
ODL file in the Task Builder command file . Your system manager chooses the
default ODL file during installation .

Developing Programs in the BASIC Environment 1-19

1 .8.20 The OLD Command
The OLD command brings a previously created BASIC-PLUS-2 source file into
memory. The following command reads PROGI .B2S into memory.
OLD PROG1

If you do not specify a file name, BASIC-PLUS-2 issues the prompt :
Old file name--

You should respond with a file name . If you do not specify a file type,
BASIC-PLUS-2 reads a file with the specified file name and the default file
type. If you press the Return key in response to the prompt, BASIC-PLUS-2
searches for a file with the default file name and default file type :
NONAME.B2S .

1 .8.21 The RENAME Command
The RENAME command assigns a new name to the program currently in
memory. For example, the following command sequence brings a program
named PROG1 into memory and changes its name and directory :
OLD [OKAY PROG1

BA SIC2

RENAME [KAY]PROG2

The name of the program is changed to PROG2 . The disk file from which the
file was read remains unchanged .

1 .8.22 The REPLACE Command
The REPLACE command writes the program in memory to a specified device .
If you do not specify a device, the program is written to the default disk with
the file name of the program currently in memory . If a file of the same name
already exists, BASIC-PLUS-2 supersedes the old version . If you specify a
file name with the REPLACE command, the current program is stored on disk
under the file name you specify .

1 .8.23 The RUN and RUNNH Commands
The RUN command executes a program . This program can be any one of the
following :
•

	

The current program
•

	

One or more object modules placed in memory with the LOAD command

1-20 Developing Programs in the BASIC Environment

• A combination of the first two
•

	

A specified BASIC-PLUS-2 source program
If you do not supply an alternative file specification, BASIC-PLUS-2 executes
the program in memory .
BASIC2

OLD
Old file name--PROGI
BASIC2

RUN

The RUN command compiles, links, and executes PROG1 . It prints a header
displaying the program name and the current date and time . To execute a
program without displaying this header, enter RUNNH .

The RUN command does not create an object module file or a list file . It uses
whatever qualifiers have been set. The following qualifiers are always in effect
for the RUN and RUNNH commands . For a complete list of RUN command
qualifiers, see the BASIC-PLUS-2 Reference Manual .

•

	

/NOCROSS
•

	

/NODEBUG
•

	

/NOLIST
•

	

/NOMACHINE
•

	

/NOOBJECT
The RUN command can invoke only BASIC-PLUS-2 procedures .

1 .8.24 The SAVE Command
The SAVE command copies a BASIC-PLUS-2 source program from memory to
a file . You can specify a storage device, a file name, and a file type in the SAVE
file-spec. For example, if you enter the following program, a SAVE command
causes BASIC-PLUS-2 to arrange the program in ascending line number order
and copy it to a file on DU1 : in the current default directory with a file name
of TEST and the default file type B2S :

Example
30 PRINT "THIS IS A TEST"
10 REM THIS IS A TEST
SAVE DU1 :TEST .B2S

Developing Programs in the BASIC Environment 1-21

BASIC-PLUS-2 saves the program on DU1 : in the current default directory
with a file name of TEST and a file type of B2S . If the program in memory has
no name and you issue the SAVE command with no argument, BASIC-PLUS-2
copies the program to a file named NONAME with the default file type in your
current default device and directory. Note that if you perform a RENAME
operation, before you issue the SAVE command followed by no argument,
BASIC-PLUS-2 still copies the program to the current default directory .

1 .8.25 The SCALE Command
The SCALE command can overcome accumulated round-off errors by
multiplying double-precision floating-point values by 10 raised to the specified
scale factor before storing them. In the following example, the value of scaled
arithmetic is two. When a program is compiled, all double-precision, floating-
point numbers will either be multiplied by 100 or divided by 100, where
required :
SCALE 2
Scale factor has been set to 2

BASIC2

1 .8 .26 The SCRATCH Command
The SCRATCH command clears memory by doing one of the following :

•

	

Resetting the program name to NONAME
•

	

Removing any object files previously loaded with the LOAD command

•

	

Removing the source file currently in memory

1 .8.27 The SEQUENCE Command
The SEQUENCE command automatically generates line numbers for input
text. After a SEQUENCE command, BASIC-PLUS-2 prompts with a line
number and prompts again after each source line you enter . If you press Ctrl/Z
(either in response to the line number prompt or at the end of a program line),
BASIC-PLUS-2 stops prompting and you can enter source text in the normal
way. If you specify a starting line number that already contains a statement,
BASIC-PLUS-2 signals "Attempt to sequence over existing statement" and
returns to normal input mode .

1-22 Developing Programs in the BASIC Environment

1 .8.28 The SET Command
The SET command specifies defaults for compiler command qualifiers . For
example :
SET /SINGLE

BASIC2

This command makes /SINGLE the default for the COMPILE or RUN
command, thereby making SINGLE the default data type for all untyped
values. Entering SET with no qualifier resets the defaults to their state when
you entered into the BASIC environment .
For a full list of SET command qualifiers, see the BASIC-PLUS-2 Reference
Manual .

1 .8.29 The SHOW Command
The SHOW command displays the current default qualifiers and user libraries .

BASIC2

The ENVIRONMENT INFORMATION section gives you the following
information :
•

	

No edit line is currently being edited .

•

	

No object modules are currently loaded in the environment .

Developing Programs in the BASIC Environment 1-23

SHOW
PDP-11 BASIC-PLUS-2 V2 .7-00 using EIS with run support

ENVIRONMENT INFORMATION :

	

RMS FILE ORGANIZATION :
Current edit line : 0

	

NO Index
NO Modules loaded

	

NO Relative
NO Main module loaded

	

NO Sequential
NO Virtual

DEFAULT DATA TYPE INFORMATION :

	

LISTING FILE INFORMATION :
Data type : REAL

	

NO Source
Real size : SINGLE

	

NO Cross Reference
Integer size : WORD

	

NO Keywords
Scale factor : 0

	

60 lines by 132 columns

COMPILATION QUALIFIERS :

	

BUILD QUALIFIERS :
Object

	

NO Dump
NO Macro

	

NO Map
Lines

	

NO Cluster
Warnings

	

NO I- and D-Space
NO Debug records

	

Task extend : 512
NO Syntax checking

	

RMS ODL file :
Flag : Declining

	

BP2 Disk lib :
LB :[1,1]RMS11X
LB :[1,1]v270TS

Variant : 0

	

RMS Resident lib : NONE
BP2 Resident lib : NONE

• No main program module is currently loaded in the environment.

The DEFAULT DATA TYPE INFORMATION display gives you the following
information :
•

	

The default data type is REAL .
•

	

The default size for floating-point numbers is SINGLE and the default size
for integers is WORD .

•

	

There is no scale factor in effect .
The COMPILATION QUALIFIERS section gives you the following information :

•

	

An object file is produced .
•

	

No macro source code file is generated .
•

	

Line number information is included in the object file .

•

	

Warning or informational error messages are displayed .

•

	

No debug records are included in the object module . This means you
cannot access program symbols with the BASIC-PLUS-2 debugger .

•

	

Line-by-line syntax checking is disabled .

•

	

Declining features are reported .

•

	

The VARIANT value is zero .
The RMS FILE ORGANIZATION display gives you the following information :

•

	

No support is provided for RMS indexed file operations .

•

	

No support is provided for RMS relative file operations .

•

	

No support is provided for RMS sequential file operations .

•

	

No support is provided for RMS virtual file operations .

The LISTING FILE INFORMATION display tells you which parts of the
program listing are included if you create a compilation listing :

•

	

No source program is listed .

•

	

No cross-reference information is listed .
•

	

No qualifiers are in effect when the program is compiled .

•

	

The page size of the listing file is 60 lines in length and 132 columns in
width .

1-24 Developing Programs in the BASIC Environment

The BUILD QUALIFIERS section gives you the following information :

•

	

No dump file is generated if your program aborts .

•

	

No allocation map file is generated .
•

	

The Task Builder will not cluster the default BASIC-PLUS-2 and RMS-11
resident libraries .

•

	

The Task Builder will not use I- and D-Space .

•

	

The Task Builder will use the RMS ODL file LB:[1,1]RMS11X to overlay
segments of the RMS-11 object module library.

•

	

The Task Builder will use the disk-resident object-module library,
LB:[1,1]v27OTS, to link your program .

•

	

No default BASIC-PLUS-2 memory-resident library is in effect .

•

	

No default RMS-11 memory-resident library is in effect .
You can change these defaults with qualifiers to the COMPILE, SET,
or BUILD commands. See the BASIC-PLUS-2 Reference Manual for a
complete description of qualifiers to these commands . You can also change
the environment defaults you receive by creating an initialization file . See
Section 1 .9 for information on creating an initialization file .

1 .8.30 The UNSAVE Command
The UNSAVE command deletes the specified version of a file from disk . If you
do not specify a file, UNSAVE deletes the disk file associated with the program
currently in memory. If you do not specify a version number, UNSAVE deletes
the newest version . For example :
OLD PROG1

BASIC2

UNSAVE

BASIC2

The OLD command copies a program named PROG1 .B2S from disk to memory.
The UNSAVE command deletes the program from disk .

You can delete a BASIC-PLUS-2 source program other than the one in
memory by specifying the program name . The following command deletes the
most recent version of the file PROG2 .B2S .
UNSAVE PROG2

Developing Programs in the BASIC Environment 1-25

To delete a file other than a source program, specify the file name and file
type . The following command deletes the newest version of the object module
generated from the compilation of PROG2 .
UNSAVE PROG2 .OBJ

1 .9 Setting Environment Defaults with an Initialization File
Using environment commands and qualifiers is useful when the new defaults
affect only a few compilations . However, if you use a particular set of defaults
frequently, changing the defaults each time you enter the BASIC-PLUS-2
environment can be tedious . You can have certain defaults take effect
automatically whenever you enter the BASIC-PLUS-2 environment by
creating an initialization file .
Whenever you invoke BASIC-PLUS-2, it searches for two initialization files
named BP2INI.BP2. BASIC-PLUS-2 searches for the first file in the system
account, LB :, and then searches in your current default directory for the second
file .
The system manager sets defaults for all users on the system by creating an
initialization file in the system account . These defaults are displayed when you
use the SHOW command. Each time the BASIC-PLUS-2 compiler is invoked,
it executes the commands in the system BP2INI .BP2 file .
You can override the defaults set in the system initialization file by creating
your own initialization file in your default account . Like the system
initialization file, it must be named BP2INI .???, where ??? is the name
used to invoke BASIC-PLUS-2, as defined at installation time . The default
compiler name is BP2 .
To create an initialization file, you use a text editor . The file can contain any
of a subset of BASIC-PLUS-2 environment commands . Each command must
appear on a separate line . Comments are not allowed ; however, you can use
blank lines to separate the commands for readability.
The following is an example of a user initialization file :
SET /LIST
SET /DOUBLE/LONG
SCALE 4
SHOW

1-26 Developing Programs in the BASIC Environment

When this initialization file is executed, the compiler uses the following
defaults :

1 . The COMPILE command produces a source listing .

2 . The default size for all floating-point data is DOUBLE . The default size for
all integers is LONG.

3 . The scale factor is 4 .

4 . The compiler displays a list of the new default environment settings .

You cannot tell that an initialization file is executing unless an error occurs
in the file . Therefore, you should include the SHOW command to display the
present defaults. The SHOW command should be the last command in the file
so that the most recently set defaults are displayed .

Table 1-2 lists the BASIC-PLUS-2 environment commands that you can use
in an initialization file .

Table 1-2 Commands Allowed in an Initialization File

Command

	

Function

BRLRES

	

Specifies the default BASIC-PLUS-2 memory-resident library
DSKLIB

	

Specifies the default BASIC-PLUS-2 object module library
LIBRARY

	

Specifies the default BASIC-PLUS-2 memory-resident library
LOCK

	

Sets qualifiers to the COMPILE or BUILD command
ODLRMS

	

Specifies the default RMS ODL file
RMSRES

	

Specifies the default RMS memory-resident library
SCALE

	

Sets the scale factor
SET

	

Sets qualifiers to the COMPILE or BUILD command
SHOW

	

Displays the current defaults

Note that if you use environment commands that specify a default library
(such as BRLRES) in an initialization file, you must remember to supply a file
specification for the library. If you do not specify a library file specification
with the command, BASIC-PLUS-2 signals the error "No file specified for
command in initialization file."

Developing Programs in the BASIC Environment 1-27

Developing Programs at DCL Command
Level

The process of developing a BASIC-PLUS-2 program involves four steps :
creating, compiling, linking, and running . You can accomplish each of these
steps using DCL commands . This chapter describes how to create, compile,
link, and run a BASIC-PLUS-2 program .

2.1 Using EDT to Create a BASIC-PLUS-2 Program
PDP-11 EDT is an interactive general-purpose text editor that offers three
editing modes : keypad, nokeypad, and line . Both keypad and nokeypad modes
are screen editors . Keypad mode uses the numeric keypad that appears to
the right of your main keyboard . With nokeypad mode, you enter commands
on a command line, which EDT processes when you press Return. Line mode
focuses on the line as the basic unit of text . The appearance of a line mode
asterisk prompt (*) indicates that you can enter a line mode command . When
you begin your editing session, editing in line mode is the default . Unlike line
mode, keypad mode and nokeypad mode continuously display the contents of
the file on your screen .
The following command line invokes the EDT editor and creates the file,
PROGI.B2S .
S EDIT/EDT PROGI .B2S

To change from line mode to keypad mode, enter the CHANGE command at
the asterisk prompt. To return to line mode from keypad mode, press Ctrl/Z .
To change from line mode to nokeypad mode, enter the SET NOKEYPAD
command and then enter the CHANGE command .
If you are in the middle of an editing session and your system fails, you
can recover your edits by reentering the EDIT command followed by the
/RECOVER qualifier. EDT recreates your last editing session on your screen
up to the point where it was interrupted . It uses the contents of a journal file
that is maintained during the editing session .

2

Developing Programs at DCL Command Level 2-1

EDT provides an online help facility that you can access during an editing
session. In line mode, you can enter the HELP command . EDT displays
general information on EDT as well as detailed information on both line mode
editing and nokeypad mode editing. In keypad mode, you can press the HELP
key or the PF2 key. EDT displays a keypad diagram on your terminal screen,
and a list of keypad editing keys . For help on a specific keypad function, press
the key you want help on .
For more information on the EDT editor, see the EDT Editor Manual .

2.2 Compiling a BASIC-PLUS-2 Program
The primary functions of the BASIC-PLUS-2 compiler are as follows :

•

	

Detect errors in your source program
•

	

Generate any appropriate error messages
•

	

Generate machine language instructions from the source statements

•

	

Group these language instructions into an object module for the linker
In the generated object module, the BASIC-PLUS-2 language elements are
replaced by thread names . Thread names point to segments or threads of
code stored in the BASIC-PLUS-2 libraries . These threads perform the
tasks associated with the BASIC-PLUS-2 language elements. The object
module does not contain executable code but rather thread names pointing to
executable code . When you link your BASIC-PLUS-2 program, you invoke the
Task Builder, which replaces each thread name in the object module with the
executable code it points to .
If you compile a program that contains an error, the compiler signals a
compile-time error message. See the BASIC-PLUS-2 Reference Manual for a
list of the BASIC-PLUS-2 compile-time errors and the user action required to
correct them.
See the BASIC-PLUS-2 Reference Manual for a list of the Object Time System
(OTS) routines and their corresponding thread names . See Chapter 18 for
more information about BASIC-PLUS-2 libraries .
To invoke the BASIC-PLUS-2 compiler, you use the DCL command BASIC .
The following sections describe the BASIC command and BASIC command
qualifiers .

2-2 Developing Programs at DCL Command Level

2.2.1 The BASIC Command
To compile your source program at DCL level, use the BASIC command . The
BASIC command has the following format :

BASIC [/global-qualifier]	{file-spec [/local-qualifier] . . .], . . .

/global-qualifier
Names a qualifier, thereby indicating a specific action to be performed by the
compiler on every input source file specified in the command . Global qualifiers
can be overridden by local qualifiers of the same type .

/local-qualifier
Names a qualifier, thereby indicating a specific action to be performed by the
compiler on the one input source file to which that qualifier has been appended .
Local qualifiers can override global qualifiers of the same type .

file-spec
Specifies an input source file containing a program or module to be compiled .
The BASIC-PLUS-2 compiler assumes the file to be of the default file type,
.B2S, if no file type is included in the file specification .

You can specify any number of source files for compilation as long as you do
not exceed maximum command length . On RSX, the command line is limited
to 200 characters. On RSTS/E, the command line limit is 127 characters .

If you enter the BASIC command with no parameters, you enter the BASIC
environment. For more information on the BASIC environment, see Chapter 1 .

2.2.2 BASIC Command Qualifiers
The following is a list of the BASIC command qualifiers and their defaults . A
description of each qualifier follows the list .

Command Qualifiers
/[NO]BOUND
/[NO]BUILD
/[NO]CHAIN
/[NO]CROSS_REFERENCE [_ [NO]KEYWORDS I
/[NO]DEBUG
/[NO]FLAG [_ [NO]DECLINING]
/[NO]LINES
/[NO]LIST [= file-spec]
/[NO]MACRO [= file-spec]
/[NO]OBJECT [= file-spec]
/SCALE = int-const
/USING = file-spec

Defaults
/BOUND
/NOBUILD
See text .
/NOCROSS REFERENCE
/NODEBUG
/FLAG=DECLINING
/LINES
/NOLIST
/NOMACRO
/OBJECT
/SCALE=O
See text .

Developing Programs at DCL Command Level 2-3

NARIANT = int-const

	

NARIANT=O
/[NO]WARNINGS

	

/WARNINGS

Command Qualifiers

/[NO]BOUND
The /NOBOUND qualifier eliminates the overhead of checking array
boundaries when referencing memory-resident arrays of one or two dimensions .
This can improve run time performance, but it should be used only after the
user is confident that the array handling activity of the program is sound .
Specifying or defaulting the /BOUND qualifier results in full array boundary
checking.

CAUTION

When you specify /NOBOUND, the compiler generates array threads
that omit boundary checking . If you incorrectly index beyond array
limits, the OTS does not trap your errors. The consequences of such
misuse are unpredictable. The user is responsible for ensuring the
array handling integrity of the program before taking advantage of the
/NOBOUNDS compilation option .

/[NO]BUILD
The BUILD qualifier causes a command (CMD) file and an overlay description
language (ODL) file to be generated. The CMD file contains instructions that
enable the Task Builder to link your program module or modules with libraries
and other routines. The ODL file specifies how program segments should
be organized in memory during program execution . Normally, you need to
generate these files only once for a program . The default is /NOBUILD .

/[NO]CHAIN
The /CHAIN qualifer can be used on RSTS/E systems only . The /CHAIN
qualifier enables other programs to CHAIN into the program using the LINE
clause of the CHAIN statement . If the program has more than 200 line
numbers, the /NOCHAIN qualifier reduces the memory needs of the output
program by disabling storage of line numbers in memory . You cannot chain
from one DECNET node to another. The default is determined at installation .

/[NO]CROSS-REFERENCE [=[NO]KEYWORDS]
If you use the /CROSS REFERENCE qualifier with the /LIST qual-
ifier when you compile your program, the BASIC-PLUS-2 compiler
includes cross-reference information in the program listing file . If you
specify /CROSS REFERENCE=KEYWORDS, BASIC-PLUS-2 also cross-
references BASIC-PLUS-2 keywords used in the program . If you specify

2-4 Developing Programs at DCL Command Level

/NOCROSS REFERENCE, BASIC-PLUS-2 does not include a cross reference
section in the compiler listing . The default is /NOCROSS REFERENCE .

/[NO]DEBUG
The /DEBUG qualifier appends information on symbolic references and line
numbers to the object file . This information is used by the BASIC-PLUS-2
debugger to debug your program . You must specify the /LINES qualifier when
you specify the /DEBUG qualifier on the COMPILE command ; otherwise,
BASIC-PLUS-2 signals an error .
When you specify /DEBUG, control is passed to the debugger when the
program is executed in the BASIC-PLUS-2 environment . If you specify
/NODEBUG, information on program symbols and line numbers is not included
in the object file and control is not passed to the debugger when the program
executes. The default is /NODEBUG.

See Chapter 3 for information on the BASIC-PLUS-2 debugger .

/[NO]FLAG [= [NO]DECLINING]
The /FLAG qualifier causes BASIC-PLUS-2 to flag program elements that are
not recommended for new program development . For example, if you specify
the DECLINING clause, BASIC-PLUS-2 flags the following source code as
declining :
•

	

CVT$$ (use EDIT$)
•

	

CVT$%, CVT$F, CVT%$, CVTF$, AND SWAP% (use multiple MAP
statements)

•

	

DEF* functions (use DEF functions)
•

	

FIELD statements (use MAP DYNAMIC and REMAP)

•

	

GOTO line-num% (do not use the integer suffix with a line number)
The default is /FLAG=DECLINING .

/[NO]LINES
The /LINES qualifier includes line number information in object modules .
If you specify /NOLINES, BASIC-PLUS-2 does not include line number
information in object modules . If you specify /NOLINES in a program
containing the run-time ERL function, BASIC-PLUS-2 issues a warning
that the /NOLINES qualifier has been overridden . The default is /LINES .

Developing Programs at DCL Command Level 2-5

/[NO]LIST [= file-spec]
The /LIST qualifier causes BASIC-PLUS-2 to produce a compiler listing file .
The name of the listing file is the name you specify or, if you do not supply a
file specification, is the name of the program being compiled . The listing file
has a default file type of LST. If you specify /NOLIST, BASIC-PLUS-2 does not
generate a compiler listing . /NOLIST is the default .

/[NO]MACRO [= file-spec]
The /MACRO qualifier converts the program into MACRO-11 source code and
saves it in a file you specify. If you do not supply a file specification, the macro
source code is placed in a file with the same name as the program and a file
type of MAC . A MACRO-11 file can be assembled . If you specify /NOMACRO, a
MACRO-11 source code file is not generated . You cannot specify the /OBJECT
qualifier with the /MACRO qualifier. The default is /NOMACRO .

/[NO]OBJECT [= file-spec]
The /OBJECT qualifier generates an object module with the file specification
you specify. If you do not supply a file specification, the object file has the
same name as the program and a file type of OBJ. The /NOOBJECT qualifier
allows you to check your program for errors without creating an object file .
If your program contains one or more fatal errors, an object module is not
generated. You cannot specify the /MACRO qualifier with the /OBJECT
qualifier. /OBJECT is the default .

/SCALE = int-const
The /SCALE qualifier allows control of accumulated round-off errors when
double precision numbers (values typed DOUBLE) are used . Numbers are
stored as multiples of 10 by setting int-const (the scale factor) from 0 through
6. A scale factor larger than six causes BASIC-PLUS-2 to signal the error
message "Scale factor out of range-ignored ." /SCALE=O is the default .

/USING = file-spec
The /USING qualifier can be used on RSX systems only . The file-spec specifies
the task name assigned to the BASIC-PLUS-2 compiler, if a name other than
BP2 was chosen for the compiler during installation. If you do not specify the
/USING qualifier, the default compiler name used is BP2 .

NARIANT = int-const
The /VARIANT qualifier establishes int-const as a value to be used in compiler
directives . The variant value can be referenced in a lexical expression with the
lexical function, %VARIANT. Int-const always has a data type of WORD . The
default is /VARIANT=O .

2-6 Developing Programs at DCL Command Level

/[NO]WARNINGS
The /WARNINGS qualifier causes BASIC-PLUS-2 to display warning
messages during program compilation . The /NOWARNINGS qualifier causes
BASIC-PLUS-2 to disable warning messages during program compilation .
The default is /WARNINGS .

2.2.3 Compiler Listings
A compiler listing provides information that can help you debug your
BASIC-PLUS-2 program. To generate a listing file, specify the /LIST qualifier
when you compile your BASIC-PLUS-2 program interactively. For example :
$ BASIC/LIST MAIN .B2S

If the program is compiled as a batch job, the listing file is created by default ;
specify the /NOLIST qualifier to suppress creation of the listing file . By default,
the name of the listing file is the name of the source program followed by a
file type of LST. You can include a file specification with the /LIST qualifier to
override this default .
The following sections contain examples of a listing file generated by the
following command :
$ BASIC/BUILD/LIST/CROSS REFERENCE Lister .B2S

The numbered explanations in each section correspond to the highlighted
numbers in each example .

2.2.3.1 Source Program Listing
The source program section of the compiler listing contains the source code
plus listing line numbers generated by the compiler.

Developing Programs at DCL Command Level 2-7

Explanation :

•

	

This is the listing header.
It contains
•

	

The name of the program module
•

	

Text specified in the %TITLE directive
•

	

The date and time of the compilation
•

	

Text specified in the %IDENT directive
•

	

Text specified in the %SBTTL directive
•

	

The file specification of the source file
•

	

These are statement numbers .

2-8 Developing Programs at DCL Command Level

0 LISTER Listing Tester

	

21-Feb-91 06 :48 PM
Test

	

SY:LISTERV2 .7

© 00001 10

	

%TITLE "Listing Tester"
00001 %SBTTL "Test"
00001 !This program only shows the format of a listing
00001 !file . It does no useful work .
00001 %IDENT "V2 .7"
00001 %INCLUDE "MAPS .DEF"

© I1 00001 !MAP definition file
Il 00001 MAP (SHARED)

	

STRING A = 16, &
11 00001 LONG B,

	

&
11 00001 DOUBLE C,

	

&
11 00001 BYTE D

00002 DECLARE INTEGER INDEX
00003 DECLARE LONG CONSTANT TRUE = -1
00004 DECLARE SINGLE Q(5)
00004 %IF %VARIANT = 2
00004 %THEN

Q F100004 DECLARE DOUBLE Z(10)
00004 %END %IF
00005 First-loop :
00005 FOR INDEX = 0 TO 5
00006 PRINT Q(INDEX)
00007 NEXT INDEX
00008 Second-loop :
00008 WHILE TRUE
00009 INDEX = INDEX + 1
00010 EXIT Second-loop IF INDEX =>5
00011 NEXT
00001 32767 END

This lists the number of the last statement on each line of text . BASIC
uses these line and statement numbers when reporting compile-time
errors. Also, these numbers help you set breakpoints on a multi-statement
line when using the debugger.

•

	

This is %INCLUDE file information .
The I tells you that this code was extracted from a %INCLUDE file . The
number following the I tells you the depth of nested %INCLUDE directives .
Because this %INCLUDE directive occurs in the source program, the
number is 1. If the %INCLUDE file itself contained a %INCLUDE
directive, the code extracted from that file would be numbered 2, and
so on .

•

	

This is a true-false flag for %IF-%THEN-%ELSE-%END-%IF directives .
Lines marked with T are compiled . Lines marked with F are not compiled .

2.2.3.2 Cross-Reference Listing
If you specified the /CROSS REFERENCE qualifier, your listing includes a
section displaying a list of the names of every identifier, both predeclared and
user-declared, and every label to which the source code refers .

LISTER

	

Listing Tester

	

21-Feb-91 06 :48 PM
V2 .7

	

Test

	

SY:LISTER
© User Identifier Cross Reference

Symbol

		

Datatype Storage Name Type
--

Developing Programs at DCL Command Level 2-9

--
A=16 Sta . Str . Local Variable Map

10 .1#
B

10 .1#
Long Local Variable Map

C
10 .1#

Double Local Variable Map

D
10 .1#

Byte Local Variable Map

-INDEX Word Local Variable
10 .24 10 .5 10 .6 10 .7
10 .9@ 10 .9 10 .10

Q () Single Local Array
10 .4# 10 .6

TRUE Long Local Constant
10 .3# 10 .8

Defining reference
@ Destructive reference

	

!
! P Parameter reference
! R Redefining reference

	

!

Explanation :

•

	

This is the cross-reference listing for variables and named constants . This
section lists

•

	

All variable names

•

	

The line number and statement at which variable names are referenced

•

	

The data type of variable names

•

	

Whether the storage for variable names is external or local to this
program module

•

	

The type of PSECT containing variable names (if any)
The symbols in the box at the top of this section are described as follows :

Defining reference

	

Indicates a statement that defines a symbol .
@ Destructive reference

	

Indicates a statement that modifies the value of
a symbol .

P Parameter reference

	

Indicates a symbol that is passed as a
parameter to a routine ; therefore, it cannot
be determined if it is a destructive reference .
This symbol may or may not be modified in the
subroutine .

R Redefining reference

	

Indicates a symbol that is redimensioned or
redefined by a statement .

Explanation :

•

	

This is the cross-reference listing for mapped variables . This section lists

•

	

All variable names

•

	

The line number and statement number at which variable names are
referenced

•

	

The data type of variable names

2-10 Developing Programs at DCL Command Level

0 MAP Definition Cross Reference
Symbol Datatype Storage Name Type
SHARED Map
A=16 Sta . Str . Local Variable Map

10 . l#
B Long Local Variable Map

10 . l#
C Double Local Variable map

10 .1#
D Byte Local Variable Map

10 .1#

Developing Programs at DCL Command Level 2-11

•

	

Whether the storage for variable
program module

•

	

The type of PSECT containing variable

or local to thenames is external

names (if any)
LISTER

	

Listing Tester
V2 .7

	

Test0 Label Cross Reference
Symbol References

21-Feb-91 06 :48 PM
SY :LISTER

FIRST-LOOP
10 .5#

SECOND-LOOP
10 .8#

	

10 .10

Explanation:

0 This is the label cross-reference listing for labels .
This tells you the label names and the line number and statement at which
they are referenced .

2.2.3.3 Qualifier Summary
The compilation summary lists the qualifiers used with the BASIC command
and the compilation statistics .

LISTER
V2 .7

21-Feb-91 06 :48 PM
SY :LISTER

C)PDP-11 BASIC-PLUS-2 V2 .7-00 using EIS with run support

ENVIRONMENT INFORMATION :
Current edit line : 0
NO Modules loaded
NO Main module loaded

RMS FILE ORGANIZATION :
NO Index
NO Relative
NO Sequential
NO Virtual

DEFAULT DATA TYPE INFORMATION :
Data type : REAL
Real size : SINGLE

LISTING FILE INFORMATION :
Source
Cross Reference

Integer size : WORD NO Keywords
Scale factor : 0 60 lines by 80 columns

COMPILATION QUALIFIERS :
Object

NO Macro
Lines
Warnings

BUILD QUALIFIERS :
NO Dump
NO Map
NO Cluster
NO I- and D-Space

NO Debug records
NO Syntax checking
Flag : Declining
Variant : 0

Task extend : 512
LB :[1,1]RMS11X
LB :[l,l]V27OTS

RMS
BP2
BP2
RMS

ODL file :
Disk lib :
Resident lib : NONE
Resident lib : NONE

This section lists the compiler defaults in effect when the program was
compiled .

2.3 Linking a BASIC-PLUS-2 Program
You use the Task Builder to link your program . The Task Builder generates a
task image file which you can run . The executable task image has a default
file type of TSK .
Before linking a program, you need to generate a command (CMD) file and an
overlay descriptor language (ODL) file for the program . You can generate the
CMD and ODL files by using the BUILD qualifier with the BASIC command
when you compile the program . You can also generate the CMD and ODL files
by using the BUILD command in the BASIC-PLUS-2 environment .

The Task Builder uses the CMD file you build for instructions on which
libraries and ODL files to use, how many words to extend your task, and so
on. The Task Builder uses the ODL file for instructions on how to overlay
segments of your program and the libraries your program needs during the
execution of your program .
Once you have compiled the program and have built CMD and ODL files, you
can invoke the Task Builder by using either the TKB or LINK commands .
These commands are described in the following sections .

2 .3.1 The TKB Command
On RSTS/E systems, you specify the TKB command and the name of a
command (CMD) file to link a program . The CMD file you specify describes
which libraries the Task Builder should link with to resolve the addresses in
the object file . The TKB command is also available on RSX systems through
the MCR command line interface .
The TKB command has the following format :

TKB @file-spec

file-spec
A command (CMD) file generated by a previous BUILD operation . The name
of the CMD file must be preceded by an at sign (@) . If you do not specify a file
type, the Task Builder searches for the file name you specify with a file type of
CMD.
The following is an example of the TKB command :
$ TKB @MAIN

2-12 Developing Programs at DCL Command Level

This command generates the task image file MAIN .TSK .

Note	

The TKB command must be installed as a Concise Command Language
(CCL) command on your system before you can use it to link a program .
If it is not installed as a CCL command, you can access the Task
Builder by specifying the RUN $TKB command . For more information,
see the RSTS /E Task Builder Reference Manual .

See the RSTS/E System User's Guide for more information about the TKB
command .

2.3.2 The LINK Command
On RSX and RSTS/E systems, you can specify the DCL command LINK to link
a program. On RSTS/E systems, the LINK command uses a generalized file
of commands for the Task Builder . Therefore, you do not need to build CMD
and ODL files before linking . This, however, causes the Task Builder to link
your program to both the BASIC-PLUS-2 and RMS-11 libraries whether your
program requires them or not . This can greatly increase the size of your task .
Therefore, it is recommended that you use the TKB command to link your
program on RSTS/E systems .
The LINK command has the following format :
On RSX Systems :
LINK file-spec /BASIC

On RSTS/E Systems :
LINK /BASIC file-spec [,file-spec[, . . .]]

/BASIC
The /BASIC qualifier causes the system to invoke the Task Builder to link the
program .

file-spec
On RSX systems, file-spec is a command (CMD) file generated by a previous
BUILD operation . On RSTS/E systems, file-spec is one or more object module
(OBJ) files generated during compilation . If you do not specify a file type, the
Task Builder searches for a file with a file type of CMD on RSX systems, and
for a file with a file type of OBJ on RSTS/E systems .

Developing Programs at DCL Command Level 2-13

An example of the LINK command is as follows :
$ LINK MAIN /BASIC

For more information on the LINK command, see the RSTS/E System User's
Guide or the RSX-11M-PLUS Command Language Manual.

2.4 Executing a BASIC-PLUS-2 Program
Once you have linked your program, you can use the DCL command RUN to
execute it. The RUN command has the following format :

RUN file-spec

file-spec
The name of the file you want to run . If you do not specify a file type, the
compiler searches for a file type of TSK by default .

For example :
$ RUN MAIN .TSK

During program execution, an image can generate a fatal error called an
exception condition . When an exception condition occurs, BASIC-PLUS-2
displays an error message . Run-time errors can also be issued by other
facilities such as the PDP-11 operating system . For a description of the
BASIC-PLUS-2 run-time errors, see B .
If you compile the program with the /DEBUG qualifier, the debugger
displays a prompt when you run the program . You can then either specify
debugger commands or choose to continue program execution by entering
the CONTINUE command . See Chapter 3 for more information on the
debugger. See the BASIC-PLUS-2 Reference Manual for a description of the
BASIC-PLUS-2 debugger commands .
For more information on the RUN command, see the RSTS/E System User's
Guide or the RSX-11M-PLUS Command Language Manual .

2-14 Developing Programs at DCL Command Level

3
Debugging Programs

Debugging is the process of eliminating the errors in logic in your programs .
This chapter describes how to invoke the BASIC-PLUS-2 debugger and
provides examples of using the debugger in the BASIC-PLUS-2 environment
and at DCL command level .

3.1 Introduction
The debugger has a set of commands that allow you to specify breakpoints .
Breakpoints temporarily halt the execution of your program, at which point
you can do the following :

•

	

Look at program errors

•

	

Display values describing storage allocation

•

	

Examine the contents of program variables
•

	

Assign new values to program variables
•

	

Display values describing file status characteristics
The debugger cannot reference external variables declared in MACRO
subprograms, external constants declared in MACRO subprograms, or
compile-time constants .

3.2 Invoking the Debugger
You can access the debugger by specifying the /DEBUG qualifier with any of
the following commands :
•

	

The DCL command BASIC
•

	

The COMPILE command in the BASIC-PLUS-2 environment

•

	

The RUN command in the BASIC-PLUS-2 environment

Debugging Programs 3-1

For example, the following RUN command invokes the debugger in the
BASIC-PLUS-2 environment . The debugger responds by displaying the file
name of the program module that is currently executing and its number sign
(#) prompt .
RUN/DEBUG MYPROG
DEBUG :MYPROG

Once the number sign (#) prompt appears, you can enter debugger commands .
If you enter the CONTINUE command at this point, program execution begins
and continues until it is forced to pause or stop (for example, if the program
prompts you for input, or an error occurs) .
Whenever you enter a debugger command, you must enter the CONTINUE
command to execute the debugger command you enter. For example :
$ BASIC/DEBUG/BUILD MYPROG
$ TKB @MYPROG
$ RUN MYPROG
DEBUG :MYPROG
BREAK 10
CONTINUE
EXIT

In this example :
1. The program is compiled at DCL level with the /DEBUG qualifier, then

linked and run .

2 . Once the program is run, the debugger displays the file name of the
currently executing program module .

3. The # prompt indicates that control has passed from your program to the
debugger and that you can enter debugger commands .

4 . The BREAK 10 command tells the debugger to stop execution at line 10 of
MYPROG.

5 . The CONTINUE command passes control to your program, resumes
program execution, and executes the BREAK command .

6 . The EXIT command exits you from the debugger and returns you to DCL
command level .

When you compile a program you want to debug, specify the /LIST qualifier to
generate a compilation listing file . The compilation listing is useful during a
debug operation because it numbers each program line and each statement in
a program line . These numbers can help you decide where to place breakpoints
in a program .

3-2 Debugging Programs

Table 3-1 lists and describes the BASIC-PLUS-2 debugger commands .

Table 3-1 Debugger Commands
Command

BREAK

BREAK lin-num

BREAK lin-num.stat-num

BREAK lin-num .stat-num;mod-
nam

BREAK ON (CALL,DEF,LOOP}

CONTINUE

CORE

ERL

ERN

ERR
EXIT

Function

Stops program execution at the first executable
statement in the program module that is currently
executing. Breakpoints set by any form of the
BREAK command remain in effect until you
disable the breakpoint with the UNBREAK
command .
Stops program execution at the line number in
the program module that is currently executing .
You can set multiple breakpoints by separating
multiple line numbers with commas . You can
specify a maximum of 10 breakpoints . Program
execution stops and control passes to the debugger
when BASIC-PLUS-2 executes the line number
you specify.
Stops program execution at the line number and
the number of the statement in the program
module that is currently executing .
Stops program execution at the line number and
the number of the statement in the module you
specify.
Stops on CALL statements, user-defined functions,
or loops in the program module that is currently
executing .
Passes control to your program, resumes program
execution, and executes BREAK and TRACE
commands, if entered .
Displays the number of words in memory
currently allocated for your task .
Displays the line number of the module that was
executing when the last error was found .
Displays the name of the module that was
executing when the last error was found .
Displays the number of the last error.
Returns control to the BASIC-PLUS-2
environment or the keyboard monitor level .

(continued on next page)

Debugging Programs 3-3

Table 3-1 (Cont.) Debugger Commands

Command

	

Function

FREE

	

Displays the number of words in memory
currently available for free space .

I/O BUFFER

	

Displays the number of words in memory
currently allocated for I/O buffer space .

LET

	

Changes the contents of a variable. (You cannot
create new variables .)

PRINT

	

Displays the contents of a variable .
RECOUNT

	

Displays how many characters were transferred
by the last input operation .

REDIRECT terminal-name

	

Sends all debugger UO to a specified terminal .
The terminal must be logged out and not assigned
to another user.

STATUS

	

Returns a word-length integer that contains
information about the last opened file.

STEP

	

Executes the next statement in the program
module that is currently executing. If you enter
a carriage return at the debugger prompt (#), it
acts like a STEP command .

STEP number Executes the number of statements you specify
before stopping program execution and passing
control to the debugger .

STRING

	

Displays the number of words in memory
currently allocated for dynamic string space .
This value represents dynamic memory allocation,
not static memory allocation .

TRACE

	

Displays the line number of each program line as
it executes .

UNBREAK

	

Disables breakpoints set by any form of the
BREAK command .

UNBREAK ON

	

Disables breakpoints set by the BREAK ON
CALL, DEF, and LOOP commands.

UNTRACE

	

Disables the TRACE command .

See the BASIC-PLUS-2 Reference Manual for a complete description of the
BASIC-PLUS-2 debugger commands .

3-4 Debugging Programs

3.3 Sample Debugging Session in the BASIC-PLUS-2
Environment

This section includes a sample debugging session in the BASIC-PLUS-2
environment.

This program executes with no error messages . However, no matter how
many checks you write, the balance always remains at the starting value you
enter in. To find out where the problem lies, execute the program with the
RUN/DEBUG command :
BASIC2

RUN/DEBUG

DEBUG :BAL

BREAK 600

CONTINUE
This program keeps track of your checking balance .
Starting balance? 500
How many checks? 1
Amount of check$ 12 .50

BREAK at line 600 statement 1

STEP

PRINT BALANCE

Debugging Programs 3- 5

BASIC2

OLD BAL

BASIC2

LISTNH
100 PRINT 'This program keeps track of your checking balance .'
200 INPUT 'Starting balance' ; BALANCE
300 INPUT 'How many checks' ; NUM .CHECKS%
400 FOR 1% = 1% TO NUM .CHECKS%
500 INPUT 'Amount of check' ; CHECK .AMOUNT
600 BALANCE = BALANCE - CHECK .AMOUT
700 NEXT I%
800 PRINT 'Your balance is ' ; BALANCE
32767 END

500 .00

PRINT CHECK .AMOUNT

12 .5

CONTINUE

Your balance is 500

Control transfers to the debugger after BASIC-PLUS-2 executes line 600 .
Then you can examine the values of the program variables BALANCE and
CHECK.AMOUNT, perform the subtraction using these variables, and set the
BALANCE variable to the correct value . However, the program still works
incorrectly. You now take a closer look at the program line performing the
calculation :
600

	

BALANCE = BALANCE - CHECK .AMOUT

Notice that the variable CHECK.AMOUNT is misspelled in line 600. This
means that BASIC-PLUS-2 subtracted a variable named CHECK .AMOUT
from the variable BALANCE . Because BASIC-PLUS-2 variables are initialized
to zero, line 600 did not affect the balance at all. To correct the program,
re-enter line 600 :
600

	

BALANCE = BALANCE - CHECK .AMOUNT

If you specify the compiler default SET /TYPE :EXPLICIT, which requires you
to explicitly declare the data types for all variables, you solve the problem of
misspelling variable names .
It may be more convenient to use line numbers in your programs while
debugging them, although you can specify the number of the statement in
a single line number. Once you debug your program, you can eliminate
unnecessary line numbers . For example :
100

	

DECLARE INTEGER I, NUM .CHECKS, DOUBLE CHECK .AMOUNT, BALANCE

PRINT 'This program keeps track of your checking balance .'
INPUT 'Starting balance' ; BALANCE
INPUT 'How many checks' ; NUM .CHECKS
FOR I% = 1% TO NUM .CHECKS

INPUT 'Amount of check' ; CHECK .AMOUNT
BALANCE = BALANCE - CHECK .AMOUNT

NEXT I%
PRINT 'Your balance is ' ; BALANCE
END

3-6 Debugging Programs

3.4 Sample Debugging Session at DCL Command Level
This section includes a sample debugging session from DCL level .

This sample session debugs the following BASIC-PLUS-2 programs :

•

	

MAPS.B2S
•

	

CREATE .B2S

•

	

UPDATE .B2S

•

	

ACTSUB.B2S

MAPS.B2S declares the data types and storage for program variables .
CREATE.B2S, UPDATE .B2S, and ACTSUB .B2S use MAPS.B2S by using
the %INCLUDE compiler directive. When you compile CREATE .B2S and
UPDATE.B2S, MAPS.B2S is automatically included .

!

	

MAPS .B2S

! Declaring the data type and storage
for the variables used in ACCT .RMS

MAP (ACCT) STRING ACCT .NAME = 50,

	

&
ACCT .ACCOUNT = 6,

	

&
SINGLE ACCT .BALANCE

i
! Declaring the data type and storage
! for the variables used in LEDCER .RMS

MAP(LEDGER) STRING LEDGER .NAME = 22,

	

&
LEDGER .DATE = 6,

	

&
LEDGER .A000UNT = 6,

	

&
SINGLE LEDGER . AMOUNT

ACTSUB.B2S is a FUNCTION subprogram that opens two files named
ACCT.RMS and LEDGER .RMS.

Debugging Programs 3-7

2

3-8 Debugging Programs

FUNCTION BYTE ACTSUB (STRING FILES .NAME, INTEGER CHANNEL NUMBER)
!
i
!
! This is the FUNCTION subprogram used to initialize the files .
There is one parameter passed to the subprogram :

!
FILES .NAME

	

This is the 1- to 6-character name of the file .
!

	

The file name variable returns unchanged to the main
!

	

program .

! The value returned to the programs that call this program
! is a truth flag that indicates the success or failure of a
! file open operation . The function returns a zero if the file
open operation is successful, or a -1 if it is not .

! Use the maps declared in MAPS .B2S .

%INCLUDE 'MAPS .B2S'

! Truth flag :

ACTSUB = 0%

IF FILES .NAME = 'ACCT'
THEN

OPEN 'ACCT .RMS' AS FILE #CHANNEL NUMBER, &
INDEXED FIXED, &
ACCESS MODIFY, &
ALLOW MODIFY,

	

&
MAP ACCT,

	

&
PRIMARY ACCT .NAME,

	

&
ALTERNATE ACCT .ACCOUNT DUPLICATES CHANGES

ELSE
IF FILES .NAME = 'LEDGER'

THEN

ACTSUB .B2S

END IF
END IF
END FUNCTION

ELSE

OPEN 'LEDGER .RMS' AS FILE #CHANNEL NUMBER, &
INDEXED FIXED,

	

&
ACCESS MODIFY,

	

&
ALLOW MODIFY,

	

&
MAP LEDGER,

	

&
PRIMARY LEDGER .ACCOUNT DUPLICATES,

	

&
ALTERNATE LEDGER .DATE DUPLICATES CHANGES

! File open not successful
ACTSUB = -1%
PRINT FILES .NAME;' Undefined in ACTSUB'

CREATE.B2S calls ACTSUB .B2S to open the accounting and ledger files, asks
the user for information about the account, writes the information to the open
files, and finally closes the files .

CREATE .B2S

Use the variables declared in MAPS .B2S

%INCLUDE 'MAPS .B2S'

! Declare the FUNCTION subprogram

1

EXTERNAL BYTE FUNCTION ACTSUB (STRING,INTEGER)

DECLARE INTEGER FILE .STATUS !FILE .STATUS is the truth flag
Open :

Open the files
i
Call ACTSUB to open ACCT .RMS

FILE .STATUS = ACTSUB ('ACCT',l%)
I

! Call ACTSUB to open LEDGER .RMS

FILE .STATUS = ACTSUB ('LEDGER',2%)

Ask .Acct : !
Enter account records

LINPUT 'Account name' ;ACCT .NAME
i

If the user enters a null string,
close the files and exit the program

GOTO Ask .Ledger IF ACCT .NAME _ '
i
LINPUT 'Account number' ;ACCT .ACCOUNT
INPUT 'Account balance' ;ACCT .BALANCE

PUT #1 ! Write these three records to ACCT .RMS
i

GOTO Ask .Acct ! Loop to enter more records

Debugging Programs 3-9

Ask . ledger : !
Enter ledger records

LINPUT 'Ledger name' ;LEDGER.NAME
!
If the user enters a null string,
close the files and exit the program

GOTO Done IF LEDGER .NAME _ "

LINPUT 'Ledger account' ;LEDGER .ACCOUNT
LINPUT 'Ledger date' ;LEDGER .DATE
INPUT 'Ledger amount' ;LEDGER .AMOUNT

PUT #2% ! Write these records to LEDGER .RMS
i
GOTO Ask .Ledger ! Loop to enter more records

!
Done : CLOSE #1,#2

END

UPDATE.B2S calls ACTSUB .B2S and allows the user to update records in the
account and ledger files. This program handles three different error conditions :
•

	

If the record is locked, the program waits one second and then tries to
retrieve the record again .

•

	

If the record cannot be found, a message is displayed .
•

	

If any other errors occur, the name of the program, the line number where
the error occurred, and the error message for that error are displayed.

UPDATE .B2S

Use the variables declared in MAPS .B2S

%INCLUDE 'MAPS .B2S'

Declare the FUNCTION subprogram

EXTERNAL BYTE FUNCTION ACTSUB (STRING,INTEGER)

Declare the data type and storage for
this program's variables

DECLARE INTEGER FILE .STATUS, &
CHANGE .ACCT .RECORD

MAP (FGO) STRING OLD .A000UNT= 6, &
NEW .ACCOUNT= 6, &
ANSWER = 1

3-10 Debugging Programs

2

! In the event of an error, transfer control to line 4

ON ERROR GOTO 4
i

If the open operation was not successful,
close ACCT .RMS

IF ACTSUB ('ACCT',l) = -1%
THEN

GOTO 5
END IF

!
! If the open operation was not successful,
close LEDGER .RMS

IF ACTSUB ('LEDGER',2) = -1%
THEN

GOTO 5

Ask for the old account numbers

INPUT 'Account number to change' ;OLD.ACCOUNT

! If the user enters a null string,
close the files and exit the program

IF OLD .ACCOUNT
THEN

GOTO 5
END IF

i
! Enter new account number

INPUT 'New account number' ;NEW .ACCOUNT

Change this record in LEDGER .RMS too?

INPUT 'Change ledger record too' ;ANSWER
CHANGE .ACCT .RECORD = (ANSWER = 'Y')

Retrieve the ACCT .RMS record
Signal an error if the record is not found

Debugging Programs 3-11

3

	

GET #1, KEY #1 EQ OLD .ACCOUNT

! If ANSWER is Y, then change the
! account number record in both files

GOTO Get2 IF NOT CHANGE .ACCT .RECORD

Change the old account number to
the new account number

ACCT .ACCOUNT = NEW .ACCOUNT

Change the old record in ACCT .RMS
i

! UPDATE #1

Retrieve the LEDGER .RMS record
i

Get2 : GET #2, KEY #0 EQ ACCT .ACCOUNT

! Change the old account number to
! the new account number

LEDGER.ACCOUNT = NEW .ACCOUNT
i
DELETE #2 ! Delete the old record

PUT #2 ! Write the new record
i
GOTO 2 ! Loop to change more records

3-12 Debugging Programs

4 Errs : SELECT ERR
CASE 19,154

5

PRINT

CASE

! If the record is interlocked, then count the number
of times the error occurs . Every fifth time the error
occurs, print a message, wait for one second,

1 then try to perform the record operation again .

INTERLOCK .COUNT = INTERLOCK .COUNT +1
Record is locked -- will try again'
IF INTERLOCK .COUNT = INTERLOCK .COUNT

THEN SLEEP 1%
RESUME

END IF

155
! If the record you specify
! print the message :

PRINT 'That
RESUME

CASE ELSE
! If any other error occurs, print the error text

! associated with the error code, the line
! number where the last error occurred, and the
! name of the module where the last error occurred .

PRINT ERT$(ERR) ;' at line ' ;ERL ;' in ' ;ERN
RESUME 5

END SELECT

!
Close all open files .

CLOSE #1,#2
END

does

account number is not in the

To use the debugger on CREATE .B2S, compile, link, and run the program by
entering the following sequence of commands :
$ BASIC/DEBUG/BUILD CREATE .B2S
$ BASIC/DEBUG/BUILD ACTSUB .B2S
$ TKB @CREATE
$ RUN CREATE

The debugging session for CREATE .B2S follows :

DEBUG : CREATE

not

file'

/ 5%

	

5%

exist,

Debugging Programs 3-13

The BREAK command sets a breakpoint that tells the debugger to stop
execution at line 1, statement 2, in the FUNCTION subprogram named
ACTSUB .B2S . The CONTINUE command tells the debugger to resume
program execution .
BREAK 1 .2 ;ACTSUB

CONTINUE

When BASIC-PLUS-2 reaches line 1, statement 2, in the subprogram, control
passes to the debugger, and BASIC-PLUS-2 then displays a message telling
you where execution has stopped and then displays another prompt :
BREAK at line 1, statement 2, in SUB :ACTSUB

At this point in the program, the files ACCT.RMS and LEDGER .RMS have not
been opened . The CORE command displays the number of words in memory
currently allocated for your task :
CORE
CORE = 9247

The I/O BUFFER command tells you how much storage is allocated by the I/O
buffer. A value of zero indicates that no files have been opened :
I/0 BUFFER
I/0 BUFFERS = 0

The STRING command tells you how many words are allocated to dynamic
string storage and not static storage :
STRING
STRING SPACE = 106

The FREE command tells you how many words are available for I/O and
dynamic string operations . Generally speaking, if your program performs
several I/O operations and the value of the FREE command is less than 20
words, you should pre-extend the size of your task by specifying the EXTTSK
option in the Task Builder command file . See the RSTS/E RMS-11 MACRO
Programmer's Guide or the RSX-11M/MPLUS RMS-11 Macro Programmer's
Guide for more information on the EXTTSK option . The RSTS/E Task Builder
Reference Manual or the RSX-11M/M-PLUS Task Builder Reference Manual
also contains information about the EXTTSK option .
FREE
FREE SPACE = 989

The UNBREAK command disables the breakpoint at line 1, statement 2, in
ACTSUB.B2S :
UNBREAK

3-14 Debugging Programs

The BREAK command sets another breakpoint after the files in the
subprogram are opened :
BREAK 1 .8 ;ACTSUB
CONTINUE

After BASIC-PLUS-2 executes statements 2 through 8, control passes to the
debugger. The debugger displays a message telling you where execution has
stopped and another prompt :
BREAK at line 1, statement 8, in SUB :ACTSUB

Enter the CORE, I/O BUFFER, STRING, and FREE commands again to see
how the memory allocation for your program changes :

To make sure the files are open, use the PRINT command to return the value
of FILE.STATUS. A value of 0 indicates that the files are open :

PRINT FILE .STATUS

0

The STEP command executes one statement at a time :

STEP

STEP at line 1, statement 7

Account name? Reilly

CONTINUE

Account number? 123456
Account balance? 560 .00

At this point in the program, these records should be written to ACCT.RMS .
The RECOUNT command displays how many characters were tranferred by
the last file input operation :

Debugging Programs 3-15

CORE
CORE = 10047

I/0 BUFFER
I/0 BUFFERS = 1776

STRING
STRING SPACE = 110

FREE
FREE SPACE = 9

RECOUNT

18

The CONTINUE commands resumes program execution :
CONTINUE

Account name?
Ledger name? Reilly
Ledger account? 123456
Ledger date? 6-30-82
Ledger amount? 45 .60
Ledger name?

CREATE.B2S appears to be working as expected .
To use the debugger on UPDATE .B2S, enter the following sequence of
commands :
BASIC

PDP-11 BASIC-PLUS-2 V2 .7-00

BASIC2

OLD UPDATE

BASIC2

COMPILE/DEBUG

BASIC2

OLD ACTSUB

BASIC2

COMPILE/DEBUG

BASIC2

BUILD UPDATE, ACTSUB

BASIC2

EXIT
$ TKB @UPDATE

The debugging session for UPDATE .B2S follows :
RUN UPDATE

The debugger begins the debugging session by displaying the name of the
program module it is currently debugging and its prompt (#) :
DEBUG : UPDATE

3-1 6 Debugging Programs

The BREAK command sets a breakpoint at line 2, statement 1, in
UPDATE.B2S :

BREAK 2 .1 ;UPDATE

CONTINUE

When BASIC-PLUS-2 reaches line 2, statement 1, in UPDATE.B2S, control
passes to the debugger :
BREAK at line 2, statement 1

The TRACE command displays the line number of each program line as it
executes :
TRACE
CONTINUE

at line 2, statement 1

Account number to change? 12345

at line 2, statement 2

at line 2, statement 3

at line 2, statement 4

at line 2, statement 5

at line 2, statement 6

New account number? 234567

at line 2, statement 7

Change ledger record too?

It is not clear whether the user should answer the previous question with N,
Y, NO, or YES. You should change the question in the program to supply the
acceptable choices . For example :
INPUT 'Change ledger record too <Y/N>' ;ANSWER

Change ledger record too <Y/N>? Y

at line 2, statement 8

at line 3, statement 1

at line 4, statement 9

at line 4, statement 10

That account number is not in the file

at line 4, statement 11

at line 3, statement 1

Debugging Programs 3-17

at line 4, statement 9

at line 4, statement 10

That account number is not in the file

at line 4, statement 11

at line 3, statement 1

I Ctruc I

Note that the account number to change was incorrect. When the RESUME
statement in line 4, statement 11, transferred control to the program line (line
3) that caused the error, an infinite loop was created . The Ctrl/C aborted the
debugging session .
This debugging session tells you the following :
1 . The files in the subprogram were opened and the records were written to

them .
2 . Line 2, statement 7, should be rewritten to be self-documenting .

3 . Line 4, statement 11, should be rewritten to :
RESUME 2

3.5 Debugger Error Messages
This section lists the error messages for the BASIC-PLUS-2 debugger and
their possible causes .

?What?
Explanation : The debugger does not understand the command .
User Action: Check the spelling, syntax, and validity of the command .

%Bad line spec in (UN)BREAK
Explanation : You specified a nonexistent line, used incorrect syntax in
specifying a program or subprogram, or used incorrect syntax when listing
multiple breakpoints .
User Action : Check the syntax and change the BREAK or UNBREAK
command .

%Can't CONTINUE or STEP
Explanation : The program encountered an error it could not handle and
execution stopped .
User Action : Enter EXIT to exit from the debugger. Program execution
cannot resume .

3-18 Debugging Programs

%Cannot open device
Explanation: You specified, for the REDIRECT command, a device that
does not exist or cannot be used .
User Action: Change the device specification to one that is available .

%Data error in LET or PRINT
Explanation : The debugger encountered a program conversion error while
processing a LET or PRINT command .
User Action : Change the LET or PRINT command format .

%Illegal syntax in LET
Explanation : The format of the LET debugger command is incorrect; you
tried to create a new variable or assigned an expression to the variable .
User Action: Change the LET command . You cannot create a new
variable with the LET command . You can specify a constant or variable
as the new value, but not an expression. The LET command allows you
to test or change only one variable at a time . To change or test multiple
variables, use multiple LET commands .

%Illegal syntax in PRINT
Explanation : Either the format of the PRINT debugger command is
incorrect, or you tried to print a variable not in the currently executing
module .
User Action : Change the PRINT command . You cannot print a variable
which does not exist in the currently executing program module . The
PRINT command allows you to display only one variable at a time . To
display multiple variables, use multiple PRINT commands .

%No room
Explanation: You specified too many breakpoints for a BREAK or
UNBREAK command.
User Action: None . The debugger accepts as many as ten breakpoints
and ignores the rest .

%On error entry in debugger
Explanation: A Ctrl/C trap or program error has stopped program
execution and the debugger.
User Action: None .

Debugging Programs 3-19

%Stop at line N in subprogram X
Explanation: A STOP statement in the program halted program
execution at line <n> in the subprogram named <X>(Debugger<XS>error
messages) .
User Action : Enter CONTINUE to resume execution .

3-20 Debugging Programs

4
Program Elements

A BASIC-PLUS-2 program is a series of instructions for the BASIC-PLUS-2
compiler. These instructions, no matter how varied, are all built using the
same fundamental elements of BASIC-PLUS-2 . This chapter describes the
elements or building blocks of BASIC-PLUS-2 .

4.1 Line Numbers
A BASIC-PLUS-2 program is a series of instructions for the BASIC-PLUS-2
compiler. These instructions are in the form of BASIC-PLUS-2 statements .
BASIC-PLUS-2 programs require at least one line number at the first
statement of the program .
When you use line numbers, you must follow these rules :

•

	

A line number must be a unique integer between 1 and 32767. If your
program has duplicate line numbers, the last line with that number
replaces the previous one .

•

	

A line number must begin in the first character position on the line .

•

	

A line number can contain leading zeros ; however, embedded spaces, tabs,
and commas are invalid in line numbers .

•

	

There must be a line number on the first line of the program .

•

	

There can be a maximum of 32767 characters associated with a single line
number.

Although line numbers on every line are not required, you may want to use
them on every line that could cause a run-time error, depending on the type of
error handling you use . See Chapter 15 for more information about handling
run-time errors .

Program Elements 4- 1

4.2 Labels
A label is a 1- to 31-character identifier that you use to identify a block
of statements. All label names must begin with a letter ; the remaining
characters, if any, can be any combination of letters, digits, dollar signs ($),
underscores (_) or periods (.) . Labels cannot begin in column one .
When you use a label to mark a program location, you must end the label with
a colon (:) . The colon is used to show that the label name is being defined
instead of referenced . When you reference the label, do not include the colon .
In the following example, the label names end with colons when they mark a
location, but the colons are not present when the labels are referenced .

Example
10 OPTION TYPE = EXPLICIT

	

! Require declarations
DECLARE INTEGER A, B

outer-decision :
IF A<>B
THEN

Inner-decision :
IF B=C
THEN

A=A+ 1%
GOTO Outer-decision

ELSE
B=B+1%
GOTO Inner-decision

END IF
END IF

Labels have no effect on the order in which program lines are executed ; they
are used to identify a statement or block of statements .

4.3 Continuing Long Program Statements
If a program line is too long for one line of text, you can continue the program
line by typing an ampersand (&) and pressing the RETURN key. Note that
only spaces and tabs are valid between the ampersand and the carriage return .
A single statement that spans several text lines requires an ampersand at the
end of each continued line .

4-2 Program Elements

Example
20 OPEN "SAMPLE .DAT" AS FILE #2%, &

SEQUENTIAL VARIABLE, &
RECORDSIZE 80%

In an IF. .. THEN . . .ELSE construction, statement separators are not necessary.
If a continuation line begins with THEN or ELSE, then no statement separator
is necessary. Similarly, in a line following a THEN or ELSE, there is no
statement separator .
Example
200 IF (A$ = B$)

THEN
PRINT "The two values are equal"

ELSE
PRINT "The two values are different"

END IF

Several statements can be associated with a single program line . If there are
several statements on one line, they must be separated by backslashes (\) .
Example
300 PRINT A \ PRINT V \ PRINT G

Because all statements are on the same program line, any reference to
this program line refers to all three statements . In the preceding example,
BASIC-PLUS-2 cannot execute just one of the statements without executing
the other two as well .

4.4 Identifying Program Units
You can delimit a main program compilation unit with the PROGRAM and
END PROGRAM statements . This allows you to identify a program with a
name other than the file name. The program name must not duplicate the
name of a SUB or FUNCTION subprogram .
20 PROGRAM Sort out

END PROGRAM

If you include the PROGRAM statement in your program, the name you specify
becomes the module name of the compiled source . This feature is useful when
you use object libraries because the librarian stores modules by their module
name rather than the file name . Similarly, module names are used by the
BASIC-PLUS-2 debugger and the Task Builder .

Program Elements 4-3

4.5 The BASIC-PLUS-2 Character Set
BASIC-PLUS-2 uses the full ASCII character set, which includes the
following :
•

	

The letters A through Z, both upper- and lowercase
•

	

The digits 0 through 9
•

	

Special characters
See C for a complete list of the ASCII character set and character values .

The BASIC-PLUS-2 compiler does not distinguish between upper- and
lowercase letters ; exceptions are letters inside quotation marks (called string
literals) and letters in a DATA statement . The compiler also does not process
characters in a REM statement or comment field .
You can use nonprinting characters in your program, for example, in string
literals and constants, but to do so you must do one of the following :

•

	

Use a predefined constant such as ESC or DEL
•

	

Use the CHR$ function to specify an ASCII value
•

	

Use a character literal such as "ASCII code" C
See Section 4.8 for more information on predefined constants . See Chapter 8
for more information on the CHR$ function .

4.6 Program Documentation
Documenting a program is the process of mixing text (comments) and code
in a way that helps make the program more understandable . Program
documentation does not affect the way a program executes .

You can sprinkle comments liberally throughout a program ; however, programs
that are neatly structured need fewer comments . You can clarify your code by
following these suggestions :
•

	

Use meaningful variable names
•

	

Include sufficient white space
•

	

Indent your program lines according to the structure of your code
In BASIC-PLUS-2, there are two ways to include comments in a program : the
comment field (!) and the REM statement .
A comment field starts with an exclamation point (!) and ends with a carriage
return or another exclamation point. The following example contains both
comments and program statements .

4-4 Program Elements

Example
10 DECLARE &
INTEGER &
Print_page, ! Current page number &
Print-line, ! Current line number &
Print column

	

! Current column number

In this example, BASIC-PLUS-2 ignores all text between the exclamation
point and the carriage return, with one exception : BASIC-PLUS-2 still
recognizes the ampersand as a continuation character . Only spaces and tabs
are valid between the ampersand and the carriage return .

Note

You can also terminate a comment field with an exclamation point .
However, because BASIC-PLUS-2 treats any text that follows the
second exclamation point as part of your program code, this practice is
not recommended.

A REM statement begins with the REM keyword and ends when BASIC-PLUS-2
encounters a new line number . The text you supply between the REM keyword
and the next line number documents your program . Like comment fields, REM
statements do not affect program execution .
Example
10 REM This is a comment
20 A=5

B=10
REM A equals 5, B equals 10

30 C=15

The REM statement is nonexecutable . When you transfer control to a REM
statement, BASIC-PLUS-2 executes the next executable statement that
lexically follows the referenced statement . Because BASIC-PLUS-2 treats all
text between the REM statement and the next line number as commentary,
REM should be used very carefully in programs that follow the implied
continuation rules .

4.7 Declarations and Data Types
BASIC-PLUS-2 offers two different methods for creating variables and
specifying their data types :
•

	

Implicit data typing
•

	

Explicit data typing

Program Elements 4-5

With implicit data typing, BASIC-PLUS-2 creates and specifies a data type for
a variable the first time you reference it in your program . With explicit data
typing, you must use one of four declarative statements to name and type your
program values .
BASIC-PLUS-2 has four data types :
•

	

Integer (INTEGER)
•

	

Floating-point (REAL)
•

	

String (STRING)
•

	

Record File Address (RFA)
Within the INTEGER and REAL data types there are further subdivisions :
BYTE, WORD, or LONG for INTEGER and SINGLE or DOUBLE for REAL .
Choosing one of these subtypes lets you control the following :
•

	

The amount of storage required for the value; its container size
•

	

The range and precision that the value can accept
For more information about data types, see Chapter 7 .

4.7.1 Implicit Data Typing
With implicit data typing, BASIC-PLUS-2 creates and specifies a data type
for a variable the first time you reference it . You specify the data type of the
variable by a suffix on the variable name :
•

	

A percent sign suffix (%) specifies the INTEGER data type .
•

	

A dollar sign suffix ($) specifies the STRING data type .
•

	

Any other ending character specifies a variable of the default data type .
The BASIC-PLUS-2 default data type is SINGLE ; however, you can specify
your own default with an initialization file, inside the BASIC environment,
or with the OPTION statement in your program . For more information
on establishing default data types, see Chapter 7 or the description of the
OPTION statement in the BASIC-PLUS-2 Reference Manual .

The first time BASIC-PLUS-2 references one of these variables, it creates a
variable with that name and data type and allocates storage for that variable .
In the following example, BASIC-PLUS-2 creates two INTEGER variables,
A% and B%. Even though the values assigned to these variables are REAL,
BASIC-PLUS-2 converts these values to INTEGER to match the data type
specified for the variables . The sum of these two values is therefore 30, not
30.6 as it would be if the variables were named simply A and B .

4-6 Program Elements

Example
200 A% = 10 .I

B% = 20 .5

PRINT A% + B%

Output
30
With explicit data typing, you use a declarative statement to name and specify
a data type for your program values .

4.7.2 Explicit Data Typing
BASIC-PLUS-2 has four declarative statements . These statements create
variables and allocate storage . The statements are as follows :
•

	

DECLARE
•

	

DIMENSION
•

	

COMMON
•

	

MAP
The statement you choose depends on the way in which you will use the
variables :
•

	

DECLARE and DIMENSION allocate dynamic storage for variables ;
storage is allocated when the program executes .

•

	

COMMON and MAP statements allocate storage for variables statically ;
storage is allocated when the program is compiled .

The difference between these types of storage is most apparent in the case
of strings; string variables created with DECLARE can change their length
during program execution, while those created with MAP and COMMON
remain fixed in length . All four declarative statements associate a data type
with a variable . For more information, see Chapter 7 .

4.8 Constants
A constant is a value that does not change during program execution .
Constants can be either literals or named constants, and can be of any data
type except RFA. You can use the DECLARE CONSTANT statement to create
named constants . Constants can be of the following types :
•

	

Integer
•

	

Floating-point

Program Elements 4-7

• String
In addition, BASIC-PLUS-2 provides predefined constants that are useful for :

These predefined constants simplify the task of using nonprinting characters
in your programs. For example, the following statement causes a bell to sound
on your terminal .

Example
200 PRINT BEL

The following example prints and underlines a word on a hard copy terminal .

4-8 Program Elements

•

	

Formatting program output to improve clarity

•

	

Making source code easier to understand

•

	

Using nonprinting characters without having to look up their ASCII values

Table 4-1 lists all of the BASIC-PLUS-2 predefined constants .

Table 4-1 Predefined Constants

Constant

Decimal
ASCII
Value Purpose

BEL (Bell)
BS (Backspace)
HT (Horizontal Tab)
LF (Line Feed)
VT (Vertical Tab)
FF (Form Feed)
CR (Carriage Return)
SO (Shift Out)

SI (Shift In)

7
8
9
10
11
12
13
14

15

Sounds the terminal bell
Moves cursor one position to the left
Moves cursor to the next horizontal tab stop
Moves cursor to the next line
Moves cursor to the next vertical tab stop
Moves cursor to the start of the next page
Moves cursor to the beginning of the current line
Shifts out for communications networking, screen
formatting, and alternate graphics
Shifts in for communications networking, screen

ESC (Escape) 27
formatting, and alternate graphics
Marks the beginning of an escape sequence

SP (Space) 32 Inserts one blank space in program output
DEL (Delete) 127 Deletes the last character entered
PI None Represents the number PI with the precision of the

default floating-point data type

Example
300 PRINT "NAME :" + BS + BS + BS + BS + BS + "

To print and underline the same word on a VT100 series video display
terminal, use the program code in the following example . Note that the "m"
must be lowercase .
Example
400 PRINT ESC + "[4mNAME :" + ESC + "[Om"

You can also create your own predefined constants with the DECLARE
CONSTANT statement . The following statements define and print a constant
that prints and underlines the string "NAME :" .
Example
10 DECLARE STRING CONSTANT Underlined word = ESC + "[4mNAME :" + ESC + "[Om"

PRINT Underlined word

Output
NAME :

For more information on constants, see Chapter 7 and the BASIC-PLUS-2
Reference Manual .

4.9 Variables
A variable is a unique storage location that is referred to by a variable name .
The most important property of variables is that their values can change
during program execution . Each named location can hold only one value at a
time .
A variable name can have up to 31 characters. The name must begin with
a letter; the remaining characters, if any, can be any combination of letters,
digits, dollar signs ($), underscores (_), and periods (.) .
Variables can be grouped in an orderly series under a single name . These
groups are called arrays. You refer to a single variable in an array by using
one or more subscripts that specify the variable's position in the array.

4.9.1 Floating-Point Variables
A floating-point variable is a named location that stores a single floating-point
value. The storage space required to hold the value depends on the variable's
REAL subtype . For example, each SINGLE floating-point variable requires 32
bits (4 bytes) of storage, while each DOUBLE floating-point variable requires
64 bits (8 bytes) of storage .
Note that if any integer value is assigned to a floating-point variable,
BASIC-PLUS-2 converts the value to a floating-point number .

Program Elements 4-9

4.9.2 Integer Variables
An integer variable is a named location that stores a whole number. The
storage space required to hold the value depends on the variable's INTEGER
subtype. For example, each BYTE integer variable requires 8 bits (1 byte) of
storage, each WORD integer variable requires 16 bits (2 bytes), of storage, and
each LONG integer variable requires 32 bits (4 bytes) of storage .

If you assign a floating-point value to an integer variable, BASIC-PLUS-2
truncates the fractional portion of the value ; it does not round to the nearest
integer. In the following example, BASIC-PLUS-2 assigns the value -5 to the
integer variable, not -6 .
Example
10 Bo = -5 .7

4.9.3 String Variables
Unlike some of the numeric variables described so far, a string variable does
not correspond to a single location in memory because a string variable is
more likely to exceed a single location in memory. Therefore, the value of
a string variable may be contained in any number of memory locations. A
string variable can contain a maximum of 32767 characters ; however, a string
variable is still referred to by a single name as shown in the following example .

Example
10 DECLARE STRING Employee name

4.9.4 Subscripted Variables
A subscripted variable is a floating-point, integer, RFA, or string variable that
is part of an array. Chapter 10 describes arrays in detail .
An array is a set of data organized in one or more dimensions. A one-
dimensional array is called a list or vector . A two-dimensional array is
called a matrix . BASIC-PLUS-2 arrays can have up to 8 dimensions .
When you create an array, its size is determined by the number of dimensions
and the maximum size, called the bound, of each dimension . Subscripts begin
by default with 0, not 1 . That is, when calculating the number of elements in a
dimension, you count from zero to the bound specified . Valid array subscripts
can be in the range from 0 through 32767 .
The following DECLARE statement creates an 11 by 11 array of integers (11
by 11 rather than 10 by 10, because BASIC-PLUS-2 arrays are zero-based) .
Therefore, the array contains a total of 121 array elements .

4-10 Program Elements

Example
10 DECLARE INTEGER My_array (10, 10)

Note

By default, the compiler signals an error if a subscript is larger than
the allowable range. Also, the amount of storage that the system can
allocate depends on available memory. Therefore, very large arrays
may cause an internal allocation error .

4.9.5 Initialization of Variables
BASIC-PLUS-2 sets variables to zero or null values at the start of program
execution ; that is, it initializes them. Variables initialized by BASIC-PLUS-2
include the following :
•

	

Numeric variables and array elements (except those in MAP or COMMON
statements).

•

	

Numeric variables and array elements in a MAP statement referenced in
an OPEN statement .

•

	

String variables and array elements (except those in MAP or COMMON
statements) .

• Variables in subprograms . Subprogram variables (except those in MAP or
COMMON statements) are initialized to zero or the null string each time
the subprogram is called. Variables in a map are initialized to zero when
the OPEN statement executes .

•

	

Arrays created with an executable DIMENSION statement. BASIC-PLUS-2
reinitializes the array each time the array is redimensioned .

4 .10 Keywords and Reserved Words
Keywords are elements of the BASIC-PLUS-2 language . Keywords that are
not reserved can be used as user identifiers such as labels, variable or constant
names, or names of MAP or COMMON areas . Depending upon the location
of the keyword in your program statement, the compiler will treat it as either
a keyword or a user identifier. Your BASIC-PLUS-2 programs use keywords
and reserved words to do the following :
•

	

Define data
•

	

Perform operations

Program Elements 4-11

• Invoke functions
See the BASIC-PLUS-2 Reference Manual for a list of BASIC-PLUS-2
keywords and reserved words .
Keywords determine whether the statement is executable or nonexecutable .
Executable statements such as PRINT, GOTO, and READ perform operations .
Nonexecutable statements such as DATA, DECLARE, and REM, describe the
characteristics and arrangement of data, usage information, and comments .

Every statement except LET and empty statements (lines that start with an
exclamation point) must begin with a keyword . A BASIC-PLUS-2 keyword
cannot have embedded spaces or be split across lines of text . There must be a
space or tab between the keyword and any other variables or operators .

There are also phrases of keywords . In this case, the spacing requirements
vary.

4.11 Operands, Operators and Expressions
An operand is anything that contains a value . An operand can be a scalar,
a subscripted variable, a named constant, a literal, and so on . An operator
specifies a procedure to be carried out on one or more operands . An expression
consists of operands separated by operators .
BASIC-PLUS-2 has four types of operators :
•

	

Arithmetic
•

	

String
•

	

Relational
•

	

Logical
When combined with operands, these operators can produce the following:

•

	

Numeric expressions
•

	

String expressions
•

	

Conditional expressions
For more information about operands, operators, and expressions, see the
BASIC-PLUS-2 Reference Manual .

4-12 Program Elements

4 .12 Assignment Statements
BASIC-PLUS-2 has statements that assign values to variables . These
statements are as follows :
•

	

LET
•

	

INPUT
•

	

LINPUT
•

	

INPUT LINE
•

	

LSET
•

	

RSET
LET and INPUT statements allow you to assign values to any type of variable,
while LINPUT and INPUT LINE allow you to assign values to string variables
only.
Example
10 LET A = 1 .25

LET is an optional keyword . You can assign a value to more than one variable
at a time, although this is not recommended. Instead, you should use a
separate assignment statement each time you assign a value to a variable .
Whenever you assign a value to a numeric variable, BASIC-PLUS-2 converts
the value to the data type of the variable . If you assign a floating-point value to
an integer variable, BASIC-PLUS-2 truncates the value at the decimal point .
If you assign an integer value to a floating-point variable, BASIC-PLUS-2
converts the value to floating-point format .
You can also assign values to variables with the DATA and READ statements ;
however, this method requires that you know all input data values while you
are coding your program .
The INPUT, LINPUT, and INPUT LINE statements all assign values in the
context of data being read into the program . These statements are discussed in
Chapter 5 .
The LSET statement assigns left-justified data to a string variable, while
the RSET statement assigns right justified data to a string variable . These
statements are discussed in Chapter 9 .
For more information on the BASIC-PLUS-2 assignment statements, see the
BASIC-PLUS-2 Reference Manual .

Program Elements 4-13

Simple Input-Output

This chapter explains how to use the BASIC-PLUS-2 statements that move
data to and from your program .

5.1 Program Input
BASIC-PLUS-2 programs receive data in three ways :

•

	

You can enter data interactively while the program executes . You do this
with INPUT, INPUT LINE, and LINPUT statements .

• If you know all the information your program will require, you can enter it
as you write the program. You do this with READ, DATA, and RESTORE
statements, or you can name constants with the known values .

•

	

You can read data from files outside the program . You do this with INPUT
#, INPUT LINE #, and LINPUT # statements .

The following sections describe program input in detail .

5.1 .1 Providing Input Interactively
The INPUT, INPUT LINE, and LINPUT statements prompt you for data
while the program executes . These statements are described in the following
sections.

5.1 .1 .1 The INPUT Statement
The INPUT statement interactively prompts you for data . You can use the
optional prompt string to clarify the input request by specifying the type and
number of data elements required by the program . This is especially useful
when the program contains many variables, or when someone else is running
your program .
Example
10 INPUT "PLEASE TYPE 3 INTEGERS" ;B% C% D%

A%=B%+C%+D%
PRINT "THEIR SUM IS" ; A%
END

5

Simple Input-Output 5-1

Output
PLEASE TYPE 3 INTEGERS? 25,50,75
THEIR SUM IS 150

When your program executes, BASIC-PLUS-2 stops at each INPUT, LINPUT,
or INPUT LINE statement, prints a string prompt, if specified, and an optional
question mark (?) followed by a space, and waits for input .
You can determine the format of the string prompt by using either a comma (,)
or semicolon (;) on the program line :
•

	

If you have a semicolon separating the input prompt string from the
variable, BASIC-PLUS-2 prints the question mark and space immediately
after the input prompt string .

•

	

If you have a comma separating the input prompt string from the variable,
BASIC-PLUS-2 prints the input prompt string, skips to the next print
zone, and then prints the question mark and space .

See Section 5 .2.1 for more information about print zones . For more information
on formatting string prompts, see Section 5 .1.1.3 .
You must provide one value for each variable in the INPUT request . If you do
not provide enough values, BASIC-PLUS-2 prompts you again .

Example
10 INPUT A,B
20 END

Output
? 5
? 6

BASIC-PLUS-2 interprets a carriage return (null input) as a zero value for
numeric variables and as a null string for string variables .

Example
? 5

IRETI

These responses assign the value 5 to variable A and zero to variable B . In
contrast, if you provide more values than there are variables, BASIC-PLUS-2
ignores the extra values .
In the following example, BASIC-PLUS-2 ignores the extra value (8) . Note
that you can enter multiple values if you separate them with commas . Because
commas separate variables in the PRINT statement, BASIC-PLUS-2 prints
each variable at the start of a print zone .

5-2 Simple Input-Output

Example
10 INPUT A,B,C
15 PRINT A,B,C
20 END

Output
?

	

5,6,7,8

5

	

6

	

7

Note that this program is written to handle only the first three input values ;
therefore, the fourth value (8) is ignored .
If you specify a numeric variable in an INPUT statement, you must supply
numeric data. The number you specify must be within the proper range
for the variable's data type, or BASIC-PLUS-2 signals the error "Illegal
number" (ERR=52). If you supply string data to a numeric variable or a
number containing non-numeric data, BASIC-PLUS-2 signals the error "Data
format error" (ERR=50). This error is also signaled if you input an integer
variable containing a percent sign (%) suffix, or input a floating-point number
for an integer variable .
If you specify a string variable in an INPUT statement, you can supply either
numbers or letters, but BASIC-PLUS-2 treats the data you supply as a string .
Because digits and a decimal point are valid text characters, numbers can be
interpreted as strings .

Example
10 INPUT "Please type a number" ; A$

PRINT A$

Output
Please type a number? 25 .5
25 .5

BASIC-PLUS-2 interprets the input as a four-character string instead of a
numeric value .
You can type strings with or without quotation marks. However, if you want to
input a string containing a comma, you should enclose the string in quotation
marks or use the INPUT LINE or LINPUT statement . If you use the INPUT
statement and do not enclose the string and comma in quotation marks,
BASIC-PLUS-2 treats the comma as a delimiter and assigns only part of the
string to the variable .
When using quotation marks, be sure to specify an end quotation mark as
well as a beginning quotation mark . If you leave out the end quotation mark,
BASIC-PLUS-2 signals the error "Data format error" (ERR=50) .

Simple Input-Output 5-3

5.1 .1 .2 The INPUT LINE and LINPUT Statements
The INPUT LINE and LINPUT statements prompt you for string data while
the program executes .
The INPUT LINE statement accepts and stores all characters, including
quotation marks, semicolons, and commas, up to and including the line
terminator or terminators . LINPUT accepts all characters up to, but not
including, the line terminator or terminators .
In the following example, both INPUT LINE and LINPUT treat your input
as a string literal . Therefore, BASIC-PLUS-2 interprets quotation marks as
characters, not as string delimiters . Note that the INPUT LINE statement
includes the line terminator as a part of the string literal . The carriage return
and line feed combination causes double spacing in the printed output .
Example
10 INPUT LINE A$

LINPUT B$
LINPUT C$
PRINT A$, B$, C$
PRINT "DONE"
END

Output
? "NOW, LOOK HERE!", HE SAID .
? "NOT THERE, HERE!"

"NOW, LOOK HERE!", HE SAID .

"NOT THERE, HERE!"
DONE

The INPUT, INPUT LINE, and LINPUT statements can accept data from a
terminal or a terminal-format file . See Section 5 .3 for information on I/O to
terminal-format files .

5 .1 .1 .3 Enabling and Disabling the Question Mark Prompt
With the SET PROMPT statement, BASIC-PLUS-2 allows you to enable and
disable the question mark prompt .
By default, BASIC-PLUS-2 displays the question mark prompt .

Example
110 INPUT "Please input 3 integer values" ;A%, B%, C%

Output
Please input 3 integer values?

To disable the question mark prompt, specify the SET NO PROMPT statement,
as shown in the following example .

5-4 Simple Input-Output

Example
100 SET NO PROMPT
110 INPUT "Please input 3 integer values" ;A%, B%, C%

Output
Please input 3 integer values

When you disable the question mark prompt, you can specify your own prompt
at the end of each prompt string. The following example inserts a colon at the
end of the prompt string .
Example
100 SET NO PROMPT
110 INPUT "Please enter your name : " ;Employee name$

Output
Please enter your name :

Now, if you specify the SET PROMPT statement, BASIC-PLUS-2 displays
both the colon and a question mark .

Example
SET PROMPT
INPUT "Please enter your name : " ;Employee name$

Output
Please enter your name : ?

The SET [NO] PROMPT statement is valid for INPUT, LINPUT, INPUT
LINE, and MAT INPUT statements . If the prompt is disabled, any one of the
following commands enables it :

•

	

SET PROMPT statement

•

	

CHAIN statement
•

	

NEW, OLD, RUN, or SCRATCH command

5.1 .2 Providing Input from the Source Program
The following sections describe the BASIC-PLUS-2 statements READ, DATA,
and RESTORE. In order to use READ and DATA statements, you must know
what data is required while writing the program . These statements do not stop
to request data while the program executes . Therefore, your program executes
faster than it would if it contained INPUT statements .

The RESTORE statement lets you use the same data items more than once .

Simple Input-Output 5-5

5.1 .2.1 The READ and DATA Statements
The READ statement reads values from a data block . A data pointer keeps
track of the data read. Each time the READ statement requests data,
BASIC-PLUS-2 retrieves the next available constant from a DATA statement .
The DATA statement contains the values that the READ statement reads . In
a DATA statement, integer constants must be whole numbers ; they cannot
be followed by a percent sign (%) . The following program example causes an
error because the integer constants in the DATA statement contain percent
signs .
Example

Output
ERROR NUMBER IS 50
ERROR AT LINE 100
ERROR MESSAGE IS %Data format error

A READ statement is not valid without at least one DATA statement . If your
program contains a READ statement but no DATA statement, BASIC-PLUS-2
signals the compile-time error "READ without DATA ."
READ statements can appear either before or after their corresponding DATA
statements . The only restriction is that the DATA statements must be in the
same order as their corresponding READ statements .
You can have more than one DATA statement in a program . DATA statements
are ignored without at least one READ statement . As seen in the following
example, you can use an ampersand (&) to continue a DATA statement .
Example
'_00 DATA "ABRAMS", BAKER, CHRISTENSON, &

DOBSON, "EISENSTADT", FOLEY

Note that comment fields are not allowed in DATA statements . For example,
the following statements cause A$ to contain the string ABC!COMMENT.

5-6 Simple Input-Output

1 0 ON ERROR GOTO 400
20 DATA 1%, 2%, 3%
30 READ A%, B%, C%
40 PRINT A% + B% + C%
50 GOTO 500
400 PRINT "ERROR NUMBER IS " ; ERR

PRINT "ERROR AT LINE " ; ERL
PRINT "ERROR MESSAGE IS " ; ERT$(ERR)
RESUME 500

500 END

Example
100 READ A$

DATA ABC

	

!COMMENT

When you compile a program, BASIC-PLUS-2 creates one data block for each
program module . A data block contains the values in all DATA statements in
that program module . These values are stored in line number order. Each time
BASIC-PLUS-2 executes a READ statement, it retrieves the next value in the
data block. DATA statements cannot be shared between program modules .

If you assign alphabetic characters to a numeric variable, BASIC-PLUS-2
signals the error message "Data format error" (ERR=50) . If you specify more
variables in a READ statement than there are values in the DATA statement,
BASIC-PLUS-2 signals the error message "Out of data" (ERR=57) . If a
DATA statement contains more values than variables specified in the READ
statement, BASIC-PLUS-2 ignores the excess data and does not signal an
error.
The following example of READ and DATA mixes string and floating-point data
types. The first READ statement reads the first data item in the program :
"The diameter is ." The second READ statement reads the second data item :
40.5 .
Example
100 DATA "The diameter

DATA 40 .5
READ text$
READ radius
DIAMETER = radius * 2
PRINT text$; DIAMETER
END

Output
The diameter is 81

11

5.1 .2 .2 The RESTORE Statement
The RESTORE statement allows you to read the same data more than once . It
has no effect without READ and DATA statements .
RESTORE resets the data pointer to the beginning of the first DATA statement
in the program unit . You can then read data values again . Consider the
following program .

Simple Input-Output 5-7

Example
10 READ B,C,D
20 RESTORE
30 READ E,F,G
40 DATA 6,3,4,7,9,2
50 END

The READ statement in line 10 reads the first three values in the DATA
statement :

B=6
C=3
D=4

The RESTORE statement resets the pointer to the beginning of line 40 . During
the second READ statement (line 30), the first three values are read again :

E=6
F=3
G=4

Without the RESTORE statement, line 30 would assign the following values :
E=7
F=9
G=2

5.2 Program Output
The PRINT statement displays data on your terminal during program
execution. BASIC-PLUS-2 evaluates expressions before displaying results .
Note that besides the PRINT statement, you can also use the PRINT USING
statement to print and format data . For information about the PRINT USING
statement, see Chapter 13 .
When you use the PRINT statement, BASIC-PLUS-2 does the following :
•

	

Precedes positive numbers with a space and negative numbers with a
minus sign (-)

•

	

Prints a space after each number
•

	

Prints strings without leading or trailing spaces
When an element in a list is not a simple variable or constant, BASIC-PLUS-2
evaluates the expression before printing the value .

5-8 Simple Input-Output

Example
10 A = 45

B = 55
PRINT A + B
END

Output
100

However, BASIC-PLUS-2 interprets text inside quotation marks as a string
literal .
Example
10 A = 45

B=55
PRINT "A + B"
END

Output
A+B

The PRINT statement without an expression prints a blank line .

Example
10 PRINT "This example leaves a blank line"

PRINT
PRINT "between two lines ."
END

Output
Thi s example leaves a blank line

between two lines .

5.2.1 Print Zones-the Comma and the Semicolon
A terminal line contains zones that are 14 character positions wide . The
number of zones in a line depends on the width of your terminal . A
72-character line contains 5 zones, which start in columns 1, 15, 29, 43,
and 57 . A 132-character line has additional print zones starting at columns 71,
85, 99, and 113 .
The PRINT statement formats program output into these zones in different
ways, depending on the character that separates the elements to be printed .
If a comma precedes the PRINT item, BASIC-PLUS-2 prints the item at
the beginning of the next print zone . If the last print zone on a line is filled,
BASIC-PLUS-2 continues output at the first print zone on the next line .

Simple Input-Output 5-9

Example
100 INPUT A B C D E F

PRINT A B C D E F
END

Output
? 5,10,15,20,25,30
5

	

10

	

15

	

20

	

25
30

BASIC-PLUS-2 skips one print zone for each extra comma between list
elements. For example, the following program prints the value of A in the first
zone and the value of B in the third zone .
Example
10 A = 5

B = 10
PRINT "first zone"„ "third zone"
PRINT A_ B
END

Output
first zone

	

third zone
5

	

10

If you separate print elements with a semicolon, BASIC-PLUS-2 does not
move to the next print zone. In the following example, the first PRINT
statement prints two numbers . (Printed numbers are preceded by a space
or a minus sign and followed by one space .) The second PRINT statement
prints two strings .
Example
10 PRINT 10 ; 20

PRINT "ABC" ; "XYZ"
END

Output
10 20

ABCXYZ

Whether you use a comma or a semicolon at the end of the PRINT
statement, the cursor remains at its current position until BASIC-PLUS-2
encounters another PRINT or INPUT statement . In the following example,
BASIC-PLUS-2 prints the current values of X, Y, and Z on one line because a
comma follows the last item in the line PRINT X, Y

5-10 Simple Input-Output

Example
100 INPUT X,Y,Z

PRINT X,Y,
PRINT Z
END

Output
? 5,10,15
5

	

10

	

15

The following example shows PRINT statements using a comma, a semicolon,
and no formatting character after the last print item .

Example
!No comma after I%, so each element
!Prints on its own line

100 PRINT 1% FOR I% = 1% TO 10%
PRINT

i
!A comma follows J%, so each
!element prints in a separate zone

200 PRINT J%, FOR J% = 1% TO 10%
210 PRINT

!A semicolon follows K%, so print
!elements are packed together

210 PRINT K% ; FOR K% = 1% TO 10%
300 END

1

	

2

	

3

	

4
6

	

7

	

8

	

9

1 2 3 4 5 6 7 8 9 10

As seen in the following example, commas and semicolons also let you control
the placement of string output .

5
10

Simple Input-Output 5-11

Example
200 PRINT "first zone",, "third zone",, "fifth zone"
300 END

Output
first zone

	

third zone

	

fifth zone

The extra comma between strings causes BASIC-PLUS-2 to skip another
print zone . In the following example, the first string is longer than the print
zone . When the two strings are printed, the second string begins in the third
print zone because that is the next available print zone after the first string is
printed .
Example
200 PRINT "abcdefghijklmnopgrstuvwxyz","foo"
210 PRINT "first zone","second zone","third zone"

Output
abcdefghijklmnopqrstuvwxyz foo
first zone

	

second zone

	

third zone

5.2 .2 Output Format for Numbers and Strings
BASIC-PLUS-2 prints strings exactly as you enter them, with no leading or
trailing spaces . It does not print quotation marks unless they are delimited by
another matching pair .
Example
100 PRINT 'PRINTING "QUOTATION" MARKS'
120 END

Output
PRINTING "QUOTATION" MARKS

BASIC-PLUS-2 follows these rules for printing numbers :
•

	

When you print numeric fields, BASIC-PLUS-2 precedes each number
with a space or a minus sign and follows it with a space .

•

	

BASIC-PLUS-2 does not print trailing zeros to the right of the
decimal point. If all digits to the right of the decimal point are zeros,
BASIC-PLUS-2 omits the decimal point as well .

•

	

When you print LONG integers, BASIC-PLUS-2 prints up to 10 significant
digits .

5-12 Simple Input-Output

BASIC-PLUS-2 follows these rules for printing floating-point numbers :

• If a floating-point number can be represented exactly by six decimal digits
(or fewer) and, optionally, a decimal point, BASIC-PLUS-2 prints it that
way.

•

	

When you print a floating-point number whose integer portion is six
decimal digits or less (for example, 1234 .567), BASIC-PLUS-2 rounds
the number to six digits (1234 .57). If the integer portion of the number is
seven decimal digits or larger, BASIC-PLUS-2 rounds the number to six
digits and prints it in E format. See the BASIC-PLUS-2 Reference Manual
for more information about E format .

• When you print a floating-point number with magnitude between 0 .1 and
1, BASIC-PLUS-2 rounds it to six digits . When you print a floating-point
number with more than six digits, and with magnitude smaller than 0 .1,
BASIC-PLUS-2 rounds it to six digits and prints it in E format .

The PRINT statement displays only up to six digits of precision for floating-
point numbers. This corresponds to the precision of the SINGLE data type .
To display the extra digits in DOUBLE numbers, you must use the PRINT
USING statement . See Chapter 13 for more information on the PRINT USING
statement .
The following example shows how BASIC-PLUS-2 prints various numbers
with single precision :
Example
100 FOR I = 1 TO 20

PRINT 2^(-I),I,2^I
120 NEXT I
140 END

Simple Input-Output 5-13

Output
.5 1 2
.25 2 4
.125 3 8
.0625 4 16
.03125 5 32
.015625 6 64
.78125E-02 7 128
.390625E-02 8 256
.195313E-02 9 512
.976563E-03 10 1024
.488281E-03 11 2048
.244141E-03 12 4096
.12207E-03 13 8192
.610352E-04 14 16384
.305176E-04 15 32768

5 .3 Terminal-Format Files
Terminal-format files let you perform simple I/O to disk files . The records in
a terminal-format file must be accessed sequentially. That is, you must access
the records in the file one by one, from the first to the last . You can add new
records only at the end of the file .
Just as the INPUT, LINPUT, and INPUT LINE statements receive information
from a terminal, the INPUT #, LINPUT #, and INPUT LINE # statements
receive information from a terminal-format file . And, as the PRINT statement
sends information to the terminal, the PRINT # statement sends information
to a terminal-format file .
Terminal-format files are very useful for creating files to be printed on a line
printer, or for supplying a program with moderate amounts of input . However,
if you want to use the same file for both input and output, you should not use
terminal-format files . Instead, use sequential, relative, or indexed files . For
more information, see Chapter 12 .
Note that you do not have to use a program to create a terminal-format
file. You can use a text editor to create a file and insert data, then use a
BASIC-PLUS-2 program to open the file and retrieve the data .

5.3.1 Opening and Closing a Terminal-Format File
You use the OPEN statement to create a file, or to gain access to an existing
file. If you do not specify either FOR INPUT or FOR OUTPUT in the OPEN
statement, BASIC-PLUS-2 tries to open an existing file . If the file does not
exist, BASIC-PLUS-2 creates a new one .
The channel specification lets you associate a number with the file for as long
as the file is open . All I/O operations to or from the file use this number .

When you are finished accessing a file, you close it with the CLOSE statement .

5 .3.2 Writing Records to a Terminal-Format File
The following example receives information from a terminal, then writes the
information to a terminal-format file as a report .

5-14 Simple Input-Output

.152588E-04 16 65536

.767939E-05 17 131072

.38147E-05 18 262144

.190735E-05 19 524288

.953674E-06 20 .104858E+07

Example
30 PRINT "This program creates a daily sales report file named SALES .DAT"
40 OPEN "SALES .DAT" FOR OUTPUT AS FILE #4%
50 PRINT #4%, "Salesperson","Sales Area","Items Sold"
60 PRINT #4%
70 INPUT "How many salespersons for today's report" ; salespersons%
80 FOR I% = 1% TO salespersons%

INPUT "Salesperson's name" ; s name$
INPUT "Sales area" ; area$
INPUT "Number of items sold" ; items_ sold%
PRINT #4%, s name$, area$, items_sold%

100 NEXT I%
110 CLOSE #4%
120 END

Output
This program creates a daily sales report file named SALES .DAT
How many salespersons for today's report? 3
Salesperson's name? JONES
Sales area? NJ
Items sold? 5
Salesperson's name? SMITH
Sales area? NH
Items sold? 6

Salesperson's name? BAINES
Sales area? VT
Items sold? 8

This program first prints a header explaining its purpose, then opens a
terminal-format file on channel #4. After this file is opened, the two PRINT #
statements place an explanatory header followed by a blank line into the file .
The program then prompts you for the number of salespersons for which data
is to be entered. The FOR . . .NEXT loop prompts for the name, sales area, and
items sold for each salesperson . Note that the FOR . . .NEXT loop executes only
as many times as there are salespersons . See Chapter 6 for more information
about FOR . . .NEXT loops .
After the data has been entered for each salesperson, the program writes
this information to the terminal-format file . Because the response to the first
question was 3, the FOR . .. NEXT loop executes three times .
After the last item has been printed to the file, the program closes the file and
ends. When you display the file with the DCL command TYPE, you see that
the information is printed under the proper headers . You can also print the file
on a line printer. Note that the PRINT # statement formats the output in print
zones as the PRINT statement does .

Simple Input-Output 5-15

Example

5-16 Simple Input-Output

$ TYPE SALES DAT

Salesman Sales Area Items Sold

JONES NJ 5
SMITH NH 6
BAINES VT 8

s
Control Statements

BASIC-PLUS-2 normally executes statements sequentially. Control statements
let you change this sequence of execution. BASIC-PLUS-2 control statements
can alter the sequence of program execution at several levels :
•

	

Statement modifiers control the execution of a single statement .
•

	

Loops or decision blocks control the execution of a block of statements .
•

	

Branching statements such as GOTO and ON GOTO pass control to
statements or local subroutines .

•

	

The EXIT and ITERATE statements explicitly control loops or decision
blocks .

•

	

The SLEEP, WAIT, STOP and END control statements suspend or halt the
execution of your entire program .

This chapter describes all of the BASIC-PLUS-2 control statements .

6.1 Statement Modifiers
Statement modifiers are control structures that operate on a single statement .
Statement modifiers let you execute a statement conditionally or create an
implied loop . BASIC-PLUS-2 has five statement modifiers :
•

	

IF

•

	

UNLESS
•

	

FOR
•

	

UNTIL
•

	

WHILE
A statement modifier affects only the statement immediately preceding it .
You can modify only executable statements ; declarative statements are not
modifiable .

Control Statements 6-1

6 .1 .1 The IF Modifier
The IF modifier tests a conditional expression . If the conditional expression
is true, BASIC-PLUS-2 executes the statement. If it is false, BASIC-PLUS-2
does not execute the modified statement but continues execution at the next
program statement. The following is an example of a statement using the IF
modifier :
10

	

PRINT A IF (A < 5)

6.1 .2 The UNLESS Modifier
The UNLESS modifier tests a conditional expression. BASIC-PLUS-2 executes
the modified statement only if the conditional expression is false . Like the IF
modifier, the UNLESS modifier operates on a single statement :
20

	

PRINT A UNLESS (A < 5)

This is equivalent to :
30

	

PRINT A IF A >= 5

6.1 .3 The FOR Modifier
The FOR modifier creates a loop on a single line . The following is an example
of an implied loop created by a FOR modifier:
20

	

A = A + 1 FOR I% = 1% TO 10%

6.1 .4 The UNTIL Modifier
The UNTIL modifier, like the FOR modifier, creates a single-line loop .
However, instead of using a formal loop variable, you specify the terminating
condition with a conditional expression . The modified statement executes
repeatedly as long as the condition is false . For example :
40

	

B = B + 1 UNTIL (A - B) < 0 .0001

Because of precision limitations, you should not use real number calculations
in UNTIL loops. For example :
10

	

Z = Z + 1 UNTIL Z/5 = 100

Because Z/5 may never exactly equal 100, the loop could execute indefinitely .

6-2 Control Statements

6.1 .5 The WHILE Modifier
The WHILE modifier repeats a statement as long as a conditional expression
is true . Like the UNTIL and FOR modifiers, it lets you create single-line
loops. In the following example, BASIC-PLUS-2 replaces the value of A with
A/2 as long as the absolute value of A is greater than 1/10 . Note that you
can inadvertently create an infinite loop if the terminating condition is never
reached .
20

	

A = A / 2 WHILE ABS(A) > 0 .1

6.1 .6 Nested Modifiers
You can append more than one modifier to a statement . This is called nesting
modifiers. BASIC-PLUS-2 evaluates nested modifiers from right to left . If the
test of the rightmost modifier fails, control passes to the next statement, not to
the preceding modifier on the same line .
In the following example, BASIC-PLUS-2 first tests the rightmost qualifier of
the first PRINT statement. Because this condition is not met, BASIC-PLUS-2
tests the rightmost qualifier of the second PRINT statement . Once again, this
condition is not met. Because both conditions are met in the third PRINT
statement, BASIC-PLUS-2 prints the value of C .
Example

Output
C = 15

6.2 Loops
Loops allow you to repeat the execution of a set of statements . This set of
statements is called a loop block . There are three types of BASIC-PLUS-2
program loops :
•

	

FOR. . .NEXT
•

	

WHILE . . .NEXT
•

	

UNTIL. . .NEXT

Control Statements 6-3

30 A = 5
B = 10
C = 15

40 PRINT "A =" ;A IF A = 5 UNLESS C = 15

50

PRINT
PRINT
END

"B =" ;B UNLESS C = 15 IF B = 10
"C =" ;C IF B = 10 UNLESS C = 5

If you know how many times you want a loop to execute, that is, the number
of iterations, you can use a FOR. . .NEXT loop. If you do not know the exact
number of iterations when the loop begins execution, you can use either a
WHILE. . . NEXT or an UNTIL . . .NEXT loop .
Note that all of these types of loops can be nested : that is, lexically located one
inside another .

6.2 .1 FOR. . .NEXT Loops
In a FOR . . . NEXT loop, you specify a loop control variable (loop index) that
determines the number of loop iterations . This number must be a scalar
(unsubscripted) variable . When BASIC-PLUS-2 begins execution of a
FOR. . .NEXT loop, the starting and ending values of the loop control variable
are known .
The FOR statement assigns the control variable a starting value and a
terminating value . You can use the optional STEP clause to specify the amount
to be added to the loop control variable after each loop iteration . For instance,
the first example assigns the values 1 through 10 to consecutive array elements
1 through 10 of New array, whereas the second example assigns consecutive
multiples of 2 to the odd-numbered elements of New array .
Example 1
10

	

FOR I% = 1% TO 10%
New_array(I%) = I%

NEXT I%

Example 2
20

	

FOR I% = 1% TO 10% STEP 2
New_array(I%) = I% + 1%

NEXT I%

Note that the starting, ending, and step values can be run-time expressions .
You can have BASIC-PLUS-2 calculate these values when the program runs,
as opposed to using a constant value .
The following example assigns sales information to array Sales data . The
number of iterations depends on the value of the variable Days in month,
which represents the number of days in that particular month .
Example
30

	

FOR I% = 1% TO Days_in month
Sales data(I%) = Quantity_sold

NEXT I%

When a FOR loop block executes, the BASIC-PLUS-2 compiler :
1 . Evaluates the starting value and assigns it to the control variable .

6-4 Control Statements

2 . Evaluates the ending value and the step value and assigns these results to
temporary storage locations .

3. Tests whether the ending value has been exceeded . If the ending value
has already been exceeded, BASIC-PLUS-2 executes the statement
following the NEXT statement . If the ending value has not been exceeded,
BASIC-PLUS-2 executes the statements in the loop .

4. Adds the step value to the control variable and transfers control to the
FOR statement, which tests whether the ending value has been exceeded .

Step 3 and step 4 are repeated until the ending value is exceeded .
Note that BASIC-PLUS-2 performs the test before the loop executes . When
the control variable exceeds the ending value, BASIC-PLUS-2 exits the loop,
and then subtracts the step value from the control variable . This means that
after loop execution, the value of the control variable is the value last used in
the loop, not the value that caused loop termination . If the starting value is
greater than the ending value, and the step value is positive, the loop will not
execute .
Because the starting, ending, and step values can be numeric expressions,
they are not evaluated until the program runs . This means that you can have
a FOR . . .NEXT loop that does not execute. The following example prompts
the user for the starting, ending, and step values for a loop, and then tries to
execute that loop. The loop executes zero times because it is impossible to go
from 0 to 5 using a step value of -1 .
Example
10

	

counter% = 0%

20

	

INPUT "Start" ; start%
INPUT "Finish" ; finish%
INPUT "Step value" ; step val%

30

	

FOR I% = start% TO finish% STEP step val%
counter% = counter% + 1%

NEXT I%

40

	

PRINT "This loop executed" ; counter% ; "times ."

Output
Start? 0
Finish? 5
Step value? -1
This loop executed 0 times .

Control Statements 6-5

Whenever possible, you should use integer variables to control the execution
of FOR . . .NEXT loops because some decimal fractions cannot be represented
exactly in a binary computer, and the calculation of floating-point control
variables is subject to this inherent imprecision .
In the following example, the first loop uses an integer control variable while
the second uses a floating-point control variable . The first loop executes
100 times and the second 99 times . After the ninety-ninth iteration of the
second loop, the internal representation of the value of Floating-point-variable
exceeds 10 and BASIC-PLUS-2 exits the loop . Because the first loop uses
integer values to control execution, BASIC-PLUS-2 does not exit the loop until
Integer variable equals 100 .
Example

Output
Integer loop count : 100
Integer loop end : 100
Rear loop count : 99
Real loop end :

	

9 .9

If you need to use floating-point values in a loop, you should initialize a
floating-point variable and increment it within the loop .
Example
20

	

Real-counter = 0 .1
Count_loop :

30

	

FOR Integer variable = 1% TO 100000%
Real-counter = Real-counter + .1

NEXT Integer variable

Although it is not recommended programming practice, you can assign a
value to a FOR . . . NEXT loop's control variable while in the loop . This affects
the number of times a loop executes . For example, assigning a value that
exceeds the ending value of a loop will cause the loop's execution to end as
soon as BASIC-PLUS-2 performs the termination test in the FOR statement .

6-6 Control Statements

10 Loop-count-1 = 0%
Loop-count-2 = 0%

20 FOR Integer variable = 1% to 100% STEP 1%
Loop-count-1 = Loop count_1 + 1%

NEXT Integer_variable
30 FOR F oating_point variable = 0 .1 to 10 STEP 0 .1

NEXT
Loop_count_2 = Loop_count_2 + 1%

Floating-point-variable
40 PRINT

PRINT
PRINT
PRINT

"Integer loop count :" ; Loop count_1
"Integer loop end

	

; Integer variable
"Real loop count :

	

; Loop_count_2
"Real loop end : ; Floating-point-variable

Assigning values to ending or step variables, however, has no effect at all on
the loop's execution .

6.2.2 WHILE. . .NEXT Loops
A WHILE . . . NEXT statement uses a conditional expression to control loop
execution; the loop is executed as long as a given condition is true. A
WHILE. . . NEXT loop is useful when you do not know how many loop iterations
are required .
In the following example, the first statement asks you to input data and then
enter DONE when you are finished . After you enter the first piece of input,
BASIC-PLUS-2 executes the WHILE . . .NEXT loop . If the first input value is
not "DONE," the loop executes and prompts you for another input value . Once
you enter the input value, the WHILE . . . NEXT loop once again checks to see
if this value corresponds to "DONE ." The loop continues executing until you
enter "DONE" in response to the prompt .
Example
10

	

INPUT 'Type "DONE" when finished' ; Answer

20

	

WHILE (Answer <> "DONE")

INPUT "More data" ; Answer
NEXT

Note that the NEXT statement in the WHILE . . .NEXT and UNTIL. . .NEXT
loops does not increment a control variable ; your program must change a
variable in the conditional expression or the loop will execute indefinitely .
The evaluation of the conditional expression determines whether the loop
executes . The test is performed (that is, the conditional expression is
evaluated) before the first iteration ; if the value is false (0), the loop does
not execute .
It can be useful to intentionally create an infinite loop by coding a
WHILE. . .NEXT loop whose conditional expression is always true . Of course,
when doing this, you must still take care to provide a way out of the loop .
You can do this with an EXIT statement or by trapping a run-time error. See
Chapter 15 for more information about trapping run-time errors .

Control Statements 6-7

6.2.3 UNTIL. . .NEXT Loops
An UNTIL . . . NEXT loop executes repeatedly for as long as the conditional
expression is false . Note that in UNTIL . . .NEXT and WHILE . . .NEXT loops, the
NEXT statement does not increment a control variable . You must explicitly
change a variable in the conditional expression or the loop will execute
indefinitely.
It is possible to code the example in Section 6 .2.2 as an UNTIL . . .NEXT loop
as shown in the following example . These loops are equivalent except for the
logical sense of the termination test (WHILE Answer <> "DONE" as opposed to
UNTIL Answer = "DONE") .
Example
10

	

INPUT 'Type "DONE" when finished .' ; Answer

20

	

UNTIL (Answer = "DONE")

INPUT "More data" ; Answer
NEXT

UNTIL and FOR loops differ because BASIC-PLUS-2 exits UNTIL loops as
soon as the test for the terminating condition is met . This test occurs after
BASIC-PLUS-2 executes the NEXT statement and before it executes the
UNTIL statement . For example, the following loop executes 10 times . When
BASIC-PLUS-2 exits the FOR loop, J% equals 10 .
Example
10

	

FOR J% = 1% to 10%
A = A + 1
PRINT A

NEXT J%

The following UNTIL loop executes only nine times . After the ninth iteration,
the conditional expression is true ; control then passes out of the loop .
Example
10

	

J% = 1%
20

	

UNTIL J% = 10%
PRINT J%
J% = J% + 1%

NEXT

6-8 Control Statements

6.2.4 Nested Loops
When a loop block is entirely contained in another loop block, it is called a
nested loop .
The following example declares a two-dimensional array and uses nested
FOR. . . NEXT loops to fill the array elements with sales information . The
inner loop executes 16 times for each iteration of the outer loop . This example
assigns zero to each of the 256 elements of the array .

Example
10 DECLARE INTEGER &

Column number, &
Row number

DECLARE REAL

	

&

Sales_ info,

	

&
Two dim_ array (15%, 15%)

20

	

FOR Row_number = 0% TO 15%
FOR Column_number = 0% to 15%

INPUT "Please enter the sales information" ;Sales_info
Two dim array (Row number, Column number) = Sales-info

NEXT Column-number
NEXT Row number

Note that in nested loops the inner loop is entirely contained in the outer loop :
nested loops cannot overlap .

6 .3 Unconditional Branching
The GOTO statement specifies which program line the BASIC-PLUS-2
compiler is to execute next, regardless of that line's position in the program .
If the statement at the target line number or label is nonexecutable (such as
a REM statement), BASIC-PLUS-2 transfers control to the next executable
statement following the target line number.

You can use a GOTO statement to exit from a loop ; however, it is better
programming practice to use the EXIT statement .

6.4 Conditional Branching
Conditional branching is the transfer of program control only when specified
conditions are met. There are three BASIC-PLUS-2 statements that let you
conditionally transfer control to a target statement in your program :

•

	

The ON . . .GOTO . ..OTHERWISE statement

•

	

The IF. . .THEN. . .ELSE statement

Control Statements 6-9

• The SELECT. . .CASE statement

6.4.1 The ON . ..GOTO. . .OTHERWISE Statement
In the ON. ..GOTO . . .OTHERWISE statement, BASIC-PLUS-2 tests the value
specified after the ON keyword . If the value is 1, BASIC-PLUS-2 transfers
control to the first target in the list ; if the value is 2, control passes to the
second target, and so on . If the value is less than 1, or greater than the
number of targets in the list, BASIC-PLUS-2 transfers control to the target
specified in the OTHERWISE clause .
Example
10

	

Menu :
PRINT "Would you like to change :"
PRINT "1 . First name"
PRINT "2 . Last name"

20

	

INPUT CHOICE%
ON CHOICE% GOTO First name, Last name OTHERWISE Other-choice

30

	

First - name :
INPUT "First name" ; firstname$
COTO Done

40

	

Last-name :
INPUT "Last name" ; lastname$
GOTO Done

50

	

Other-choice :
PRINT "Invalid choice"
PRINT "Let's try again"
GOTO Menu

60

	

Done :
END

Note that if you do not supply an OTHERWISE clause and the control variable
is less than 1 or greater than the number of targets, BASIC-PLUS-2 signals
"ON statement out of range" (ERR = 58) .

6.4.2 The IF. . .THEN . . . ELSE Statement
The IF. . .THEN. . . ELSE statement evaluates a conditional expression and uses
the result to determine which block of statements to execute next . If the
conditional expression is true, BASIC-PLUS-2 executes the statements in the
THEN clause. If the conditional expression is false, BASIC-PLUS-2 executes
the statements in the ELSE clause, if one is present . If the conditional
expression is false and there is no ELSE clause, BASIC-PLUS-2 executes the
statement immediately following the END IF statement .

6-10 Control Statements

In the following example, BASIC-PLUS-2 evaluates the conditional expression
number < 0 . If the input value of number is less than zero, the conditional
expression is true . BASIC-PLUS-2 then executes the four statements in the
THEN clause and skips the statement in the ELSE clause . BASIC-PLUS-2
transfers control to the statement following the END IF . If the value of
number is greater than or equal to zero, the conditional expression is false .
BASIC-PLUS-2 then skips the statements in the THEN clause and executes
the statement in the ELSE clause .

Example

END IF
30

	

END

Output
Input number? -9
That square root is imaginary
The square root of its absolute value is 3

One of the most common programming errors is neglecting to terminate
an IF. . .THEN. . .ELSE statement. After an IF block is executed, control is
transferred to the statement immediately following the END IF . If there
is no END IF, BASIC-PLUS-2 transfers control to the next line number.
When this happens, any code between the keyword ELSE and the next line
number becomes part of the ELSE clause . If there are no line numbers,
the BASIC-PLUS-2 compiler ignores the remaining program code from the
keyword ELSE to the end of the program . Therefore it is very important that
you always use END IF to terminate IF statements .

In the following example, the first IF . . .THEN. . .ELSE statement is termi-
nated by END IF, and therefore works as expected . Because the second
IF. . .THEN. . . ELSE statement is not terminated by END IF, the BASIC-PLUS-2
compiler assumes that the last PRINT statement in the program is part of the
second ELSE clause. When you run this program, the first IF . . .THEN. . .ELSE
statement will always execute correctly . However, the final PRINT statement
will execute only when the value of On off val is 1, because the compiler
considers this PRINT statement to be part of the second ELSE clause .

Control Statements 6-11

10 INPUT "Input number" ; number

20 IF (number < 0)
THEN

number
PRINT
PRINT
PRINT

ELSE
PRINT

= number * (-1)
"That square root is imaginary"
"The square root of its absolute value 1 ",
SQR(number)

"The square root is" ; SQR(number)

Example
10 DECLARE INTEGER light bulb

DECLARE INTEGER circuit-switch
DECLARE INTEGER CONSTANT Opened = 0
DECLARE INTEGER CONSTANT Closed = 1

PRINT "Please enter zero or one, corresponding to the circuit"
PRINT "Switch being open or closed"
INPUT On_off_val
IF On off val Opened
THEN

PRINT "The light bulb is off ."
ELSE

PRINT "The light bulb is on ."
END IF
IF On_off_val

	

Closed
THEN

PRINT "The light bulb is on ."
ELSE

PRINT "The light bulb is off ."
PRINT "That's all for now ."

20 END

Output 1
Please enter zero or one, corresponding to the circuit
Switch being open or closed
? 0
The light bulb is off .
The light bulb is off .
That's all for now .

Output 2
Please enter zero or one, corresponding to the circuit
Switch being open or closed
? 1
The light bulb is on .
The light bulb is on .

Note that a statement in a THEN or ELSE clause can be followed by a
modifier. In the following example, the modifying IF applies only to the
preceding statement .

Example
10

	

IF A = B
THEN

PRINT A IF A = 3
ELSE

PRINT B IF B > 0
END IF

6-12 Control Statements

6.4.3 The SELECT. . .CASE Statement
The SELECT. . . CASE statement lets you specify an expression (the SELECT
expression), any number of possible values (cases) for the SELECT expression,
and a list of statements (a case block) for each case . The select-item can be
a numeric or string value . Case-items can be single or multiple values, one
or more ranges of values, or relationships. When a match is found between
the select-item and a case-item, the statements in the following CASE block
are executed. Control is then transferred to the statement following the END
SELECT statement .
In the following example, the case-item values appear to overlap ; that is,
the case-item that tests for values greater than or equal to 0 .5 also includes
the values greater than or equal to 1 .0. However, BASIC-PLUS-2 executes
the statements associated with the first matching CASE statement and then
transfers control to the statement following END SELECT. In this program,
each range of values is tested before it overlaps in the next range. Because the
compiler executes the first matching CASE statement, the overlapping values
do not matter.
Example
10

	

DECLARE REAL Stock change

20

	

INPUT "Please enter stock price change" ;Stock change

30

	

SELECT Stock change

CASE <= 0 .5
PRINT "Don't sell yet ."

CASE <= 1 .0
PRINT "Sell today .

CASE ELSE
PRINT "Sell NOW!"

END SELECT
40

	

END

Output
Please enter stock price change? 2 .1
Sell NOW!

If no match is found for any of the specified cases and there is no CASE
ELSE block, BASIC-PLUS-2 transfers control to the statement following END
SELECT without executing any of the statements in the SELECT block .

SELECT. .. CASE is very powerful because it lets you use run-time expres-
sions for both select-items and case-items . The following example uses
BASIC-PLUS-2 built-in string functions to examine command input .

Control Statements 6-13

Example

Command-loop :

WHILE True

	

! This loop executes until the user enters only a
i carriage return in response to the prompt .

NEXT

6-1 4 Control Statements

PRINT
PRINT "Please enter a command (uppercase only)
PRINT "Type a carriage return when finished ."
INPUT Command
PRINT

40

	

SELECT Command

CASE Null-input

	

! If user enters Return,
i exit from the loop

GOTO Done

	

! and end the program .

! The next three cases use the SEG$ and LEN string functions .
! LEN returns the length of the typed string, and SEG$ searches
the string literals ("SAVE", "SCRATCH", and "OLD") for a
match up to that length . Note that if the user types an
it is interpreted as a SAVE command only because SAVE is the
first case tested .

CASE SEG$("SAVE", 1%, LEN (Command))
PRINT "That was a SAVE command ."

CASE SEG$("SCRATCH", 1%, LEN (Command)
PRINT "That was a SCRATCH command ."

CASE SEG$("OLD", 1%, LEN (Command))
PRINT "That was an OLD command ."

CASE ELSE
PRINT "Invalid command, please try again ."

END SELECT

11

10 ! This program is a skeleton command processor .
It recognizes three BASIC-PLUS-2 environment commands :

SAVE
SCRATCH
OLD

20 DECLARE INTEGER CONSTANT True -1
DECLARE INTEGER CONSTANT False 0

!This is the null string .DECLARE STRING CONSTANT Null-input =

DECLARE STRING Command

30 ! Main program logic starts here .

50

	

Done :
END

6.5 The EXIT and ITERATE Statements
This section describes the EXIT and ITERATE statements and shows their use
with nested control structures .
The ITERATE and EXIT statements let you explicitly control loop execution .
These statements can be used to transfer control to the top or bottom of a
control structure .
You can use EXIT to transfer control out of any of these structures :

•

	

FOR. . .NEXT loops
•

	

WHILE. . .NEXT loops

•

	

UNTIL. . .NEXT loops

•

	

IF. . .THEN. . . ELSE blocks

•

	

SELECT. . .CASE blocks
You can also use EXIT to transfer control out of SUB and FUNCTION
subprograms, DEF functions, and programs . In the case of control structures,
EXIT passes control to the first statement following the end of the control
structure .
You can use ITERATE to explicitly reexecute a FOR . . .NEXT, WHILE . . .NEXT,
or UNTIL . . .NEXT loop. EXIT and ITERATE statements can appear only
within the code blocks you wish to leave or reexecute .

Executing the ITERATE statement is equivalent to transferring control to
the loop's NEXT statement . The termination test is still performed when
the NEXT statement transfers control to the top of the loop . In addition,
transferring control to the NEXT statement means that a FOR loop's control
variable is incremented .
Supplying a label for every loop lets you state explicitly which loop to leave
or reexecute . If you do not supply a label for the ITERATE statement,
BASIC-PLUS-2 reexecutes the innermost active loop . For example, if an
ITERATE statement (that does not specify a label) is executed in the innermost
of three nested loops, only the innermost loop is reexecuted .

In contrast, labeling each loop and supplying a label argument to the ITERATE
statement lets you reexecute any of the loops . A label name also helps
document your code. Because you must use a label with EXIT and it is

Control Statements 6-15

sometimes necessary to use a label with ITERATE, you should always label the
structures you want to control with these statements .
The following example shows the use of both the EXIT and ITERATE
statements. This program explicitly exits the loop if you enter a carriage
return in response to the prompt . If you enter a string, the program prints the
length of the string and explicitly reexecutes the loop .
Example
10

	

DECLARE STRING user-string

20

	

Read_loop :
WHILE 1% = 1%

LINPUT "Please type a string" ; User_string

IF User-string
THEN

EXIT Read_loop
ELSE

PRINT "Length is " ;LEN(User_string)
ITERATE Read-loop

END IF
NEXT

30

	

END

6 .6 Executing Local Subroutines
In BASIC-PLUS-2 a subroutine is a block of code accessed by a GOSUB or
ON GOSUB statement. It must be in the same program unit as the statement
that calls it . The RETURN statement in the subroutine returns control to the
statement immediately following the GOSUB .
The first line of a subroutine can be any valid BASIC-PLUS-2 statement,
including a REM statement . You do not have to transfer control to the first
line of the subroutine . Instead, you can include several entry points into the
same subroutine . You can also reference subroutines by using a GOSUB or ON
GOSUB statement to another subroutine .
Variables and data in a subroutine are global to the program unit in which the
subroutine resides .

6-1 6 Control Statements

6.6.1 The GOSUB and RETURN Statements
The GOSUB statement unconditionally transfers control to a line in a
subroutine . The last statement in a subroutine is a RETURN statement,
which returns control to the first statement after the calling GOSUB. A
subroutine can contain more than one RETURN statement so you can return
control conditionally, depending on a specified condition .

The following example first assigns a value of 5 to the variable A, then
transfers control to the subroutine labeled Times two. This subroutine replaces
the value of A with A multiplied by 2 . The subroutine's RETURN statement
transfers control to the first PRINT statement, which displays the changed
value. The program calls the subroutine two more times, with different values
for A. Each time, the RETURN transfers control to the statement immediately
following the corresponding GOSUB .

Example
10

	

A = 5
GOSUB Times-two
PRINT A

20

	

A = 15
GOSUB Times-two
PRINT A

30

	

A = 25
GOSUB Times-two
PRINT A

40

	

GOTO Done

Times_two :
!This is the subroutine entry point
A = A * 2
RETURN

50

	

Done :
END

Output
10
30
50

Note that BASIC-PLUS-2 signals "RETURN without GOSUB" if it encounters
a RETURN statement without first having encountered a GOSUB or ON
GOSUB statement .

Control Statements 6-17

6.6.2 The ON . . .GOSUB. . .OTHERWISE Statement
The ON . ..GOSUB . ..OTHERWISE statement transfers control to one of several
target subroutines depending on the value of a numeric expression . A
RETURN statement returns control to the first statement after the calling
ON GOSUB. A subroutine can contain more than one RETURN statement so
that you can return control conditionally, depending on a specified condition .

BASIC-PLUS-2 tests the value of the integer expression . If the value is 1,
control transfers to the first line number or label in the list ; if the value is
2, control passes to the second line number or label, and so on . If the control
variable's value is less than 1 or greater than the number of targets in the list,
BASIC-PLUS-2 transfers control to the line number of the label specified in
the OTHERWISE clause. If you do not supply an OTHERWISE clause and the
control variable's value is less than 1 or greater than the number of targets,
BASIC-PLUS-2 signals "ON statement out of range" (ERR = 58) .

Example

6-1 8 Control Statements

10 INPUT "Please enter first integer value" ; First value°
INPUT "Please enter second integer value" ; Second value%

20 Choice :
PRINT "Do you want to perform :"
PRINT "1 . Multiplication"
PRINT "2 . Division"
PRINT "3 . Exponentiation"

30 INPUT Selection%

ON Selection% GOSUB Mult, Div, Expon OTHERWISE Wrong
GOTO Done

40 Mult :
Result% = First _value% * Second_value%
PRINT Result%
RETURN

50 Div :
Result% = First value / Second value%
PRINT Result%
RETURN

60 Expon :
Result% = First _value% ** Second_value%
PRINT Result%
RETURN

70 Wrong :
PRINT "Invalid selection"
RETURN

80

	

Done :
END

6.7 Suspending and Halting Program Execution
There are two BASIC-PLUS-2 statements that you can use to suspend
program execution :

•

	

SLEEP
•

	

WAIT
These statements cause BASIC-PLUS-2 either to suspend program execution
for a specified time or to wait a certain period of time for user input .

After execution of the last statement, a BASIC-PLUS-2 program automatically
halts and closes all files . However, you can explicitly halt program execution
by using one of the following statements :

•

	

STOP
•

	

END
The STOP statement does not close files . It can appear anywhere in a
program. The END statement closes files and must be the last statement in a
main program. For more information on the STOP and END statements, see
Section 6 .7.3 and Section 6.7.4 .

6.7.1 The SLEEP Statement
The SLEEP statement suspends program execution for a specified number
of seconds. The following program waits two minutes (120 seconds) after
receiving the input string, and then prints the string .

Example
10

	

INPUT "Type a string of characters" ; C$
20

	

SLEEP 120%
30

	

PRINT C$
40

	

END

The SLEEP statement is useful if you have a program that depends on another
program for data . Instead of constantly checking for a condition, the SLEEP
statement lets you check the condition at specified intervals .

Control Statements 6-19

6.7.2 The WAIT Statement
You use the WAIT statement only with terminal input statements such as
INPUT, INPUT LINE, and LINPUT. For example, the following program
prompts for input, then waits 30 seconds for your response . If the program
does not receive input in the specified time, BASIC-PLUS-2 signals "Keyboard
wait exhausted (ERR=15)" and exits the program .

Example
10

	

WAIT 30%
20

	

INPUT "You have 30 seconds to type your password" ; PSW$
30

	

END

The WAIT statement affects all subsequent INPUT, INPUT LINE, LINPUT,
MAT INPUT, and MAT LINPUT statements . To disable a previously specified
WAIT statement, use WAIT 0% .
In the following example, the WAIT statement in line 10 causes the INPUT
statement in line 20 to wait 30 seconds for a response . The WAIT 0%
statement in line 30 disables this 30-second requirement for all subsequent
INPUT statements .
Example
10

	

WAIT 30%
20

	

INPUT "You have 30 seconds to type your password" ; PSW$
30

	

WAIT 0%
40

	

INPUT "What directory do you want to go to" ; DIR$

6.7.3 The STOP Statement
The STOP statement is a debugging tool that lets you check the flow of
program logic . STOP suspends program execution but does not close files .
When BASIC-PLUS-2 executes a STOP statement, it prints "STOP at line
lin-num."
If the program was run or compiled with the /DEBUG qualifier, the debugger
number sign (#) prompt is displayed, at which time you can enter debugger
commands. For example, you can enter the CONTINUE command to
continue program execution or the EXIT command to return to DCL level .
For a description of the BASIC-PLUS-2 debugger commands see the
BASIC-PLUS-2 Reference Manual .

6-20 Control Statements

6.7.4 The END Statement
The END statement marks the end of a main program . When BASIC-PLUS-2
executes an END statement it closes all files and halts program execution .
The END statement is optional . However, you should include it for good
programming practice . The END statement must be the last statement in the
main program .
If you run your program in the BASIC environment, the END statement
returns you to BASIC-PLUS-2 command level. If you execute the program
outside the BASIC environment, the END statement returns you to DCL
command level .

Control Statements 6-21

7
Declarations and Data Types

This chapter describes how to explicitly assign data types to program variables
and how to allocate and use data storage .

7.1 Declarative Statements
You use declarative statements to define objects in a BASIC-PLUS-2 program .
Objects can be variables, arrays, constants, and user-defined functions within a
program module. They can also be routines, variables, and constants external
to the program module. Declarative statements always assign names to the
objects declared and usually assign other attributes, such as a data type, to
them .
You use declarative statements to assign data types to the following :
•

	

Variables
•

	

Arrays
•

	

Named constants
•

	

Values returned by functions
By declaring the objects used in your program, you make the program much
easier to understand, modify, and debug .

7.2 Data Types
At its most fundamental level, a data type is a format for information storage .
All information is stored in the computer as bit patterns (groups of ones and
zeros). Data types specify how the computer should interpret these patterns .
BASIC-PLUS-2 programs allow three general data types : integer, floating-
point, and string . Each of these general data types has unique characteristics
that determine the way you use it . For example, integers are useful for
numeric computations involving whole numbers, and strings provide a way to
manipulate alphanumeric characters .

Declarations and Data Types 7-1

Within integer and floating-point data types there are further subdivisions .
For example, integers can be classed as BYTE, WORD, and LONG . Choosing
one of these integer subdivisions lets you control the following :
•

	

The amount of storage required for the integer
•

	

The range of values that the integer can accept
See Table 7-1 for more information on the range and storage requirements of
these integer subtypes .
Similarly, floating-point data can be classed as SINGLE, or DOUBLE . See
Table 7-1 for more information on the range and storage requirements of these
floating-point subtypes . The choice you make when assigning numeric data
types always involves a tradeoff between storage requirements and precision or
range .
In addition to numeric and string data types, BASIC-PLUS-2 also provides
a unique data type called RFA . Variables of the RFA data type require six
bytes of storage and can contain only a Record File Address . RFA variables
are used with RMS file I/O and the operations that can be performed on
them are strictly limited . See the BASIC-PLUS-2 Reference Manual for more
information on the RFA data type .
Traditionally, BASIC-PLUS-2 programs have had just three data types :
integer, string, and floating-point . You assigned a data type to a variable
by adding a suffix to the variable names ; a dollar sign ($) denoted a string
variable, a percent sign (%) denoted an integer variable, and variable names
without suffixes denoted floating-point variables . By referencing a variable
in your program, you would implicitly declare the variable with the data type
indicated by the suffix character.
BASIC-PLUS-2 now lets you explicitly assign data types to variables,
parameters, and functions . This feature gives you more control over the
storage and precision used by your program. You can, however, still use
implicit data typing in your programs . You can ensure that all program
variables are explicitly declared by specifying OPTION TYPE = EXPLICIT or
by using the /TYPE=EXPLICIT qualifier when you compile your programs . See
Section 7 .3 and the BASIC-PLUS-2 Reference Manual for more information on
the OPTION statement .
Table 7-1 lists the keywords you use to assign data types along with their size,
range, and precision .

7-2 Declarations and Data Types

As shown in Table 7-1, there are four data type keywords that specify integer
data. The data type INTEGER is a general data type because it specifies only
that a variable contains integer data. The subtypes BYTE, WORD, and LONG
specify exactly how much storage is allocated to an integer variable . If you
specify the INTEGER data type, the subtype of integer variables depends on
the default integer data type in effect when the program is compiled . This
default is determined by the following :

•

	

The program's OPTION statement, if present

•

	

The qualifier (either /BYTE, /WORD, or /LONG) that you use to compile
the program

Similarly, there are three data type keywords that specify floating-point data .
The data type REAL is a general data type because it specifies only that a
variable contains floating-point data . The subtypes SINGLE and DOUBLE
specify exactly how much storage is allocated to a floating-point variable . If
you specify the data type REAL, the subtype of floating-point variables depends

Declarations and Data Types 7-3

Table 7-1 BASIC-PLUS-2 Data Types

Data Type
Keyword Size

	

Range

INTEGER

Precision
(DecimalDigits)

BYTE
WORD
LONG

8 bits

	

-128 to +127
16 bits

	

-32768 to +32767
32 bits

	

-2147483648 to
+2147483647

NA
NA
NA

REAL

SINGLE

DOUBLE

32 bits

	

.29 *
1.7 *

64 bits

	

.29 *
1 .7 *

10-38 to
10 38

10 -38 to
10 38

6

16

STRING

STRING One

	

NA
character
per byte

NA

R FA

RFA 6 bytes

	

NA NA

on the default floating-point subtype in effect when the program is compiled .
This default is determined by the following :
•

	

The OPTION statement, if present
•

	

The /SINGLE or /DOUBLE qualifier you use to compile the program
Choosing a numeric subtype always involves a tradeoff between storage
requirements and range or precision. You can reduce the size of an executable
image by choosing the smallest numeric subtype that is large enough to meet
your needs .

7 .3 Setting the Default Data Type and Size
There are two ways to set the default data type and size for your program :

•

	

With the OPTION statement
•

	

With qualifiers :
- /TYPE DEFAULT
- /BYTE
- /WORD
- /LONG
- /DOUBLE
- /SINGLE

The OPTION statement can override the defaults set with qualifiers . For
example, the following statement sets the default integer type to be LONG .

0

	

OPTION SIZE = INTEGER LONG

You can have more than one OPTION statement in a program module ;
however, OPTION statements can be preceded only by a SUB, FUNCTION,
PROGRAM, or REM statement, or by another OPTION statement .
See the BASIC-PLUS-2 Reference Manual for more information about the
OPTION statement.
In the following example, the OPTION statement specifies the following :

•

	

All program variables must be explicitly typed .
•

	

All implicitly typed constants are INTEGER .
•

	

Any variable typed as INTEGER is a LONG integer .

•

	

Any variable typed as REAL is a DOUBLE floating-point number.

7-4 Declarations and Data Types

Example
10 OPTION TYPE = EXPLICIT, ! Variables must be declared &

CONSTANT TYPE = INTEGER, ! All implicit constants be integers &
SIZE = INTEGER LONG, ! 32-bit integers by default &
SIZE = REAL DOUBLE

	

! 64-bit floating-point
! numbers by default

You can create variables of other data types by explicitly declaring them with
the DECLARE, COMMON, or MAP statement .

7 .4 Declaring Variables Explicitly
The DECLARE statement explicitly assigns a data type or subtype to a
variable, function, or constant .
The subtype you specify overrides any defaults specified in the OPTION
statement, in the BASIC environment or with compilation qualifiers . For
example, if you compile your program with the /WORD qualifier and then
declare an integer variable to be LONG, the variable is LONG rather than
WORD. Note that when you specify the data type STRING in a DECLARE
statement, a dynamic string variable is used .

You can define a variable only once in a program . For example, if a variable
name appears in a DECLARE statement, it cannot also appear in a COMMON
or MAP statement .
You should use unique variable names to avoid confusion and make program
documentation easier. For example, if you declare variable B to be LONG,
there cannot also be a floating-point variable B in your program . It is possible
to have both an INTEGER variable B% and an INTEGER variable B in the
same program; however, this is poor programming practice .

You can also use the DECLARE statement to assign a data type and value to
DEF functions and constants . See Section 7 .5 for an explanation of declaring
named constants .
The following statement declares the DEF function circumference and declares
a SINGLE parameter for the function :
10

	

DECLARE WORD FUNCTION circumference(SINGLE)

DECLARE FUNCTION lets you assign a data type to parameters and to
the value a function returns . DECLARE FUNCTION also lets you name the
function without using the usual convention (beginning the function name with
FN and ending the function name with a percent or dollar sign suffix) . For
example :

Declarations and Data Types 7-5

Example
10

	

DECLARE STRING FUNCTION concat (STRING, STRING) !Declare the function

new_string$ = concat(A$, B$) !Invoke the function
DEF concat (STRING Y, STRING Z) !Define the function
concat = Y + Z
END DEF

END

This format allows only one data type in a single statement . Declaring more
than one type of function requires more than one DECLARE statement .
These data typing features give you control over storage allocation. Compiling
a program with OPTION TYPE = EXPLICIT is particularly useful because
it causes BASIC-PLUS-2 to signal an error when an implicit variable is
encountered. This prevents a typing mistake from being interpreted as a new
variable . BASIC-PLUS-2 supports implicit variables for compatibility with
other BASICs and also because they are useful for beginning programmers ;
however, it is recommended that you use explicit declarations for new program
development .

7 .5 Declaring Named Constants Explicitly
Constants are values that do not change during program execution . You can
declare named constants within a program unit with the DECLARE statement .
You can also refer to constants outside the program unit with the EXTERNAL
statement .
Named constants are useful for the following reasons :

•

	

If a commonly-used constant must be changed, you can make the change in
a single place .

•

	

They make the program easier to understand.

7-6 Declarations and Data Types

7.5.1 Declaring Constants Within a Program Unit
In BASIC-PLUS-2, you can specify only a single value for floating-point named
constants. That is, the value assigned to named floating-point constants cannot
be an expression .
The value assigned to a named constant need not be in the allowable range of
the default data type ; however, it must be in the valid range of the data type
being declared . The following statement declares a LONG constant named
XYZ and assigns it a value of 1000 . In DECLARE CONSTANT statements,
BASIC-PLUS-2 signals an overflow error only if the value is outside the range
of the data type being declared .
10

	

DECLARE LONG CONSTANT XYZ = 1000

The following example declares a double-precision constant :

Example
10

	

DECLARE DOUBLE CONSTANT plancks = 6 .6237E-27
20

	

INPUT "FREQUENCY" ; freq
30

	

PRINT "ENERGY EQUALS" ; plancks / freq
40

	

END

A DECLARE CONSTANT statement allows only one data type . To declare
a constant of a different data type, you must use an additional DECLARE
CONSTANT statement .

7 .5.2 Declaring Constants External to the Program Unit
To declare constants external to the program unit, use the EXTERNAL
statement. For example :
10

	

EXTERNAL WORD CONSTANT STATUS

The task builder automatically supplies the values for constants specified
in EXTERNAL statements. For more information on using the EXTERNAL
statement, see the BASIC-PLUS-2 Reference Manual .

7.6 Operations with Multiple Data Types
When an expression contains operands of different data types, it is called a
mixed-mode expression. Before a mixed-mode expression can be evaluated, the
operands must be converted, or promoted to a common data type . The result
of the evaluation may also be converted depending on the data type of the
variable to which it is assigned .

Declarations and Data Types 7-7

When evaluating mixed-mode expressions, BASIC-PLUS-2 performs
promotions so that no operand loses any range or precision . When assigning
values to variables, BASIC-PLUS-2 converts the result of the expression to
the data type of the variable . If the value of the expression is outside the
allowable range of the variable's data type, BASIC-PLUS-2 signals the error
"Integer error or overflow" or "Floating-point error or overflow ." Note that
these overflow errors are only signaled when converting between data types ;
overflow during calculation is not detected .
In general, BASIC-PLUS-2 promotes operands with different data types to
the lowest data type that can hold the largest and most precise possible value
of either operand's data type . BASIC-PLUS-2 then performs the operation
in that data type, and yields a result of that data type . If the result of the
expression is assigned to a variable, BASIC-PLUS-2 converts the result to
the data type of the variable . Table 7-2 lists the resulting data type for all
combinations .

As Table 7-2 shows, if one operand is SINGLE and one operand is DOUBLE,
BASIC-PLUS-2 promotes the SINGLE value to DOUBLE, performs the
specified operation, and returns the result as a DOUBLE value . This
promotion is necessary because the SINGLE data type has less precision than
the DOUBLE value, whereas the DOUBLE data type can hold the largest
and most precise possible SINGLE value . If BASIC-PLUS-2 did not promote
the SINGLE value and the operation yielded a more precise result than was
represented in SINGLE, the value would lose precision .

7-8 Declarations and Data Types

Table 7-2 Result Data Types in Expressions

BYTE WORD LONG SINGLE DOUBLE

BYTE BYTE WORD LONG SINGLE DOUBLE
WORD WORD WORD LONG SINGLE DOUBLE
LONG LONG LONG LONG SINGLE DOUBLE
SINGLE SINGLE SINGLE SINGLE SINGLE DOUBLE
DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

7 .7 Allocating Static Storage
BASIC-PLUS-2 programs allocate both static and dynamic storage . The size
of static storage does not change during program execution . Variables and
arrays appearing in MAP or COMMON statements use static storage . Because
this storage is static, all string variables appearing in MAP or COMMON
statements are fixed-length strings .

Dynamic storage is allocated when the program executes . Variables and arrays
declared in the following statements use dynamic storage :

•

	

DECLARE statements
•

	

DIMENSION statements
•

	

Implicitly declared variables
String variables and arrays declared in this way are dynamic strings and their
length can change during program execution .
MAP and COMMON statements create a named storage area called a program
section (PSECT) . MAP statements require a map name, but in COMMON
statements the name is optional . The PSECT name is the same as the map or
common name . If you do not specify a common name, BASIC-PLUS-2 supplies
a default PSECT name of .$$$$. The following sections explain how to use
static storage .

7.7.1 The COMMON Statement
The COMMON statement defines a named area of storage (called a PSECT) .
Any BASIC-PLUS-2 subprogram can access the values in a common by
specifying a common with the same name . An item in a COMMON statement
can be any of the following :

•

	

A numeric variable
•

	

A numeric array
•

	

A fixed-length string variable

•

	

An array of fixed-length strings

•

	

A FILL item
The amount of storage reserved for a variable depends on its data type . You
can specify a length for string variables and string array elements that appear
in a COMMON statement . If you do not specify a length, the default is 16 .
The following statement specifies 2 bytes for emp.code, 3 bytes for wage.code,
and 22 bytes for dep.code .

Declarations and Data Types 7-9

10

	

COMMON (code) STRING emp .code=2, wage .code=3, dep .code=22

In a single program module, multiple commons with the same name allocate
storage end-to-end in a single PSECT. That is, BASIC-PLUS-2 concatenates
all commons with the same name in the same program module, in the order
they appear. For example, the following statements allocate storage for five
LONG integers in a single PSECT named into .
10

	

COMMON (into) LONG call count, subl count, sub2_count
COMMON (into) LONG sub3_count, sub4 count

7.7.2 The MAP Statement
The MAP statement, like the COMMON statement, creates a named area of
static storage. However, if a program module contains multiple maps with the
same name, the maps are overlaid on the same area of storage, rather than
being concatenated .
When used with the MAP clause of the OPEN statement, the storage allocated
by the MAP statement becomes the record buffer for that file . Variables in the
MAP statement correspond to fields in the file's records .
A map item can be one of the following :
•

	

A numeric variable
•

	

A numeric array
•

	

A fixed-length string variable
•

	

An array of fixed-length strings
•

	

A FILL item

7.7.2 .1 Single Maps
You associate a map with a record buffer by referencing the map in the OPEN
statement .
The MAP statement must appear before any reference to map variables .
For example, the following program uses map variables to access fields in
payroll records . Changes to map variables do not change the actual records
in the file . To transfer the changed variables to the file, you must use the
PUT or UPDATE statement . For more information on these statements, see
Chapter 12 and the BASIC-PLUS-2 Reference Manual .

7-1 0 Declarations and Data Types

Example
10

	

ON ERROR GOTO 50
DECLARE INTEGER CONSTANT EOF = 11

MAP (PAYROL) STRING emp name, LONG wage class,

	

&
STRING sal rev_date, SINGLE tax_ytd

20

	

OPEN

	

"payroll .dat" FOR INPUT AS FILE #4%

	

&
,ORGANIZATION SEQUENTIAL &

,ACCESS READ &
,MAP PAYROL

30 OPEN "payrol .new" FOR OUTPUT AS FILE #5% &
,ORGANIZATION SEQUENTIAL &
,ACCESS WRITE &
,MAP payrol

40

	

PRINT "PAYROLL VERIFICATION"

get_loop :
WHILE 1% = 1%

GET #4
PRINT emp name, wage class, sal rev_date, tax_ytd
PRINT "YOU CAN CHANGE :"
PRINT "1 . EMPLOYEE NAME"
PRINT "2 . WAGE CLASS"
PRINT "3 . REVIEW DATE"
PRINT "4 . TAX YEAR-TO-DATE"
PRINT "5 . DONE"

read_loop :
WHILE 1% = 1%

INPUT "CHANGES? ANSWER WITH YES OR NO" ; chng$
IF chng$ = "NO" THEN ITERATE get-loop

ELSE INPUT "NUMBER" ; number%
END IF

Declarations and Data Types 7-11

SELECT number%
CASE 1

INPUT "EMPLOYEE NAME" ; emp name
CASE 2

INPUT "WAGE CLASS" ; wage class
CASE 3

INPUT "REVIEW DATE" ; sal rev_date
CASE 4

INPUT "TAX YEAR-TO-DATE" ; tax_ytd
CASE 5

EXIT read-loop
CASE ELSE

PRINT "Invalid response -- please try again"
END SELECT

NEXT
PUT #5
NEXT

50

	

IF ERR = EOF
THEN

PRINT "End of file"
ELSE

ON ERROR GOTO 0
END IF
END

7.7.2.2 Multiple Maps
When a program contains more than one map with the same name, the storage
allocated by the MAP statements is overlaid . This technique is useful for
manipulating strings .

Figure 7-1 Multiple Maps

NA.ME$= 40 BYTES

7-1 2 Declarations and Data Types

ADDRESS$= 44 BYTES

NU-2181A-RA

Y
FIRST.NAMES$ LAST.NAMES$ STREET. STREET$ CITY$

_ = NUMBER$ _
15 BYTES 25 BYTES = 16 23 BYTES

5 BYTES BYTES

When you use more than one map to access a record buffer, BASIC-PLUS-2
uses the size of the largest map to determine the size of the record . However,
note that the RECORDSIZE clause of the OPEN statement, if specified, will
override the record size defined by a MAP statement . For more information
on the RECORDSIZE clause, see Chapter 12 and the description of the OPEN
statement in the BASIC-PLUS-2 Reference Manual .

You can also use multiple maps to interpret numeric data in more than one
way. The following example creates a map area named barray . The first
MAP statement allocates 26 bytes of storage in the form of an integer BYTE
array. The second MAP statement defines this same storage as a 26-byte
string named ABC. When the FOR . . . NEXT loop executes, it assigns values
corresponding to the ASCII values for the uppercase letters A through Z .
Example
10

20

MAP (barray) BYTE alphabet(25)
MAP (barray) STRING ABC = 26
FOR I% = 0% TO 25%

.

	

alphabet(I%) = 1%
NEXT I%
PRINT ABC
END

Output
ABCDEFGHIJKLMNOPQRSTUVWXYZ

+ 65%

7.7.3 FILL Items
FILL items reserve space in map and common blocks and in record buffers
accessed by MOVE or REMAP statements . Thus, FILL items mask parts of
the record buffer and let you skip over fields and reserve space in or between
data elements .
FILL formats are available for all data types. Table 7-3 summarizes the FILL
formats and their default allocations if no data type is specified .

Table 7-3 FILL Item Formats, Representations, and Default Allocations

Declarations and Data Types 7-13

FILL Format Representation Bytes Used

FILL Floating-point 4, 8, or 16
FILL(n) n floating-point elements 4n, 8n, or 16n
FILL% Integer (BYTE, WORD, or LONG) 1, 2, or 4

(continued on next page)

Table 7-3 (Cont .) FILL Item Formats, Representations, and Default Allocations

FILL Format

	

Representation

	

Bytes Used

FILL%(n)

	

n integer elements

	

In, 2n, or 4n
FILL$

	

String

	

16
FILL$(n)

	

n string elements

	

16n
FILL$ = m

	

String

	

m
FILL$(n) = m

	

n string elements, m bytes each

	

m * n

Note

In the applicable formats of FILL, n represents a repeat count, not an
array subscript . FILL(n), for example, represents n real elements, not
n+1 .

You can also use data type keywords with FILL and optionally data type
suffixes. The data type and storage requirements are those of the last data
type specified. For example :
Example
10

	

MAP (QED) STRING A, FILL$=24, LONG SSN, FILL%, REAL SAL, FILL(5)

In this example, the MAP statement uses data type keywords to reserve space
for the following :
•

	

A 16-character string variable A
•

	

24 bytes of padding
•

	

LONG variable, SSN
•

	

4 bytes of padding
•

	

REAL variable, SAL
•

	

5 floating-point numbers (which requires 20, or 40 bytes of padding,
depending on the default size for floating-point numbers)

7.7.4 Using COMMON and MAP in Subprograms
The COMMON and MAP statements create a block of storage called a PSECT
(program section). This common or map storage block is accessible to any
subprogram. A BASIC-PLUS-2 main program and a subprogram can share
such an area by referencing the same common or map name .

7-1 4 Declarations and Data Types

Example
10

	

!In a main program
COMMON (Al) STRING A, B = 10, LONG C

10

	

!In a subprogram
COMMON (Al) STRING X, Z = 10, LONG Y

The previous example contains common blocks that define the following :

•

	

A 16-character string field called A by the main program and X by the
subprogram

•

	

A 10-character string field called B by the main program and Z by the
subprogram

•

	

A 4-byte integer field called C by the main program and Y by the
subprogram

Note that if a subprogram defines a common or map area with the same name
as a common or map in the main program, it overlays the common or map
defined in the main program .
Multiple COMMON statements with the same name behave differently
depending on whether these statements are in the same program module .
If they are in the same program module, then the storage for each common
area is concatenated . However, if they are in different program modules,
then the common areas overlay the same storage . The following COMMON
statements are in the same program module ; therefore, they are concatenated
in a single PSECT. The PSECT contains two 32-byte strings .
10

	

COMMON (XYZ) STRING A = 32
COMMON (XYZ) STRING B = 32

In contrast, the following COMMON statements are in different program
modules, and thus overlay the same storage. Therefore, the PSECT contains
one 32-byte string, called A in the main program and B in the subprogram .

10

	

!In the main program
COMMON (XYZ) STRING A = 32

20

	

!In the subprogram
COMMON (XYZ) STRING B = 32

Declarations and Data Types 7-15

Although you can redefine the storage in a common section when you access
it from a subprogram, you should generally not do so. Common areas should
contain exactly the same variables in all program modules . To make sure
of this, you should use the %INCLUDE directive, as shown in the following
example :
Example

If you use the %INCLUDE directive, you can lessen the chance of a
typographical error appearing in your program. For more information on
using the %INCLUDE directive, see Chapter 14 .
If you must redefine the variables in a PSECT, you should use the MAP
statement. When you use the MAP statement, use the %INCLUDE directive
to create identical maps before redefining them, as shown in the following
example. The map defined in MAPB2S is included in both program modules
as a 40-byte string. This map is redefined in the subprogram, allowing the
subprogram to access parts of this string .
Example

MAP (REDEF) STRING first name=l5, MI=1, last name=24

7-1 6 Declarations and Data Types

10 !Contents of COMMON .B2S
COMMON (SHARE) WORD emp num, &

DOUBLE salary, &

STRING wage_class = 2

20 !In the main program
%INCLUDE "COMMON .B2S"

30 !In the subprogram
%INCLUDE "COMMON .B2S"

10 !Contents of MAP .B2S
MAP (REDEF) STRING full name = 40

20 !In the main program
%INCLUDE "MAP .B2S"

30 !In the subprogram
%INCLUDE "MAP .B2S"

7.8 Dynamic Mapping
Dynamic mapping lets you redefine the position of variables in a static storage
area. This storage area can be either a map name or a previously declared
static string variable . Dynamic mapping requires three BASIC-PLUS-2
statements :
•

	

A declarative statement, such as a MAP statement, allocating a fixed-
length storage area

•

	

A MAP DYNAMIC statement, naming the variables whose positions can
change at run time

•

	

A REMAP statement, specifying the new positions of the variables named
in the MAP DYNAMIC statement

The MAP DYNAMIC statement does not affect the amount of storage allocated .
The MAP DYNAMIC statement causes BASIC-PLUS-2 to create internal
pointers to the variables and array elements . Until your program executes
the REMAP statement, the storage for each variable and each array element
named in the MAP DYNAMIC statement starts at the beginning of the map
storage area .
The MAP DYNAMIC statement is nonexecutable . With this statement, you
cannot specify a string length . All string items have a length of zero until the
program executes a REMAP statement .
The REMAP statement specifies the new positions of variables named in the
MAP DYNAMIC statement. That is, it causes BASIC-PLUS-2 to change the
internal pointers to the data. Because the REMAP statement is executable, it
can redefine the pointer for a variable or array element each time the REMAP
statement is executed .
With the MAP DYNAMIC statement, you can specify either a map name or
a previously declared static string variable . When you specify a map name,
a MAP statement with the same map name must lexically precede the MAP
DYNAMIC statement.
In the following example, the MAP statement creates a storage area and
names it emp . The MAP DYNAMIC statement specifies that the positions of
variables emp name and emp address within the map area can be dynamically
defined with the REMAP statement .

Declarations and Data Types 7-17

Example
10

	

DECLARE LONG CONSTANT emp_fixed_info = 4 + 9 + 2
MAP (emp) LONG badge, &

STRING social-sec num 9, &
BYTE name_ length, &
address_length, &
FILL (60)

MAP DYNAMIC (emp) STRING emp name,

	

&
emp address

WHILE 1%
GET #1
REMAP (emp) STRING FILL = emp_fixed_info,

emp name = name -length,
emp address = address-length

NEXT

At the start of program execution, the storage for badge is the first 4 bytes
of emp, the storage for social sec num is equal to 9 bytes and together
name length and address length are equal to 2 bytes. The FILL keyword
reserves 60 additional bytes of storage . The MAP DYNAMIC statement defines
the variables emp name and emp address whose positions and lengths will
change at run time . When executed, the REMAP statement defines the FILL
area to be equal to emp fixed info and defines the positions and lengths of
emp name and emp address .
When you specify a static string variable, it must be either a variable declared
in a MAP or COMMON statement or a parameter declared in a SUB,
FUNCTION, or DEF. The actual parameter passed to the procedure must
be a static string variable defined in a COMMON or MAP statement .
The following example shows the use of a static string variable as a parameter
declared in a SUB . The MAP DYNAMIC statement specifies the input
parameter, input rec, as the string to be dynamically defined with the REMAP
statement. In addition, the MAP DYNAMIC statement specifies a string
array A whose elements will point to positions in input rec after the REMAP
statement is executed . The REMAP statement defines the length and position
of each element contained in array A . The FOR . .. NEXT loop then assigns each
element contained in array A into array item, the target array .

7-18 Declarations and Data Types

Example
10

	

SUB deblock (STRING input_rec, STRING item())

MAP DYNAMIC (input_rec) STRING A(2)

REMAP (input_rec) &
A(0) = 5, &
A(1) = 3, &
A(2) = 4

FOR I = 0 to 2
item(I) = A(I)

NEXT I
END SUB

Note that dynamic map variables are local to the program module in which
they reside . Therefore, REMAP only affects how that module views the buffer.

For more information on using the MAP DYNAMIC and REMAP statements,
see the BASIC-PLUS-2 Reference Manual .

Declarations and Data Types 7-19

8
Functions

A function is a single statement or group of statements that perform operations
on operands and return the result to your program . BASIC-PLUS-2 has
built-in functions that perform numeric and string operations, conversions,
and date and time operations . This chapter describes only a selected group of
built-in functions . For a complete description of all BASIC-PLUS-2 built-in
functions, see the BASIC-PLUS-2 Reference Manual .

This chapter also describes user-defined functions . BASIC-PLUS-2 lets you
define your own functions in two ways :

•

	

With the DEF statement

•

	

As separately compiled subprograms (external functions)
DEF function definitions are local to a program module, while external
functions can be accessed by any program module . You create local functions
with the DEF statement and optionally declare them with the DECLARE
statement. You create external functions with the FUNCTION statement and
declare them with the EXTERNAL statement .
Once you have created and declared a function, you can invoke it just as you
would a built-in function .

8.1 Built-In Functions
The functions described in this section let you perform sophisticated
manipulations of string and numeric data . BASIC-PLUS-2 also provides
algebraic, exponential, trigonometric, and randomizing mathematical functions .
All of these functions are contained in the BASIC-PLUS-2 library of built-in
functions .

Functions 8-1

8.1 .1 Using Numeric Functions
Numeric functions generally return a result of the same data type as the
function's parameter. For example, if you pass a DOUBLE argument to any of
the trigonometric functions, they return a DOUBLE result .
If the format of a BASIC-PLUS-2 function specifies an argument of a
particular data type, BASIC-PLUS-2 converts the actual argument supplied
to the specified data type . For instance, if you supply an integer argument
to a function that expects a floating-point number, BASIC-PLUS-2 converts
the argument to floating-point . Floating-point arguments that are passed to
integer functions are truncated, not rounded .
The following are some examples of BASIC-PLUS-2 built-in numeric functions .

8.1 .1 .1 The ABS Function
The ABS function returns a floating-point number that equals the absolute
value of a specified numeric expression . The following is an example of the
ABS function :
Example
10

	

READ A,B
20

	

DATA 10,-35 .3
30

	

NEW A = ABS(A)
40

	

PRINT NEW A ; ABS(B)
50

	

END

Output
10

	

35 .3

ABS always returns a number of the default floating-point data type .

8.1 .1 .2 The INT and FIX Functions
The INT function returns the floating-point value of the largest integer less
than or equal to a specified expression . INT always returns a number of the
default floating-point type .
The FIX function truncates the value of a floating-point number at the decimal
point. FIX always returns a number of the default floating-point type .
The following example points out the differences between the INT and FIX
functions. Note that the value returned by FIX(-45 .3) differs from the value
returned by INT(-45 .3) .

8-2 Functions

Example

Output
23 23
3 3

-46 -45
-11 -11

8 .1 .1 .3 The SIN, COS, and TAN Functions
The SIN, COS, and TAN functions return the sine, cosine, and tangents of an
angle in radians . If you supply a floating-point argument to the SIN, COS, and
TAN functions, they return a number of the same floating-point type . However,
if you supply an integer argument, they convert the argument to the default
floating-point data type and return a floating-point number of that type .

The following program accepts an angle in degrees, converts the angle to
radians, and prints the angle's sine, cosine, and tangent:

Example

Functions 8-3

10 !CONVERT ANGLE (X) TO RADIANS, AND
20 !FIND SIN, COS AND TAN
30 PRINT "DEGREES", "RADIANS", "SINE", "COSINE","TANGENT"
40 FOR I% = 0% TO 5%

READ X
LET Y = X * 2 * PI / 360

50

PRINT
PRINT X Y ,SIN(Y) ,COS(Y) ,TAN(Y)

NEXT 1%

100 DATA 0,10,20,30,360,45
200 END

10 PRINT INT(23 .553) ; FIX(23 .553)
20 PRINT INT(3 .1) ; FIX(3 .1)
30 PRINT INT(-45 .3) ; FIX(-45 .3)
40 PRINT INT(-11) ; FIX(-11)
50 END

Note

As an angle approaches 90 degrees (PI/2 radians), 270 degrees (3*PI/2
radians), 450 degrees (5*PI/2 radians) and so on, the tangent of that
angle approaches infinity. If your program tries to find the tangent
of such an angle, BASIC-PLUS-2 signals the error "Division by 0"
(ERR=61) .

8.1 .1 .4 The LOG10 Function
A logarithm is the exponent of some number (called a base) . Common
logarithms use the base 10 . The common logarithm of a number N, for
example, is the power to which 10 must be raised to equal N. For example,
the common logarithm of 100 is 2, because 10 raised to the power 2 equals 100 .

The LOG10 function returns a number's common logarithm . The following
example calculates the common logarithms of all multiples of 10 from 10 to 100
inclusive :
Example
10

	

FOR I% = 10% TO 100% STEP 10%
PRINT LOG1O(I%)

20

	

NEXT I%
30

	

END

8-4 Functions

Output
DEGREES RADIANS SINE COSINE TANGENT

0 0 0 1 0

10 .174533 .173648 .984808 .176327

20 .349066 .34202 .939693 .36397

30 .523599 .5 .866025 .57735

360 6 .28319 .174846E-06 1 .174846E-06

45 .785398 .707107 .707107 1

Output
1
1 .30103
1 .47712
1 .60206
1 .69897
1 .77815
1 .8451
1 .90309
1 .95424
2

If you supply a floating-point argument to LOG10, the function returns a
floating-point number of the same data type . However, if you supply an integer
argument, LOG10 converts it to the default floating-point data type and
returns a value of that type .

8.1 .1 .5 The EXP Function
The EXP function returns the value of e raised to a specified power. The
following example prints the value of e and e raised to the second power :

Example
10

	

READ A,B
20

	

DATA 1,2
30 PRINT 'e RAISED TO THE POWER' ; A ; " EQUALS" ; EXP(A)
40 PRINT 'e RAISED TO THE POWER' ; B ; " EQUALS" ; EXP(B)
50

	

END

Output
e RAISED TO THE POWER 1 EQUALS 2 .71828
e RAISED TO THE POWER 2 EQUALS 7 .38906

If you supply a floating-point argument to EXP, the function returns a floating-
point number of the same data type . However, if you supply an integer
argument, EXP converts it to the default floating-point data type and returns a
value of that type .

8.1 .1 .6 The RND Function
The RND function returns a number greater than or equal to zero and less
than one. The RND function always returns a floating-point number of the
default floating-point data type. The RND function generates seemingly
unrelated numbers. However, given the same starting conditions, a computer
always gives the same results. Each time you execute a program with the RND
function, you receive the same results .

Example
10

	

PRINT RND,RND,RND,RND
20

	

END

Functions 8-5

8-6 Functions

Output 1
.76308

	

.179978

	

.902878

	

.88984

Output 2
.76308

	

.179978

	

.902878

	

.88984

With the RANDOMIZE statement, you can change the RND function's
starting condition and generate truly random numbers . To do this, place a
RANDOMIZE statement before the line invoking the RND function . Note
that the RANDOMIZE statement should be used only once in a program .
With the RANDOMIZE statement, each invocation of RND returns a new and
unpredictable number .
Example
10

	

RANDOMIZE
PRINT RND, RND, RND, RND
END

The RND function can generate a series of random numbers over any open
range. To produce random numbers in the open range A to B, use the following
formula :
200 (B-A)*RND + A

The following program produces 10 numbers in the open range 4 to 6 :

Example
10

	

FOR I% = 1% TO 10%
PRINT (6%-4%) * RND + 4

20

	

NEXT I%
30

	

END

Output
5 .52616
4 .35996
5 .80576
5 .77968
4 .77402
4 .95189
5 .76439
4 .37156
5 .2776
4 .53843

Output 1
.403732 .34971 .15302 .92462

Output 2
.404165 .272398 .261667 .10209

8 .1 .2 Using Data Conversion Functions
BASIC-PLUS-2 provides built-in functions that can do the following :

•

	

Convert a 1-character string to the character's ASCII value and vice versa

•

	

Translate strings from one data format to another, for example, EBCDIC to
ASCII

The following sections describe some of these functions .

8.1 .2.1 The ASCII Function
The ASCII function returns the numeric ASCII value of a string's first
character. The ASCII function returns an integer value between 0 and 255,
inclusive. For instance, in the following example, the PRINT statement prints
the integer value 66 because this is the ASCII value equivalent of an uppercase
B, the first character in the string .

Example
10

	

test_string$ = "BAT"
20

	

PRINT ASCII(test_string$)
30

	

END

Output
66

Note that the ASCII value of a null string is zero .

8.1 .2.2 The CHR$ Function
The CHR$ function returns the character whose ASCII value you supply. If
the ASCII integer expression that you supply is less than zero or greater
than 255, BASIC-PLUS-2 treats it as a modulo 256 value. In other words,
BASIC-PLUS-2 treats the integer expression as the remainder of the actual
supplied integer divided by 256 . Therefore, CHR$(325) is equivalent to
CHR$(69) and CHR$(-1) is equivalent to CHR$(255) .
The following program outputs the character whose ASCII value corresponds
to the input value modulo 256 :

Example
10

	

PRINT "THIS PROGRAM FINDS THE CHARACTER WHOSE"
30

	

PRINT "VALUE (MODULO 256) YOU TYPE"
50

	

INPUT value%
70

	

PRINT CHR$(value%)
90

	

END

Functions 8-7

8-8 Functions

Output 1
THIS PROGRAM FINDS THE CHARACTER WHOSE
VALUE (MODULO 256) YOU TYPE

? 69
E

Output 2
THIS PROGRAM FINDS THE CHARACTER WHOSE

VALUE (MODULO 256) YOU TYPE
? 1093

E

8.1 .3 Using String Numeric Functions
Numeric strings are numbers represented by ASCII characters . A numeric
string consists of an optional sign, a string of digits, and an optional decimal
point. You can use E notation in a numeric string for floating-point constants .
The following sections describe some of the BASIC-PLUS-2 numeric string
functions .

8.1 .3.1 The FORMAT$ Function
The FORMAT$ function converts a numeric value to a string . The output
string is formatted according to a string you provide . The expression you give
this function can be any string or numeric expression. The format string must
contain at least one PRINT USING format field. The formatting rules are the
same as those for printing numbers with PRINT USING . See Chapter 13 for
more information on the PRINT USING statement and formatting rules .

Example
10

	

A = 5
B$
Z$ = FORMAT$(A, B$)

30

	

PRINT Z$
40

	

END

Output
5 .00

8.1 .3.2 The NUM$ and NUM1$ Functions
The NUM$ function evaluates a numeric expression and returns a string of
characters formatted as the PRINT statement would format it . The returned
numeric string is preceded by one space for positive numbers and by a minus
sign for negative numbers . The numeric string is always followed by a space
as shown in the following example .

Example
10

	

PRINT NUM$(7465097802134)
20

	

PRINT NUM$(-50)
30

	

END

Output
.74651E+13
-50

The NUM1$ function translates a number into a string of numeric characters .
NUM1$ does not return leading or trailing spaces or E format . The following
example illustrates the use of the NUM1$ function :
Example
10

	

PRINT NUM1$(PI)
20

	

PRINT NUM1$("97 .5"D * "30456 .23"D + "30385 .1"D)
30

	

PRINT NUM1$(1E-38)
40

	

END

Output
3 .14159
2999870
.00000000000000000000000000000000000001

NUM1$ returns up to 6 digits of accuracy for single-precision real numbers,
up to 16 digits of accuracy for double-precision numbers, and up to 10 digits of
accuracy for LONG integers .
The following example shows the difference between NUM$ and NUM1$:
Example

Output
8 / .1E+07 /
7 /1000000/

Note that A$ has a leading and trailing space .

Functions 8-9

10 A$ = NUM$(1000000)
B$ = NUM1$(1000000)

30 PRINT LEN(A$) ; A$;

50
PRINT LEN(B$) ;
END

B$;

8.1 .3 .3 The VAL% and VAL Functions
The VAL% function returns the integer value of a numeric string . This numeric
string expression must be the string representation of an integer. It can
contain the ASCII digits 0 through 9 and the symbols + and - .
The VAL function returns the floating-point value of a numeric string . The
numeric string expression must be the string representation of some number .
It can contain :
•

	

The ASCII digits 0 through 9
•

	

The symbols +, - and .
•

	

An uppercase E
VAL returns a number of the default floating-point data type . BASIC-PLUS-2
signals "Illegal number" (ERR = 52), if the argument is outside the range of the
default floating-point data type .
The following is an example of VAL and VAL% :
Example
10

	

A = VAL(°922")
20

	

B$ _ "100"
30

	

C% = VAL%(B$)
40

	

PRINT A
50

	

PRINT C%
60

	

END

Output
922
100

8.1 .4 Using String Arithmetic Functions
String arithmetic functions process numeric strings as arithmetic operands .
This lets you add (SUM$), subtract (DIF$), multiply (PROD$) or divide (QUO$)
numeric strings, or express them at a specified level of precision (PLACE$) .

String arithmetic offers greater precision than floating-point arithmetic or
longword integers, and it eliminates the need for scaling . However, string
arithmetic executes much more slowly than the corresponding integer or
floating-point operations .
The operands for the functions can be numeric strings representing any integer
or floating-point value (E notation is not valid) . Table 8-1 shows the string
arithmetic functions and their formats, and gives brief descriptions of what
they do. Later sections give more detailed descriptions of some of these string
functions .

8-10 Functions

SUM$ and DIF$ take the precision of the more precise argument in the
function, unless padded zeros generate that precision . SUM$ and DIF$ omit
trailing zeros to the right of the decimal point .

String arithmetic computations permit 56 significant digits. The functions
QUO$, PLACE$, and PROD$, however, permit up to 60 significant digits .
Table 8-2 shows how BASIC-PLUS-2 determines the precision permitted by
each function and if that precision is implicit or explicit .

The size and precision of results returned by the SUM$ and DIF$ functions
depend on the size and precision of the arguments involved :

•

	

The sum or difference of two integers takes the precision of the larger
integer.

•

	

The sum or difference of two decimal fractions takes the precision of the
more precise fraction .

•

	

The sum or difference of two real numbers takes precision as follows :

- The sum or difference of the integer parts takes the precision of the
larger part .

Functions 8-11

Table 8-1 String Arithmetic Functions

Function Format Description

SUM$ SUM$(A$,B$) B$ is added to A$.
DIF$ DIF$(A$,B$) B$ is subtracted from A$.
PROD$ PROD$(A$,B$,P%) A$ is multiplied by B$. The product is expressed

with precision P% .
QUO$ QUO$(A$,B$,P%) A$ is divided by B$. The quotient is expressed

with precision P% .
PLACE$ PLACE$(A$,P%) A$ is expressed with precision P% .

Table 8-2 Precision of String Arithmetic Functions

Function How Determined How Stated

SUM$ Precision of argument Implicitly
DIF$ Precision of argument Implicitly
PROD$ Value of argument Explicitly
QUO$ Value of argument Explicitly
PLACE$ Value of argument Explicitly

8-12 Functions

- The sum or difference of the decimal fraction parts takes the precision
of the more precise part .

•

	

BASIC-PLUS-2 truncates trailing zeros .
In the PLACE$, PROD$, and QUO$ functions, the value of the integer
expression argument explicitly determines numeric precision . That is, the
integer expression parameter determines the point at which the number is
rounded or truncated .
If the integer expression is between -5000 and 5000, rounding occurs according
to the following rules :
•

	

For positive integer expressions, rounding occurs to the right of the decimal
place. For example, if the integer expression is 1, rounding occurs one digit
to the right of the decimal place (the number is rounded to the nearest
tenth). If 2, rounding occurs two digits to the right of the decimal place
(the number is rounded to the nearest hundredth), and so on .

•

	

For zero, BASIC-PLUS-2 rounds to the nearest unit .
•

	

For negative integer expressions, rounding occurs to the left of the decimal
place. For example, if the integer expression is -1, rounding occurs one
place to the left of the decimal point. In this case, BASIC-PLUS-2 moves
the decimal point one place to the left, then rounds to units . If the integer
expression is -2, rounding occurs two places to the left of the decimal
point; BASIC-PLUS-2 moves the decimal point two places to the left, then
rounds to units .

Note that when rounding numeric strings, BASIC-PLUS-2 returns only part
of the number.
If the integer expression is between 5001 and 15000, the following rules apply :
•

	

If the integer expression is 10000, BASIC-PLUS-2 truncates the number
at the decimal point .

•

	

If the integer expression is greater than 10000 (10000 plus n)
BASIC-PLUS-2 truncates the numeric string n places to the right of
the decimal point. For example, if the integer expression is 10001 (10000
plus 1), BASIC-PLUS-2 truncates the number starting one place to
the right of the decimal point. If 10002 (10000 plus 2), BASIC-PLUS-2
truncates the number starting two places to the right of the decimal point,
and so on .

• If the integer expression is less than 10000 (10000 minus n) BASIC-PLUS-2
truncates the numeric string n places to the left of the decimal point . For
example, if the integer expression is 9999 (10000 minus 1), BASIC-PLUS-2
truncates the number starting one place to the left of the decimal point . If
9998 (10000 minus 2), BASIC-PLUS-2 truncates starting two places to the
left of the decimal point, and so on .

For examples of this rounding and truncation behavior, see the following
explanation of the PLACE$ function .

8.1 .4 .1 The PLACE$ Function
The PLACE$ function returns a numeric string, truncated or rounded
according to an integer argument you supply .

The following example displays the use of the PLACE$ function with several
different integer expression arguments .
Example

PRINT PLACE$(number$, 1%)
NEXT I%

Output
1

12
123
1235
12346
123457
123456 .7
123456 .65
123456 .654
123456 .6543
123456 .65432

Functions 8-13

10 number$ = "123456 .654321"
20 FOR 1% = -5% TO 5%

PRINT PLACE$(number$, I%)
NEXT I%

30 PRINT
40 FOR I% = 9995 TO 10005

8-14 Functions

1
12
123
1234
12345
123456
123456 .6
123456 .65
123456 .654
123456 .6543
123456 .65432

8.1 .4.2 The PROD$ Function
The PROD$ function returns the product of two numeric strings. The returned
string's precision depends on the value you specify for the integer precision
expression . (See Section 8.1.4 for allowable values of the integer precision
expression) .
Example

Output
-31 .34171

8.1 .5 Using Date and Time Functions

BASIC-PLUS-2 supplies functions to return the date and time in numeric or
string format. The following sections discuss these functions .

8.1 .5.1 The DATE$ Function
The DATE$ function returns a string containing a day, month, and year in the
form dd-Mmm-yy . The date integer argument to the DATE$ function can have
up to six digits in the form yyyddd, where yyy specifies the number of years
since 1970 and ddd specifies the day of that year . If the numeric expression is
zero, DATE$ returns the current date .
Example
10

	

PRINT DATE$(0)
20

	

PRINT DATE$(126)
30

	

PRINT DATE$(6168)
40

	

END

10 A$ = 11-4 .333"
20 B$ = 11 7 .23326"
30 s_product$ = PROD$(A$, B$, 10005%)
40 PRINT s_product$
50 END

Output
15-Apr-91
06-May-70
16-Jun-76

If you supply an invalid date (for example, day 370 of 1973), the results are
undefined .

8.1 .5.2 The TIME$ Function
The TIME$ function returns a string displaying the time of day in the form
hh:mm AM or hh:mm PM. TIME$ returns the time of day at a specified
number of minutes before midnight . If you specify zero in the numeric
expression, TIME$ returns the current time of day .

Example
10 PRINT TIME$(0)
20 PRINT TIME$(1)
30 PRINT TIME$(1440)
40 PRINT TIME$(721)

Output
01 :53 PM
11 :59 PM
12 :00 AM
11 :59 AM

8.1 .5 .3 The TIME Function
The TIME function requests time and usage information from the operating
system and returns it to your program. The information returned by the TIME
function depends on the value of the argument passed to it .

On RSTS/E systems, you can specify the following values as arguments to the
TIME function :

0

	

Returns the number of seconds elapsed since midnight
1

	

Returns the current job's CPU time in tenths of a second
2

	

Returns the current job's connect time in seconds
3

	

Returns the number of kilo-core ticks (KCTs) that your job used
4

	

Returns the device time for the job in minutes
On RSX systems, you can only specify a value of zero with the TIME function .

On both RSX and RSTS/E systems, the following example prints the number of
seconds that have elapsed since midnight :

Functions 8-15

8-16 Functions

Example
10 PRINT TIME(0)
20 END

Output
50755

8.1 .6 Using Terminal Control Functions
BASIC-PLUS-2 provides several terminal control functions . These functions
let you do the following :
•

	

Enable and disable Ctrl/C trapping
•

	

Enable and disable terminal echoing
•

	

Read a single keystroke from a terminal

8.1 .6.1 The CTRLC and RCTRLC Functions
The CTRLC function enables Ctrl/C trapping and the RCTRLC function
disables Ctrl/C trapping. When Ctrl/C trapping is enabled, control is
transferred to the program's error handler when a Ctrl/C is detected at the
controlling terminal .
Ctrl/C trapping is asynchronous . The trap can occur in the middle of an
executing statement, and a statement so interrupted leaves variables in an
undefined state . For example, the statement A$ = "ABC", if interrupted by
Ctrl/C, could leave the variable A$ partially set to "ABC" and partially left
with its old contents . Therefore, you should use the CTRLC function only when
doing a final cleanup before exiting a program .
For example, if you enter a Ctrl/C to the following program when Ctrl/C
trapping is enabled, an "ABORT" message prints to the file open on channel
#1 . This lets you know that the program did not end correctly.

Example
10 ON ERROR GOTO 50

Yo = CTRLC

50

	

IF ERR = 28
THEN PRINT #1%, "Abort"

8.1 .6.2 The ECHO and NOECHO Functions
The NOECHO function disables echoing on a specified channel . Echoing is the
process by which characters entered at the terminal keyboard appear on the
terminal screen .
If you specify channel #0 (your terminal) as the argument, the characters
entered on the keyboard are still accepted as input ; however, they do not
appear on the screen .
The ECHO function enables echoing on a specified channel and cancels the
effect of the NOECHO function on that channel .
If you do not use these functions, ECHO is the default. This program shows a
password routine in which the password does not echo :

Example
10

	

Y% = NOECHO(0%)
INPUT "PASSWORD" ; pword$
IF pword$=="PLUGH" THEN PRINT "THAT IS CORRECT"
END IF

20

	

Y% = ECHO(0%)
END

Note that the Y% = ECHO(0%) statement is necessary to turn the echo back
on. If this statement were not included, then all subsequent user inputs would
not echo to the terminal screen .

8.2 User-Defined Functions
The DEF statement lets you create your own single-line or multi-line functions .

In the traditional BASIC-PLUS-2 usage, a function name consists of the
following :
•

	

The letters FN
•

	

1 to 28 letters, digits, underscores, or periods
•

	

An optional percent sign or dollar sign
Integer function names must end with a percent sign and string function
names must end with a dollar sign . Therefore, the function name can have up
to 31 characters . If the function name ends with neither a percent sign nor a
dollar sign, the function returns a real number.
You can still create user-defined functions using these function names .
However, it is recommended that you use explicit data typing when defining
functions for new program development. See Section 8 .2.2 for an example of an
explicitly declared function .

Functions 8-17

8-18 Functions

Note that the function name must start with FN only if the function is not
explicitly declared and a function reference lexically precedes the function
definition .
DEF functions can be either single-line or multi-line . Whether you use
the single-line or multi-line format for function definitions depends on the
complexity of the function you create . In general, multi-line DEF functions
perform more complex functions than single-line DEF functions . However, the
important distinction between single- and multi-line DEF functions is that
multi-line DEF functions can be invoked recursively, whereas single-line DEF
functions cannot .
If you want to pass values to a function, the function definition requires a
formal parameter list . These formal parameters are the variables used to
calculate the value returned by the function . When you invoke a function, you
supply an actual parameter list ; the values in the actual parameter list are
copied into the formal parameter at this time . DEF functions allow up to 32
formal parameters . You can specify variables, constants, or array elements as
formal parameters, but you cannot specify an entire array as a parameter to a
DEF function .

8.2.1 Single-Line DEF Functions
In a single-line DEF, the function name, the formal parameter list, and the
defining expression all appear on the same line . The defining expression
specifies the calculations that the function performs . You can pass up to
32 arguments to this function through the formal parameter list . These
parameters are variables local to the function definition, and each formal
parameter can be preceded by a data type keyword .
The following example creates a function named fnratio . This function has two
formal parameters : numer and denomin, whose ratio is returned as a REAL
value .
When the function is invoked, BASIC-PLUS-2 does the following :
•

	

Copies the values 5 .6 and 7.8 into the formal parameters numer and
denomin

•

	

Evaluates the expression to the right of the equal sign
•

	

Returns the value to the statement that invoked the function (the PRINT
statement)

The PRINT statement then prints the returned value .

Example
10

	

DEF REAL fnratio (numer, denomin) = numer / denomin
20

	

PRINT fnratio(5 .6, 7 .8)
30

	

END

Output
.717949

Note that the actual parameters you supply must agree in number and data
type with those in the formal parameter list ; you must supply numeric values
for numeric variables, and string values for string variables .
The defining expression for a single-line function definition can contain any
constant, variable, BASIC-PLUS-2 built-in function, or any user-defined
function except the function being defined . The following are valid function
definitions :
Example

Note that the name of the last function defined does not begin with FN . This
is valid as long as no reference to the function lexically precedes the function
definition .
You can also define a function that has no formal parameters . For instance,
the following function definition uses three BASIC-PLUS-2 built-in functions
to return an integer corresponding to the day of the month . DATE$(O) returns
a date string in the form dd-Mmm-yy . The SEG$ function strips out of this
value the characters starting at character position one up to and including the
character at position two (the day number) . The VAL% function converts this
resulting numeric string to an integer . In this way, fnday_number returns the
day of the month as an integer .
10

	

DEF INTEGER fnday number = VAL% (SEG$(DATE$(0%), 1%, 2%))

8.2 .2 Multi-Line DEF Functions
The DEF statement can also define multi-line functions . Multi-line DEF
functions are useful for expressing complicated functions . Note that multi-line
DEF functions do not have the equal sign and defining expression on the first
line. Instead, this expression appears in the function block, assigned to the
function name .

Functions 8-19

10 DEF FN A(X) = X"2 + 3 * X + 4
20 DEF FN B(X) = FN A(X) / 2 + FN A(X)
30 DEF FN C(X) = SQR(X+4) + 1
40 DEF CUBE(X) = X - 3

Note	
If a multi-line DEF function contains DATA statements, they are global
to the program .

Multi-line function definitions can contain any constant, variable,
BASIC-PLUS-2 built-in function, or user-defined function .
You can use either the END DEF or EXIT DEF statements to exit from a user-
defined function. The EXIT DEF statement is equivalent to an unconditional
transfer to the END DEF statement .
The following example shows a multi-line DEF function that uses both the
EXIT and END DEF statements . The defining expression of the function is
in the ELSE clause . This assigns a value to the function if A is less than 10 .
The second set of output shows what happens when A is greater than 10 ;
BASIC-PLUS-2 prints the message "Out of range" and executes the EXIT
DEF statement . The function returns zero because control is transferred to the
END DEF statement before a value was assigned . In this way, this example
tests the arguments before the function is evaluated .

Example
10
20
30

40

50
60

70

	

INPUT Z
80

	

PRINT fn discount(Z)
90

	

END

Output 1
? 4
256

Output 2
? 12
OUT OF RANGE
0

8-20 Functions

DEF fn discount(A)
IF A > 10
THEN

PRINT "OUT OF
EXIT DEF

ELSE
fn_discount

END IF
END DEF

RANGE"

A^A

If you do not explicitly declare the function with the DECLARE statement, the
restrictions for naming a multi-line DEF function are the same as those for
the single-line DEF function . However, explicitly declaring a DEF function can
make a program easier to read and understand . For instance, in the following
examples, the first example concatenates two strings and the second returns a
number in a specified module :
Example 1
10

	

DECLARE STRING FUNCTION concat (STRING, STRING) !Declare the function

100

	

DEF STRING concat (STRING Y, STRING Z)
120

	

concat = Y + Z !Define the function
140

	

FNEND

180

	

new_string$ = concat(A$, B$) !Invoke the function

210

	

END

Example 2
10

	

DECLARE REAL FUNCTION mdlo (REAL, INTEGER)
20

	

DEF mdlo(REAL argument, INTEGER modulus)
!Check for argument equal to zero

30

	

EXIT DEF IF argument = 0
!Check for modulus equal to zero, modulus equal to absolute
!value of argument, and modulus greater than absolute
!value of argument .

40

	

SELECT modulus
CASE = 0%

EXIT DEF
CASE > ABS(argument)

EXIT DEF
CASE = ABS(argument)

mdlo = argument
EXIT DEF

50

	

END SELECT

!If argument is negative, set flag negative% and set argument
!to its absolute value .

60

	

IF argument < 0
THEN argument = ABS(argument)

negative% = -1%
70

	

END IF
80

	

UNTIL argument < modulus
argument = argument - modulus

Functions 8-21

8-22 Functions

!If this calculation ever results in zero, mdlo returns zero
90

	

IF argument = modulus
THEN mdlo = 0
EXIT DEF

100

	

END IF
110

	

NEXT

!Argument now contains the right number, but the sign may be wrong .
!If the negative argument flag was set, make the result negative .

120

	

IF negative%
THEN mdlo = - argument
ELSE mdlo = argument

130

	

END IF

140

	

END DEF

200

	

INPUT "PLEASE INPUT THE VALUE AND THE MODULUS" ; X,Y
210

	

PRINT mdlo(X,Y)
220

	

END

Output
PLEASE INPUT THE VALUE AND THE MODULUS? 7, 5
2

Because these functions are declared in DECLARE statements, the function
names do not have to conform to the traditional BASIC-PLUS-2 rules for
naming functions .
Recursion occurs when a function calls itself . The following example defines a
recursive function that returns a number's factorial value :

Example

Output
INPUT N TO FIND N FACTORIAL? 5
N! IS 120

Any variable accessed or declared in the DEF function and not in the formal
parameter list is global to the program unit . When BASIC-PLUS-2 evaluates
the user-defined function, these global variables contain the values last
assigned to them in the surrounding program module .

10 DECLARE INTEGER FUNCTION factor (INTEGER)

20

DEF INTEGER factor (INTEGER F)
IF F <= 0 %

* F
THEN
ELSE

END IF
END DEF

factor = 1%
factor = factor(F - 1%)

INPUT "INPUT N TO FIND N FACTORIAL" ; N%

30
PRINT "N! IS" ; factor(N%)
END

To prevent confusion, variables declared in the formal parameter list should
not appear elsewhere in the program . Note that if your function definition
actually uses global variables, these variables cannot appear in the formal
parameter list .
You cannot transfer control into a multi-line DEF function except by invoking
it. You should not transfer control out of a DEF function except by way of an
EXIT DEF or END DEF statement. This means the following :

•

	

If the DEF function contains an ON ERROR GOTO, GOTO, ON GOTO,
GOSUB, ON GOSUB, or RESUME statement, that statement's target line
number must also be in that DEF function .

•

	

An ON ERROR GO BACK statement can transfer control out of a DEF
function ; however, a RESUME statement in an error handler outside the
DEF function cannot transfer control back into the DEF function .

• A subroutine cannot be shared by more than one DEF function . However,
if you rewrite the subroutine as a DEF function with no parameters, other
function definitions can share it .

A DEF function never changes the value of a parameter passed to it . Also,
because formal parameters are local to the function definition, you cannot
access the values of these variables from outside the DEF statement . These
variable names are known only inside the DEF statement .

In the following example, the variable first is declared only in the function
fn sum . When BASIC-PLUS-2 sees the PRINT first statement, it assumes
that first is a new variable that is not declared in the main program . If you
try to run this example, BASIC-PLUS-2 signals the error "explicit declaration
of first required ." If you do not specify the OPTION TYPE = EXPLICIT
statement, BASIC-PLUS-2 assumes that first is a new variable and initializes
it to zero .
Example
10

	

OPTION TYPE = EXPLICIT
DECLARE INTEGER A, B
GEE fn_sum(INTEGER first, INTEGER second) = first + second

A = 50%
B = 25%

30

	

PRINT fn_sum(A, B)
40

	

PRINT first
50

	

END

Functions 8-23

8 .3 External Functions
An external function is a separately compiled program module that returns
a value. To create the function subprogram, you use the FUNCTION, END
FUNCTION, and EXIT FUNCTION statements. The difference between a
FUNCTION subprogram and a SUB subprogram is that the FUNCTION
subprogram returns a value .
External functions are useful because they do the following :

•

	

Can be invoked by any program module
•

	

Allow up to 32 parameters
•

	

Allow arrays to be passed as parameters
•

	

Allow more than one value to be returned by modifiable parameters
You use the EXTERNAL statement to name and explicitly declare the data
type returned by the external function and the data type of the formal
parameters .
After you have created an external function, you compile it and task-build it
with the program modules that invoke it . The syntax for invoking an external
function is the same as for invoking a built-in or DEF function .

8.3.1 The FUNCTION, EXIT FUNCTION, and END FUNCTION Statements
The FUNCTION statement marks the beginning of a FUNCTION subprogram .
The END FUNCTION statement does the following :

•

	

Marks the end of a function subprogram

•

	

Returns a value
•

	

Returns program control to the statement that invoked the function
FUNCTIONEND is a synonym for END FUNCTION, but END FUNCTION is
preferred .
The EXIT FUNCTION statement immediately returns program control to
the statement that invoked the function . It is equivalent to an unconditional
transfer to the FUNCTIONEND statement. FUNCTIONEXIT is a synonym
for EXIT FUNCTION but, EXIT FUNCTION is preferred . The following is an
example of an external function :

8-24 Functions

Example
100

	

FUNCTION REAL volume (REAL R)
200

	

IF R <= 0 THEN EXIT FUNCTION
300

	

volume = 4/3 * PI * R ** 3
400

	

END FUNCTION

This function returns the volume of a sphere of radius R . If this function is
invoked with an actual parameter value less than or equal to zero, the function
returns zero .
Because external functions are subprograms, you can pass modifiable
parameters (including entire arrays) to them .
See Chapter 11 for more information on subprograms and modifiable
parameters .

8.3 .2 The EXTERNAL Statement
Function subprograms must be declared with the EXTERNAL statement .
The following example shows the declaration and invocation of the external
function as defined in the example in the previous section :
Example
1000

	

EXTERNAL REAL FUNCTION volume (REAL)
1100

	

temp volume = volume(5 925)
1200

	

PRINT temp volume

Note that the EXTERNAL statement specifies only the data type of the
parameter; it does not specify a formal or actual parameter . Whenever you
invoke an external function, BASIC-PLUS-2 converts the actual parameter to
the data type specified in the EXTERNAL statement .
To run this program in the BASIC environment, follow these steps :
1 . Compile the function subprogram
2 . Load the resulting object module with the LOAD command
3 . Read in the main program with the OLD command
4 . Enter the RUN command
Note that rather than running this program interactively, you can task-build
these modules together and run the program from DCL level . See Chapter 11
for more information on task-building subprograms .

Functions 8-25

8-26 Functions

Note

Ensure that the parameter data types specified in the EXTERNAL
statement agree with those specified in the FUNCTION statement ;
otherwise, the function will produce unexpected results .

9
String Handling

This chapter defines dynamic, and fixed-length strings as well as string virtual
arrays, explains which you should choose for your application, and shows you
how to use them .

9.1 Introduction
A string is a sequence of ASCII characters. BASIC-PLUS-2 allows you to use
three types of strings :
•

	

Dynamic strings
•

	

Fixed-length strings
•

	

String virtual arrays
Dynamic strings are strings whose length can change during program
execution. The length of a dynamic string variable may or may not change,
depending on the statement used to modify it .
Fixed-length strings are strings whose length never changes . In other words,
their length remains static . String constants are always fixed-length . String
variables can be either fixed-length or dynamic . When a string variable is
fixed-length, its length does not change, regardless of the statement you use to
modify it . See Table 9-1 for more information on string modification .
Strings in virtual arrays have both fixed-length and dynamic attributes . That
is, string virtual arrays have a specified maximum length between 0 and 512
characters . During program execution, the length of an element in a string
virtual array can change; however, the length is always between zero and the
maximum string size specified when the array was created . See Section 9.4
and Chapter 12 for more information about virtual arrays .

String Handling 9-1

'Terminal I/O statements include INPUT, INPUT LINE, LINPUT, MAT INPUT, and so on.

9.2 Using Dynamic Strings
Although dynamic strings are less efficient than fixed-length strings, they are
often more flexible . For example, to concatenate strings, you can just use the
LET statement to assign the concatenated value to a dynamic string variable,
without having to worry about BASIC-PLUS-2 truncating the string or adding
trailing spaces to it. However, if the destination variable is fixed-length, you
must make sure that it is long enough to receive the concatenated string,
or BASIC-PLUS-2 truncates the new value to fit the destination string.
Similarly, if you use LSET or RSET to concatenate strings, you must ensure
that the destination variable is long enough to receive the data .
The LET, LSET and RSET statements all operate on dynamic strings as well
as fixed-length strings . The LET statement can change the length of a dynamic
string; however, LSET and RSET do not .
In the following example, the first line assigns the value "ABC" to A$, the
second line assigns "XYZ" to B$, and the third line assigns six spaces to C$.
Each of these variables are dynamic strings . In the fourth line, LSET assigns
A$ the value of A$ concatenated with B$. Because the LSET statement does
not change the length of the destination string variable, only the first three
characters of the expression A$ + B$ are assigned to A$. The fifth line uses
LSET to assign C$ the value of A$ concatenated with B$. Because C$ already
has a length of six, this statement assigns the value ABCXYZ to it .

9-2 String Handling

Table 9-1 String Modification

Statement
For Fixed-Length
Strings, Changes

For Dynamic
Strings, Changes

For Virtual Array
Strings, Changes

LET
LSET
RSET
Terminal I/O
Statements'

Value
Value
Value
Value

Value and Length
Value
Value
Value and Length

Value and Length
Value and Length
Value and Length
Value and Length

Example
10

	

LET A$ = "ABC"
20

	

LET B$ = "XYZ"
30

	

LET C$ _

	

"
40

	

LSET A$ = A$ + B$
50

	

LSET C$ = A$ + B$
60

	

PRINT A$
70

	

PRINT C$
80

	

END

Output
ABC
ABCXYZ

Like the LET statement, the INPUT, INPUT LINE, and LINPUT statements
can change the length of a dynamic string, but they cannot change the length
of a fixed-length string .
In the next example, the first line assigns the null string to variable A$. The
second line uses the LEN function to show that the null string has a length of
zero. The third line uses the INPUT statement to assign a new value to A$,
and the fourth and fifth lines print the new value and its length .

Example
10

	

!Declare a dynamic string
20

	

LET A$ = ""
30

	

PRINT LEN(A$)
40

	

INPUT A$
50

	

PRINT A$
60

	

PRINT LEN(A$)
70

	

END

Output
0
? THIS IS A TEST
THIS IS A TEST
14

You should not confuse the null string with a null character . A null character
is one whose ASCII numeric code is zero . The null string is a string whose
length is zero .

String Handling 9-3

9 .3 Using Fixed-Length Strings
It is more efficient to change a fixed-length string than a dynamic string .
Creating or modifying a dynamic string often causes BASIC-PLUS-2 to create
new storage, and this increases processor overhead . Modifying fixed-length
strings involves less overhead because BASIC-PLUS-2 simply reuses existing
storage .
If a string variable is part of a MAP, COMMON, or virtual array, a LET,
INPUT, LINPUT, or INPUT LINE statement changes its value, but not its
length .
In the following example, the MAP statement in the first line explicitly assigns
a length to each string variable. Because the LINPUT statements cannot
change this length, BASIC-PLUS-2 truncates values to fit the address and
city-state variables . Because the zip variable is longer than the assigned value,
BASIC-PLUS-2 left justifies the assigned value and pads it with spaces . The
sixth line uses the compile-time constant HT (horizontal tab) to separate fields
in the employee record .
Example
10 MAP (FIELDS) STRING full name = 10, &

address = 10, &
city_state = 10, &
zip = 10

20

	

LINPUT "NAME" ; full name
LINPUT "ADDRESS" ; address
LINPUT "CITY AND STATE" ; city_state
LINPUT "ZIP CODE" ; zip

40

	

EMPLOYEE RECORD$ = full name + HT + address + HT &
+ city-state + HT + zip

50

	

PRINT EMPLOYEE RECORD$
60

	

END

Output
NAME? JOE SMITH
ADDRESS? 66 GRANT AVENUE
CITY AND STATE? NEW YORK NY
ZIP? 01001

JOE SMITH

	

66 GRANT A NEW YORK N 01001

9-4 String Handling

9 .4 String Virtual Arrays
Virtual arrays are stored on disk. You create a virtual array by opening a disk
file and then using the DIM # statement to dimension the array on the open
channel. This section describes only string virtual arrays . See Chapter 12 for
more information on virtual arrays .
Elements of string virtual arrays behave much like dynamic strings, except
that for the following :
•

	

When you create the virtual string array, you specify a maximum length
for the array's elements . The length of an array element can never exceed
this maximum . If you do not supply a length, the default is 16 characters .

•

	

A string virtual array element cannot contain trailing nulls .

When you assign a value to a string virtual array element, BASIC-PLUS-2
pads the value with nulls, if necessary, to fit the length of the virtual
array element . However, when you retrieve the virtual array element,
BASIC-PLUS-2 strips all trailing nulls from the string . Therefore, when you
access an element in a string virtual array, the string never has trailing nulls .

In the following example, the first two lines dimension a string virtual array
and open a file on channel #1 . The third line assigns a 10-character string to
the first element of this string array, and to the variable A$. This 10-character
string consists of "ABCDE" plus five null characters . The PRINT statements
show that the length of A$ is 10, while the length of test(1) is only 5 because
BASIC-PLUS-2 strips trailing nulls from string array elements .

Example
10

	

DIM #1%, STRING test(5)
20

	

OPEN "TEST" AS FILE #1%, ORGANIZATION VIRTUAL
30

	

A$, test(1%) _ "ABCDE" + STRING$(5%, 0%)
40

	

PRINT "LENGTH OF A$ IS : " ; LEN(A$)
50

	

PRINT "LENGTH OF TEST(1) IS : " ; LEN(test(1%))
60

	

END

Output
LENGTH OF A$ IS : 10
LENGTH OF TEST(1) IS : 5

Although the storage for string virtual array elements is fixed, the length of a
string array element can change because BASIC-PLUS-2 strips the trailing
nulls whenever it retrieves a value from the array .

String Handling 9-5

9.5 Assigning String Data
To assign string data, you use the LET, LSET, and RSET statements . The
following sections describe how to incorporate each of these statements into
your source code .

9.5.1 The LET Statement
The LET statement assigns string data to a string variable . The keyword LET
is optional . In the following example, B is a string variable and "ret status" is
a quoted string expression .
10

	

LET B = "ret status"

The LET statement changes the length of dynamic strings but does not
change the length of fixed-length strings . For instance, the following example
first creates a fixed-length string named ABC by declaring the string in a
MAP statement. The program then creates a dynamic string named XYZ by
declaring it in a DECLARE statement . The third line assigns a 3-character
value to both variables ABC and XYZ, then prints the value and the length of
the string variables . Variable ABC continues to have a length of 10 : the three
characters assigned, plus seven spaces for padding . The length of the dynamic
variable changes with the values assigned to it .
Example

Output
ABC 10
XYZ 3
A 10
X

	

1

9-6 String Handling

10 MAP (TEST) STRING ABC = 10
20 DECLARE STRING XYZ
30 ABC = "ABC"
40 XYZ = "XYZ"
50 PRINT ABC, LEN(ABC)
60 PRINT XYZ, LEN(XYZ)
70 ABC =
80 XYZ = "X"
90 PRINT ABC, LEN(ABC)
100 PRINT XYZ, LEN(XYZ)

9.5.2 The LSET Statement
The LSET statement left-justifies data and assigns it to a string variable,
without changing the variable's length . In the following example, ABC is a
string variable and "ABC" is a string constant .
10

	

LSET ABC = "ABC"

If the string expression's value is shorter than the string variable's current
length, LSET left justifies the expression and pads the string variable with
spaces. In the following example, the LET statement creates the 5-character
string variable test$. The LSET statement in the second line assigns the string
XYZ to the variable test$ but does not change the length of test$. Because test$
has a length of five, the LSET statement pads the string XYZ with two spaces
when assigning the value . The PRINT statement shows that test$ includes
these two spaces .
Example
10 LET test$ _ " ABODE"
20 LSET test$ _ " XYZ"
30

	

PRINT '' , test$;
40

	

END

Output
'XYZ

	

'

LSET left-justifies a string expression longer than the string variable and
truncates it on the right as shown in the following example :

Example
10

	

LET test$ _ " ABODE"
LSET test$ _ "12345678"
PRINT test$
END

Output
12345

The LET statement creates the 5-character string variable test$. The LSET
statement in the second line assigns the characters "12345" to test$. Because
LSET does not change the string variable's length, it truncates the last three
characters (678) .

String Handling 9-7

9.5 .3 The RSET Statement
The RSET statement right justifies data and assigns it to a string variable
without changing the variable's length . In the following example, C -R is a
string variable and "cust rec" is a string constant .
10

	

RSET C-R = "cust rec"

RSET right justifies a string expression shorter than the string variable and
pads it with spaces on the left . In the following example, the LET statement
creates the 5-character string variable test$. The RSET statement in the
second line assigns the string XYZ to test$ but does not change the length of
test$. Because test$ is five characters long, the RSET statement pads XYZ with
two spaces when assigning the value . The PRINT statement shows that test$
includes these two spaces .
Example
10

	

LET test$ _ 'ABCDE"
RSET test$ _ "XYZ"
PRINT

	

+ test$;
20

	

END

Output
XYZ'

If the string expression's value is longer than the string variable, RSET right-
justifies the string expression and truncates characters on the left to fit the
string variable as shown in the following example :
Example
10

	

LET test$ _ "ABCDE"
RSET test$ _ "987654321"
PRINT test$

20

	

END

Output
54321

The LET statement creates a 5-character string variable, test$. The RSET
statement assigns "54321" to test$. RSET, which does not change the variable's
length, truncates "9876" from the left side of the string expression .
Note that, when using LSET and RSET, padding can become part of the data :

Example
10

	

LET A$ = '12345'
LSET A$ = 'ABC'
LET B$ = '12345678'
RSET B$ = A$
PRINT '- " ;B$;" - '

9-8 String Handling

Output
'

	

ABC

9 .6 Manipulating String Data with String Functions
When used with the LET statement, BASIC-PLUS-2 string functions let you
manipulate and modify strings . These functions let you do the following :

•

	

Determine the length of a string (LEN)

•

	

Search for the position of a set of characters in a string (POS)

•

	

Extract segments from a string (SEG$, MID$)

•

	

Substitute string data in a portion of a string variable (MID$)

•

	

Create a string of any length, made up of any single character (STRING$)

•

	

Create a string of spaces (SPACE$)

•

	

Remove trailing spaces and tabs from a string (TRM$)
•

	

Edit a string (EDIT$)

9.6.1 The LEN Function
The LEN function returns the number of characters in a string as an integer
value. For example :
10

	

LEN(spec)

Spec is a string expression . The length of the string expression includes
leading and trailing blanks . In the following example, the variable Z$ is set
equal to "ABC XYZ", which has a length of eight .

Example
10

	

alpha$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
PRINT LEN(alpha$)
Z$ = "ABC" +

	

+ ""XYZ"
PRINT LEN(Z$)

20

	

END

Output
26
8

String Handling 9-9

9.6.2 The POS Function
POS searches a string for a group of characters (a substring) . In the following
example, spec is the string to be searched, test is the substring for which you
are searching and 15 is the character position where BASIC-PLUS-2 starts
the search .
10

	

POS(spec,test,15)

The position returned by POS is relative to the beginning of the string, not the
starting position of the search . For example, if you search the string "ABCDE"
for the substring "E", it does not matter whether you specify a starting position
of one, two, three, four, or five BASIC-PLUS-2 still returns the value five as
the position where the substring was found .
If the function finds the substring, it returns the position of the substring's
first character. Otherwise, it returns zero as in the following example :

Example
10

	

alpha$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
Z$ = "DEFG"
X% = POS(ALPHA$,Z$,1%)

20

	

PRINT X%
Q$ = "TEST"
Y% = POS(ALPHA$, Q$, 1%)

30

	

PRINT Y%
40

	

END

Output
4
0

If you specify a starting position other than one, BASIC-PLUS-2 still returns
the position of the substring relative to the beginning of the string as shown in
the following example :
Example
10

	

alpha$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
Z$ = "HIJ"

20

	

PRINT POS(ALPHA$, Z$, 7%)
30

	

END

Output
8

If you know that the substring is not near the string's beginning, specifying a
starting position greater than one speeds program execution by reducing the
number of characters BASIC-PLUS-2 must search .

9-10 String Handling

You can use the POS function to associate a character string with an integer
that you can then use in calculations . This technique is called a table look-up .
For instance, the following example prompts for a 3-character string, changes
the string to uppercase letters and searches the table string to find a match .
The WHILE loop executes indefinitely until a carriage return is entered in
response to the prompt .
Example
10

	

DECLARE STRING CONSTANT table =

	

&
"JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"

DECLARE STRING month, UPPER-CASE-MONTH, message
DECLARE INTEGER month-length
DECLARE REAL month_pos

20

	

PRINT "Please type the first three letters of a month"
PRINT "To end the program, type only JRET(" ;

30

	

Loop_1 :
40

	

WHILE 1% = 1%
INPUT month
UPPER CASE MONTH = EDIT$(month, 32%)
month-length = LEN (UPPERCASE MONTH)
EXIT Loop-1 IF month_ length = 0%
IF month-length = 3%

THEN month_pos = (POS(table, UPPERCASE MONTH, 1) + 2) / 3
IF (month_pos = 0%) OR (month_pos <> FIX(month_pos))

THEN MESSAGE = "Invalid abbreviation, try again"
ELSE MESSAGE = "is month number" + NUM$(MONTH_POS)

END IF
ELSE MESSAGE = "Abbreviation not three characters, try again"

50

	

END IF
60

	

PRINT month ; message
70

	

NEXT
80

	

END

Output
Please type the first three letters of a month
To end the program, type only JRETJ? Nov
Nov is month number 11

Keep these considerations in mind when you use the POS function :
•

	

If you specify a starting position less than one, POS assumes a starting
position of one .

•

	

If you specify a starting position greater than the searched string's length,
POS returns a zero (unless the substring is null) .

•

	

When searching for a null string :
- If you specify a starting position greater than the string's length, POS

returns the string's length plus one .

String Handling 9-11

- If the string to be searched is also null, POS returns a value of one .
- If the specified starting position is less than or equal to one, POS

returns a value of one .
- If the specified starting position is greater than one and less than or

equal to the string's length plus one, POS returns the specified starting
position .

Note that searching for a null string is not the same as searching for the null
character. A null string has a length of zero, while the null character has a
length of one . The null character is an ASCII character whose value is zero .

9.6 .3 The SEG$ Function
The SEG$ function extracts a segment (substring) from a string . The original
string remains unchanged . In the following example, time is the input string,
13 is the position of the first character extracted and 16 is the position of the
last character extracted .
10

	

SEG$(time,13%,16%)

SEG$ extracts from the input string the substring that starts at the first
character position, up to and including the last character position . It returns
the extracted segment .
Example
10

	

PRINT SEG$("ABCDEFG", 3%, 5%)
20

	

END

Output
CDE

If you specify character positions that exist in the string, the length of the
returned substring always equals (int-exp2-int-expl + 1) .

Keep these considerations in mind when you use the SEG$ function :

•

	

If the starting character position is less than one, BASIC-PLUS-2 assumes
a value of one .

•

	

If the starting character position is greater than the ending character
position, or the length of the string, SEG$ returns a null string .

•

	

If the ending character position is greater than the length of the string,
SEG$ returns all characters from the starting character position to the end
of the string.

•

	

If the starting character position is equal to the ending character position,
SEG$ returns the character at the starting position .

9-12 String Handling

You can replace part of a string by using the SEG$ function with the string
concatenation operator (+) . In the following example, when BASIC-PLUS-2
creates C$, it concatenates the first two characters of A$, the 3-letter string
XYZ, and the last two characters of A$. The original contents of A$ do not
change .
Example
10

	

A$ = "ABCDEFG"
20

	

C$ = SEG$(A$, 1%, 2%) + "XYZ" + SEG$(A$, 6%, 7%)
30 PRINT C$
40 PRINT A$
50

	

END

Output
ABXYZFG

ABCDEFG

You can use similar string expressions to replace characters in any string . A
general formula to replace characters in positions n through m of string A$
with characters in B$ is as follows :
C$ = SEG$(A$,1%,n-1) + B$ + SEG$(A$,m+1,LEN(A$))
The following example replaces the sixth through ninth characters of the string
"ABCDEFGHIJK" with "123456" :

Example

Output
ABCDE123456JK
ABCDEFGHIJK
123456

The following formulas are more specific applications of the previous formula :

•

	

To replace the first n characters of A$ with B$ use the following :
C$ = B$ + SEG$(A$,n+1,LEN(A$))

•

	

To replace all but the first n characters of A$ with B$ use the following :
C$ = SEG$(A$,1,n) + B$

•

	

To replace all but the last n characters of A$ with B$ use the following :

String Handling 9-13

10 A$ = "ABCDEFGHIJK"
B$ = "123456"

20
C$ = SEG$(A$,1%,5%)
PRINT C$

+ B$ + SEG$(A$,10%,LEN(A$))

30 PRINT A$
40 PRINT B$
50 END

C$ = B$ + SEG$(A$,(LEN(A$)-n) + 1, LEN(A$))
•

	

To replace the last n characters of A$ with B$ use the following :
C$ = SEG$(A$,1,LEN(A$)-n) + B$

•

	

To insert B$ in A$ after the nth character in A$ use the following:
C$ = SEG$(A$,1,n) + B$ + SEG$(A$,n+1,LEN(A$))

9.6 .4 The MID$ Function
The MID$ function extracts a specified substring, beginning at a specified
character position and ending at a specified length. If you specify a starting
character position that is less than one, BASIC-PLUS-2 automatically
assumes a starting character position of one .
In the following example, the MID$ function uses the input string "ABCD,"
and extracts a segment consisting of 3 characters. Because BASIC-PLUS-2
automatically assumes a starting character position of one when the specified
starting character position is less than one, the string that is extracted begins
with the first character of the input string .

Example
10 DECLARE STRING old-string, new-string
20 old _string = "ABCD"
30 new_ string = MID$(old_string,0%,3%)
40 PRINT new-string

Output
ABC

Keep these considerations in mind when you use the MID$ function :

•

	

If the position of the segment's first character is greater than the input
string, MID$ returns a null string .

•

	

If the length of the segment is greater than the length of the input string,
BASIC-PLUS-2 returns the string that begins at the specified starting
character position and includes all characters remaining in the string .

•

	

If the length of the segment is less than or equal to zero, MID$ returns a
null string .

• If you specify a floating-point expression for the position of the segment's
first character or for the length of the segment, BASIC-PLUS-2 truncates
it to a WORD integer .

9-14 String Handling

9.6.5 The STRING$ Function
The STRING$ function creates a character string containing multiple
occurrences of a single character. In the following example, 23 is the length of
the returned string and 30 is the ASCII value of the character that makes up
the string. This value is treated modulo 256 .
10

	

STRING$(23,30)

The following example creates a 10-character string containing uppercase As,
which have ASCII value 65 .
Example
10

	

out$ = STRING$(10%, 65%)
20

	

PRINT out$
30

	

END

Output
AAAAAAAAAA

Keep these considerations in mind when you use the STRING$ function :
•

	

If the length of the returned string is less than or equal to zero, STRING$
returns a null string .

•

	

If the length of the returned string is greater than 32767, BASIC-PLUS-2
signals an error.

9.6.6 The SPACE$ Function
The SPACE$ function creates a character string containing spaces . In this
example, 5 is the number of spaces in the string .
10

	

SPACE$(5%)

The following example creates a 9-character string which contains 3 spaces .
Example
10

	

A$ = "ABC"
B$ = "XYZ"

20

	

PRINT A$ + SPACE$(3%) + B$
30

	

END

Output
ABC XYZ

String Handling 9-15

9.6.7 The TRM$ Function
The TRM$ function removes trailing blanks and tabs from a string . The
input string remains unchanged . In the following example, all trailing blanks
that appear in the string expression, "ABCDE " are removed once the TRM$
function is invoked .
Example
10

	

A$ _ "ABODE

	

"
B$ _ "XYZ"
first$ = A$ + B$
second$ = TRM$(A$) + B$

20

	

PRINT first$
30

	

PRINT second$
40

	

END

Output
ABCDE XYZ
ABCDEXYZ

The TRM$ function is especially useful for extracting the nonblank characters
from a fixed-length string (for example, a COMMON or MAP, or a parameter
passed from a program written in another language) .

9.6.8 The EDIT$ Function
The EDIT$ function performs one or more string editing functions, depending
on the value of an argument you supply. The input string remains unchanged .
In the following example, stu rec is a string expression and 32 determines the
editing function performed .
10

	

EDIT$(stu rec,32%)

Table 9-2 shows the action BASIC-PLUS-2 takes for a given value of int-exp .

Table 9-2 EDIT$ Options

Value of
lnt-exp

	

Effect

1

	

Discards each character's parity bit (bit 7) . Note that you should not use this
value for characters in the DEC Multinational Character Set .

2

	

Discards all spaces and tabs .
4

	

Discards all carriage returns, line feeds, form feeds, deletes, escapes, and
nulls .

(continued on next page)

9-16 String Handling

Table 9-2 (Cont.) EDIT$ Options

Value of
lnt-exp

	

Effect

8

	

Discards leading spaces and tabs .
16

	

Converts multiple spaces and tabs to a single space .
32

	

Converts lowercase letters to uppercase .
64

	

Converts left brackets ([) to left parentheses ((), and right brackets (I) to
right parentheses O) .

128

	

Discards trailing spaces and tabs (same as TRM$ function) .
256 Suppresses all editing for characters within quotation marks . If the string

has only one quotation mark, BASIC-PLUS-2 suppresses all editing for the
characters following the quotation mark (256% can also be specified as -1%) .

All values are additive ; for example, by specifying 168, you can do the
following :

•

	

Discard leading spaces and tabs (value 8)

•

	

Convert lowercase letters to uppercase (value 32)
•

	

Discard trailing spaces and tabs (value 128)

However, when specifying more than one EDIT$ value, you do not need to add
the values together ahead of time . Instead, you can separate more than one
EDIT$ value with a plus sign (+) . This is easier and prevents human error.
For example :

Example
10

	

LINPUT "PLEASE TYPE A STRING" ;input_string$
new_string$ = EDIT$(input_string$, 2% + 32% + 64%)

20

	

PRINT new_string$
30

	

END

Output
PLEASE TYPE A STRING? 88 abc
88ABC(5,5)

)TABJ [5,5]

This program requests an input string, discards all spaces and tabs, converts
lowercase letters to uppercase, and converts brackets to parentheses .

String Handling 9-17

9.7 Manipulating String Data with Multiple Maps
Mapping a string storage area in more than one way lets you extract a
substring from a string or concatenate strings . In the following example, the
three MAP statements reference the same 108 bytes of data .
Example
10

	

MAP (emprec) first name$ = 10, &
last name$ = 20, &
street number$ = 6, &
street$ = 15, &
city$ = 20, &
state$ = 2,

	

&
&
&
&
&

&
&

You can move data into a MAP in different ways . For instance, you can use
terminal input, arrays, and files . In the following example, the READ and
DATA statements are used to move data into a MAP :

Example
10

	

READ EMPLOYEE RECORD$
100

	

DATA "WILLIAM DAVIDSON

	

2241 MADISON BLVD

	

" &
"SCRANTON

	

PA14225A912/10/78$13,325 .77$925 .31"

Because all the MAP statements in the previous example reference the same
storage area emprec, you can access parts of this area through the mapped
variables shown in the following two examples .

Example 1
10 PRINT full name$

PRINT wage class$
PRINT salary_ytd$

Output 1
WILLIAM DAVIDSON
A9
$13,325 .77

Example 2
10

	

PRINT last name$
PRINT tax_ytd$

9-18 String Handling

zip$ = 5,
wage class$ = 2,

8,date of_review$ =
salary_ytd$ = 10,

20
tax_ytd$ = 10

MAP (emprec) full name$ = 30,

30

address$ = 48,
salary_info$ = 30

MAP (emprec) employee_record$ = 108

Output 2
DAVIDSON
$925 .31

You can assign a new value to any of the mapped variables . For instance, the
following example prompts the user for changed information by displaying a
menu of topics . The user can then choose which topics need to be changed and
then separately assign new values to each variable .
Example
10

	

Loop_1 :
WHILE 1%

	

1%
INPUT "Changes? (please type YES or NO)" ; CH$
EXIT Loop-1 IF CH$ = "NO"
PRINT "1 . FIRST NAME"
PRINT "2 . LAST NAME"
PRINT "3 . STREET NUMBER"
PRINT "4 . STREET"
PRINT "5 . CITY"
PRINT "6 . STATE"
PRINT "7 . ZIP"
PRINT "8 . WAGE CLASS"
PRINT "9 . DATE OF REVIEW"
PRINT "10 . SALARY YTD"
PRINT "11 . TAX YTD"
INPUT "CHANGE NUMBER" ; NUMBER%
SELECT NUMBER%

CASE 1%
INPUT "FIRST NAME" ; first name$

CASE 2 %
INPUT "LAST NAME" ; last name$

CASE 3%
INPUT "STREET NUMBER" ; street number$

CASE 4%
INPUT "STREET" ; street$

CASE 5%
INPUT "CITY" ; city$

CASE 6%
INPUT "STATE" ; state$

CASE 7%
INPUT "ZIP CODE" ; zip$

CASE 8%
INPUT "WAGE CLASS" ; wage_class$

CASE 9%
INPUT "DATE OF REVIEW" ; date of review$

String Handling 9-19

9-20 String Handling

CASE 10%
INPUT "SALARY YTD" ; salary_ytd$

CASE 11%
INPUT "TAX YTD" ; taxytd$

CASE ELSE
PRINT "Invalid choice"

END SELECT
NEXT

END

Output
Changes? (please type YES or NO)? YES
1 . FIRST NAME
2 . LAST NAME
3 . STREET NUMBER
4 . STREET
5 . CITY
6 . STATE
7 .

	

ZIP
8 . WAGE CLASS
9 . DATE OF REVIEW
10 . SALARY YTD
11 . TAX YTD

CHANGE NUMBER? 10
SALARY YTD? 14,277 .08
Changes? (please type YES or NO)? YES
CHANGE NUMBER? 11
TAX YTD? 998 .32
Changes? (please type YES or NO)? NO

See Chapter 7 and the BASIC-PLUS-2 Reference Manual for more information
on the MAP statement .

An array is a set of data that is ordered in any number of dimensions . This
chapter describes how to create and use BASIC-PLUS-2 arrays .

10.1 Introduction
A one-dimensional array is called a list or vector . A two-dimensional array is
called a matrix . BASIC-PLUS-2 arrays can have up to 8 dimensions, and they
can be redimensioned at run time . In addition, you can specify the data type of
the values in an array by using data type keywords or suffixes .

The subscript of an element in an array defines that element's position in the
array. When you create an array, you specify the following:

•

	

The number of dimensions that the array contains

•

	

The range of values for the subscripts in each dimension of the array
BASIC-PLUS-2 arrays are zero-based; that is, when calculating the number
of elements in a dimension, you count from zero to the number of elements
specified . For example, an array with an upper bound of 10 has 11 elements : 0
through 10, inclusive . The array My_array(3,3) has 16 elements : 0 through 3
in each dimension, or 42 .

To refer to an element in the array Sales data, you need only specify the
month you are interested in . For example, to print the information for the
month of May, you would type the following :
10

	

DECLARE WORD CONSTANT JAN% = 1%

DIM Sales month (12%)
PRINT Sales month (MAY%)

	

!Sales for month of May

10
Arrays

Arrays 10-1

10-2 Arrays

You can create arrays either implicitly or explicitly. You implicitly create
arrays having any number of dimensions by referencing an element of the
array. If you implicitly create an array, BASIC-PLUS-2 sets the upper bound
to 10 and the lower bound to zero . Therefore, any array that you create
implicitly contains 11 elements in each dimension .
The following example refers to the array Student rades$, thereby causing
BASIC-PLUS-2 to create a one-dimensional array with that name .
10

	

Student_grades$(8) = "B"

You create arrays explicitly by declaring them in a DIM, DECLARE,
COMMON, or MAP statement .
When you declare an array explicitly, the value that you give for the upper
bound determines the maximum subscript value in that dimension . The upper
bound must be a positive value .
You can use MAT statements to create and manipulate arrays . However, MAT
statements are valid only on arrays of one or two dimensions .

10.2 Creating Arrays Explicitly
You can create arrays explicitly with four BASIC-PLUS-2 statements :

•

	

DECLARE
•

	

DIMENSION
•

	

COMMON
•

	

MAP
Normally, you can use the DECLARE statement to create arrays. However, in
certain cases, you may want to create the array with another BASIC-PLUS-2
statement :
•

	

You use the DIM statement to create virtual arrays and arrays that can be
redimensioned at run time.

•

	

You use the COMMON statement to create arrays that can be shared
among program modules or to create arrays of fixed-length strings .

• You use the MAP statement to create an array and associate it with a
record buffer, or to overlay the storage for an array, thus accessing the
same storage in different ways .

When you create an array, the bounds you specify determine the array's size .
The maximum value allowed for a bound can be as large as 32767 ; however,
this number is actually limited by the amount of storage available to you . Very
large arrays and arrays with many dimensions can cause fatal errors at both
compile time and run time .
The following restrictions apply to arrays :
•

	

When referencing an array, you must use the same number of subscripts as
was specified in the DIM statement .

•

	

You can use identical names for a simple variable and an array; for
example, A% and A%(5,5). However, this is not recommended programming
practice. If you use identical names for arrays with a different number
of subscripts, for example, A(5) and A(10,10), BASIC-PLUS-2 prints the
warning error "Inconsistent subscript usage" at compile time .

•

	

If subscript checking is enabled, BASIC-PLUS-2 signals the error
"Subscript out of range" (ERR=55) if you reference an array element whose
subscripts are greater than the upper bound specified in the last execution
of the DIM statement or less than zero .

The following sections explain how to declare arrays .

10.2 .1 Creating Arrays with the DECLARE Statement
The DECLARE statement creates and names variables and arrays. All
elements of arrays created with the DECLARE statement are initialized to
zero or the null string . The following statement creates a LONGWORD integer
array with 11 elements . Each element has an initial value of zero .
10

	

DECLARE LONG Ray(10)

Although BASIC-PLUS-2 initializes array elements to zero or the null string,
it is good programming practice to initialize all array elements by assigning
them values in your program . For example, the following program creates a
three-dimensional string array and initializes each element to the null string :
100

	

DECLARE STRING second array(10,10,10)
200

	

DECLARE LONG loop_1, loop_2, loop_3
300

	

FOR loop-1 = 0% TO 10%
FOR loop_2 = 0% TO 10%

FOR loop-3 = 0% TO 10%
second_array(loop_1, loop-2, loop-3)

NEXT loop_3
NEXT loop-2

NEXT loop_1

Arrays 10-3

Note that the STRING data type with the DECLARE statement causes the
creation of an array of dynamic strings . To create an array of fixed-length
strings, declare the array in a COMMON or MAP statement .

10.2 .2 Creating Arrays with the DIM Statement
The DIM statement creates and names one or more arrays . You should use the
DIM statement to create an array only when you want to do the following :

•

	

Redimension the array at run time
•

	

Create a virtual array
When creating arrays with DIM, you specify the data type of the array
elements with a data type keyword, a special suffix on the array name, or both .
The array name can be any valid variable name . If you do not supply a data
type keyword, the data type is determined by the suffix of the array name as
follows :
•

	

If the array name ends in a dollar sign, the array stores string data .

•

	

If the array name ends in a percent sign, the array stores integer data .
•

	

If the array name does not end in either a percent sign or a dollar sign, the
array stores data of the default type . The default type is single-precision
floating-point unless you change the default . See Chapter 4 for more
information on default data types .

Even if the DIM statement contains a data type keyword, the array name can
still end in the appropriate data type suffix. This makes the data type of the
array immediately obvious .
The DIM statement can be either executable or declarative . If the specified
bounds are constants, the DIM statement is declarative . This means that the
storage is allocated at compile time, and the array cannot appear in any other
DIM statement .
However, if any of the specified bounds are variables (simple or subscripted),
the DIM statement is executable . This means that the storage for the array
is allocated at run time, and the array can be redimensioned with a DIM
statement any number of times .

Note
In the DIM statement, bounds can be either constants or variables
(simple or subscripted), but not expressions .

10-4 Arrays

When an array is redimensioned with the executable DIM statement, the array
can become larger or smaller than it was . However, redimensioning an array
in this way causes it to be reinitialized, and all data in the array is lost .
In contrast, MAT statements let you redimension an array to be the same size
or smaller than it was. However, MAT statements redimension arrays only
when assigning values or performing matrix I/O ; therefore, the fact that MAT
reinitializes the array does not matter . See Section 10 .3.2 for more information
on MAT statements .

10.2.2 .1 Declarative DIM Statements
Declarative DIM statements are those with integer constants as bounds . The
percent sign is optional for bounds ; however, BASIC-PLUS-2 signals "Integer
constant required" if a constant bound contains a decimal point . The following
statement creates a 101-element virtual array containing string data. The
elements of this array can each have a maximum length of 256 characters .
10

	

DIM #1%, STRING VIRT ARRAY(100) = 256%

The following restrictions apply to the use of declarative DIM statements :
•

	

A declarative DIM statement must lexically precede any reference to the
array it dimensions .

• For declarative DIM statements, if you reference an array element whose
subscripts are larger than the subscripts specified in the DIM statement,
BASIC-PLUS-2 signals the error "Subscript out of range" (ERR=55) .

• Because a declarative DIM statement allocates storage at compile time, an
array of this type cannot appear in any other declarative statement such as
a MAP, COMMON, DECLARE, or a later DIM statement .

10.2.2.2 Executable DIM Statements
Executable DIM statements are those with at least one variable bound .
Bounds can be constants or simple variables, but at least one bound must
be a variable. Executable DIM statements let you redimension an array at
run time. The bounds of the array can become larger or smaller, but the
number of dimensions cannot change . For example, you cannot redimension a
four-dimensional array to be five-dimensional .

The executable DIM statement cannot be used on arrays in COMMON, MAP,
DECLARE or declarative DIM statements, nor on virtual arrays or arrays
received as formal parameters .
Whenever an executable DIM statement executes, it reinitializes the array. If
you change the values of an executable DIM statement, the initial values are
reset each time a DIM statement is executed .

Arrays 10-5

In the following example, the second DIM statement reinitializes the array
real array ; therefore, real-array(101c) equals zero in the second PRINT
statement .
Example
10

	

X% = 10%
Y% = 20%
DIM real array(X%)
real array(1%) = 100
PRINT real array(1%)
DIM real array (Y%)
PRINT real array(1%)
END

Output
100
0

You cannot reference an array named in an executable DIM statement until
after the DIM statement executes . If you reference an array element declared
in an executable DIM statement whose subscripts are larger than the bounds
specified in the last execution of the DIM statement, BASIC-PLUS-2 signals
the error "Subscript out of range" (ERR = 55) .

10.2.3 Creating Arrays with the COMMON Statement
You should create arrays with the COMMON statement when you need
an array of fixed-length strings, or when you want to share an array among
program modules . Program modules can share arrays in COMMON statements
by defining a common block with the same name .
The COMMON statements in the following programs create a 100-element
array of fixed-length strings, each element 10 characters long . Because the
main program and subprograms use the same common name, the storage
for these arrays is overlaid when the programs are linked. Therefore, both
programs can read and write data to the array.

Example
10

	

!Main Program
COMMON (ABC) STRING access-list(99) = 10

20

	

!Subprogram
SUB SUB1
COMMON (ABC) STRING new-list(99) = 10

10-6 Arrays

10.2.4 Creating Arrays with the MAP Statement
You should create arrays with the MAP statement only when you want the
array to be part of a record buffer, or when you want to overlay the storage
containing the array. Note that string arrays in maps are always fixed-length .

You associate the array with a record buffer by naming the map in the MAP
clause of the OPEN statement .
In the following example, the MAP statement creates two arrays : an 11-
element fixed-length string array named team and a 33-element array of
WORD integers named bowling scores . Because the OPEN statement specifies
MAP ABC, the storage for these arrays is used as the record buffer for the
open file .
Example
10

	

MAP (ABC) STRING team(10) = 20, WORD bowling_scores(32)
OPEN "BOWL .DAT" AS FILE #1%, SEQUENTIAL VARIABLE, MAP ABC

10.3 Creating Arrays Implicitly
There are two ways to create implicit arrays :

•

	

By referencing an element of an array that has not been explicitly declared

•

	

By using MAT statements
When BASIC-PLUS-2 first creates an implicit array, the lower bound is zero
and the upper bound is 10 . An array created by referencing an element can
have up to eight dimensions. An array created with a MAT statement can have
only one or two dimensions .

Note	
The ability to create arrays implicitly exists for compatibility with
previous implementations of BASIC . However, it is better programming
practice to declare all arrays explicitly before using them .

10.3.1 Referencing an Undeclared Array Element
If you reference an element of an array that has not been explicitly declared,
BASIC-PLUS-2 creates a new array with the name you specify . Arrays
created by reference have default subscripts of (10), (10,10), (10,10,10) and so
on, depending on the number of dimensions specified in the array reference .
For example, the following program implicitly creates three arrays and assigns
a value to one element of each .

Arrays 10-7

10-8 Arrays

Example
10

	

LET A(5,5,5) = 3 .14159
LET B%(3) = 33
LET C$(2,2) = "Russell Scott"
END

The first LET statement creates an 11 by 11 by 11 array that stores floating-
point numbers and assigns the value 3 .14159 to element (5,5,5) . The second
LET statement creates an 11-element list that stores integers and assigns the
value 33 to element (3) and the third LET statement creates an 11 by 11 string
array and assigns the value "Russell Scott" to element (2,2) .
When you create an implicit numeric array by referring to an element,
BASIC-PLUS-2 initializes all elements (except the one assigned a value)
to zero . For implicit string arrays, BASIC-PLUS-2 initializes all elements
(except the one assigned a value) to a null string . When you implicitly create
an array, you cannot specify a subscript greater than 10 . An attempt to do so
causes BASIC-PLUS-2 to signal the error "Subscript out of range" (ERR = 55) .

Note that you cannot create an array implicitly, then redimension the array
with an executable DIM statement. The DIM statement must execute before
any reference to the array .
An implicit array cannot appear in a declarative DIM statement . In the
following example, the array is dimensioned before it is referenced, thus
making it an explicitly declared array .
Example
10

	

DIM new array(15,10,5)
new array(5,5,5) = 1

When referencing an array or function, be careful to specify the array name
accurately or you will implicitly declare a new array. Unintentionally creating
an array in your program can cause unexpected results . For example, when
the following program lines are executed, the program returns the value in the
array GETIT rather than invoking the GETINT function . :
Example
10

	

EXTERNAL WORD FUNCTION GETINT (WORD,WORD,WORD)
20

	

PRINT GETIT (2,7,3)

You can avoid this common error by using the OPTION TYPE = EXPLICIT
statement in your programs .

10.3.2 Using MAT Statements
MAT statements let you assign values to or display entire arrays with a single
statement. They also do the following :
•

	

Implicitly create arrays
•

	

Assign names to arrays
•

	

Specify array dimensions
•

	

Redimension existing arrays (to equal or smaller sizes)
•

	

Assign element values
`-

	

• Print the contents of arrays
•

	

Perform matrix arithmetic
MAT statements are valid only on arrays of one or two dimensions . When
MAT statements execute, they use row and column zero to store intermediate
calculations. This means that MAT statements can overwrite data stored in
row and column zero of your arrays, and you should not depend on data in
these elements if your program uses MAT statements .
The default subscripts for arrays created implicitly with MAT statements
are (10) or (10,10) . The default is two dimensions . This means that if you
create an array with a MAT statement and do not specify any subscripts,
BASIC-PLUS-2 creates a two-dimensional, 11 by 11 array. If you specify a
single subscript, BASIC-PLUS-2 creates a one-dimensional array with 11
elements .
Table 10-1 lists MAT statements and explains their functions .

Table 10-1 MAT Statements
Statement

	

Function

MAT Assigns values of zero, 1, or a null string to array elements ;
also copies the values of one array to another and performs
matrix arithmetic

MAT INPUT [#]

	

Assigns values to array elements from your terminal or a
terminal-format file

(continued on next page)

Arrays 10-9

10-10 Arrays

Table 10-1 (Cont .) MAT Statements

Statement

	

Function

MAT LINPUT [#]

	

Assigns string values to string array elements from your
terminal or from a terminal-format file

MAT PRINT [#]

	

Displays the contents of an array on your terminal, or writes
array element values to a terminal-format file

MAT READ

	

Assigns DATA statement values to array elements

In the following example, the first MAT statement creates the string array
z array$ with eight rows and eight columns and assigns a null string to all
elements. The second MAT statement redimensions the array to six rows and
six columns . The third MAT statement adds the values in each corresponding
element of arrays B and C and stores the values in the corresponding elements
of array A .

Example
10

	

MAT z array$ = NUL$(7,7)
MAT z array$ = NUL$(5,5)
MAT A = B + C
END

10.3.2.1 The MAT Statement

The MAT statement can create an array and optionally assign values to all
elements in that array. By specifying one of the MAT statement keywords, you
can initialize arrays in one of four ways . Table 10-2 lists the MAT statement
keywords and their functions .

Table 10-2 MAT Statement Keywords

MAT Keyword

	

Function

ZER

	

Sets the value of all elements in a numeric array to zero
CON

	

Sets the value of all elements in a numeric array to 1, except
those in row and column zero

IDN Sets the array to the identity matrix, that is, it sets the value
of all elements in real or integer arrays to zero, except for those
elements on the diagonal from element (1,1) to element (n,n),
where n is the largest subscript in the array; the elements on
the diagonal are set to 1 (IDN applies to square arrays only)

NUL$

	

Sets the value of all elements in a string array to the null
string, except those in row and column zero

The array name can specify an existing array. MAT statements do not assign
values to row and column zero .
Note that the MAT statement does not require subscripts . In the case of
existing arrays :
•

	

If you do not specify subscripts, BASIC-PLUS-2 does not change the
current subscripts .

•

	

If you specify subscripts, BASIC-PLUS-2 redimensions the array to the
specified subscripts . When redimensioning arrays with the MAT statement,
you cannot increase the total number of array elements (including those in
row and column zero) .

If you do not supply subscripts when creating an array with the MAT
statement, BASIC-PLUS-2 assigns two subscripts, each with a value of
10. If you do specify subscripts, they define the dimensions of the array being
implicitly created. Subscript values cannot exceed 10 .

Example

Output

Arrays 1 0-11

ARRAY A :
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

ARRAY B :
1 1 1 1 1 1 11 1 1

10 DIM A(10,10), B(15), C(20,20)
20 MAT A = ZER !Sets all elements of A to 0
30 MAT B = CON(10) !Sets elements of B to 1 ; redimensions B
40 MAT C = IDN(10,10) !Redimensions C to 10x10 identity matrix
50 PRINT "ARRAY A :"

60

MAT PRINT A ;
PRINT
PRINT "ARRAY B :"
MAT PRINT B ;

70

PRINT
PRINT "ARRAY C :"
MAT PRINT C ;

10.3 .2 .2 The MAT READ Statement
The MAT READ statement assigns values from DATA statements to array
elements. Subscripts define either the dimensions of the array being created or
the new dimensions of an existing array; subscripts are optional in MAT READ
statements .
If you do not provide enough data in DATA statements to fill the specified
array, BASIC-PLUS-2 leaves the remaining array elements unchanged . If
you provide more data values than there are array elements, BASIC-PLUS-2
assigns enough values to fill the array and leaves the DATA pointer at the next
value .
In the following example, BASIC-PLUS-2 fills matrix B with the first four
DATA items, fills matrix C with the next four DATA values, and leaves the
DATA pointer at the ninth value in the DATA list .
Example

10-12 Arrays

ARRAY C :

B(2,2)
MAT READ C(2,2)
PRINT
PRINT "MATRIX
PRINT
PRINT
MAT PRINT B ;
PRINT

20

	

PRINT "MATRIX C"
PRINT
PRINT
MAT PRINT C ;
DATA 1,2,3,4,5,6,7,8,9,10
END

10

	

MAT READ

30

B"

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

Output
MATRIX B

1 2
3 4

MATRIX C

5 6
7 8

10.3.2.3 The MAT INPUT [#] Statement
The MAT INPUT statement assigns values from your terminal to array
elements. The MAT INPUT # statement reads data from a terminal-format file
and writes it to an array. The optional subscripts in a MAT INPUT statement
define either the dimensions of the array being created implicitly or the new
dimensions of an existing array . If you are implicitly creating the array, the
value of a subscript cannot exceed 10 .
The MAT INPUT statement requests data from your terminal, as does the
INPUT statement ; it prints a question mark (?) prompt that you can disable
with the SET NO PROMPT statement and then enable with the SET PROMPT
statement. However, you cannot include a string prompt with the MAT INPUT
statement .
When you enter a series of values separated by commas, BASIC-PLUS-2
enters the values you supply into successive array elements by row, starting
with element (1,1) and filling row 1 before starting row 2 . If you provide fewer
data items than there are elements, the remaining elements are unchanged . If
you provide more items than there are elements, BASIC-PLUS-2 ignores the
excess .
The MAT INPUT # statement takes values from an open file and assigns
them to the matrix elements by rows, starting with element (1,1) . It fills the
elements in row 1 before starting row 2 . The file can have one or more values
in each record; however, multiple values must be separated with commas .

In the following example, the open file on channel 3 contains the following
data: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 . The MAT INPUT # statement reads
this data and uses it to fill array A, filling in row 1 before beginning row 2 .
The MAT INPUT B(2,2) statement dimensions array B to 9 elements (0 to 2 in
each dimension) and provides values for all the elements except those in row
and column zero .

Arrays 10-13

1 0-14 Arrays

Example

? 1,2,3,4

1 2
3 4

Note that the MAT PRINT statement does not print row and column zero . For
more information on the MAT PRINT statement, see Section 10.3.2 .5 .
The MAT INPUT statement can also redimension an existing array .

Example
10

	

DIM new array%(5,5)
MAT INPUT new array%(2,4)
MAT PRINT new array% ;
END

Output
1,2,3,4,5,6,7,8

1 2 3 4
5 6 7 8

When entering values in response to MAT INPUT, you can enter an ampersand
as the last character on the line and continue on the next line .

10 MAT
PRINT
MAT
MAT
PRINT
MAT

INPUT

PRINT
INPUT

PRINT

A ;

B ;

#3,

B(2,2)

A

Output
2 3 4 5 6 7 8 9 10

12 13 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

10.3.2.4 The MAT LINPUT [#] Statement
The MAT LINPUT statement assigns string values to string array elements .
The MAT LINPUT # statement reads string values from a terminal-format file
and writes them to a string array.

The MAT LINPUT statement prompts for individual array elements . It fills
the array by rows, starting with element (1,1) . It assigns the line you supply
(including commas, semicolons, and quotation marks, but excluding the line
terminator) to an array element .
Example
10

	

DIM emp nam$(5,5)
MAT LINPUT emp nam$(2,2)
PRINT emp nam$(1,1)
PRINT emp nam$(1,2)
PRINT emp nam$(2,1)
PRINT emp nam$(2,2)
END

Output
? HODGES
? LAFFERTY
? ELDON
? HOPKINS
HODGES
LAFFERTY
ELDON
HOPKINS

By specifying the subscripts (2,2), MAT LINPUT redimensions the array to
four elements and overwrites the old values . BASIC-PLUS-2 then prompts for
these elements .
MAT LINPUT # also excludes line terminators when assigning values to string
array elements . MAT LINPUT # places the values from the open file into the
specified array, filling the array by rows, starting with element (1,1) . If there
are more values in the file than there are array elements, BASIC-PLUS-2
ignores the excess . If there are fewer, BASIC-PLUS-2 assigns a null string to
the remaining elements .
The following program reads 50 records from the open disk file and assigns
them to the array named part name$. If there are more than 50 records in the
file, BASIC-PLUS-2 ignores the excess . If there are fewer than 50 records,
then BASIC-PLUS-2 fills the remaining elements of the array with the null
string.

Arrays 10-15

10-16 Arrays

Example
10

	

DIM part name$(50)
MAT LINPUT #1%, part name$

10.3.2.5 The MAT PRINT [#] Statement
The MAT PRINT statement prints some or all of an array's elements, excluding
row and column zero. The MAT PRINT # statement takes values from an array
by row, starting with element (1,1), and writes each element to a sequential
record in the terminal-format file .
Subscripts are optional in MAT PRINT statements . If you do not specify
subscripts, MAT PRINT displays the entire array, excluding row and column
zero. If you specify subscripts, MAT PRINT displays the specified subset
of the array. In the case of the MAT PRINT # statement, the subscripts
determine how many array elements are written to the file . The MAT PRINT
[#] statement does not redimension an existing array .
If the last character in the MAT PRINT [#] array list is a semicolon,
BASIC-PLUS-2 begins each array row on a separate line . Data values on
each line are packed together with no intermediate spaces . However, if the
last character in the MAT PRINT [#] arrays list is a comma, BASIC-PLUS-2
begins each array row on a separate line and each data value in a separate
print zone .
If there is neither a comma nor a semicolon after the array name,
BASIC-PLUS-2 prints each array element on a separate line. In the following
example, the first MAT PRINT statement does not end in a comma or
semicolon, so each element is printed on a separate line . The second MAT
PRINT statement prints the elements twice, the first time starting each
element in a new print zone, and the second time leaving a space before and
after each value. The MAT PRINT # statement sends the last two lines of
output to a terminal-format file .
Example
10

	

MAT INPUT A(5)
PRINT
MAT PRINT A
PRINT
MAT PRINT A, A ;
MAT PRINT #3, A, A ;
END

Output
5

5

	

0

	

0

	

0

	

0

5 0 0 0 0

10.3.2.6 Matrix I/O Functions
MAT statements do not signal error messages when there are more data items
than array elements to contain them, or when there are fewer data items than
array elements to contain them .
BASIC-PLUS-2 provides two functions that let you determine how much data
the MAT statements transfer : NUM and NUM2 .
For two-dimensional arrays, the NUM function returns an integer value
specifying the row number of the last data item transferred, whereas the
NUM2 function returns an integer value specifying the column number of the
last data item transferred . For one-dimensional arrays, the NUM function
returns the number of items entered, whereas the NUM2 function returns a
zero .
With these functions, you can determine the number of items transferred
from a terminal-format file . Note, however, that you cannot use the NUM and
NUM2 functions to implicitly declare an array. In the following example, the
terminal-format file EMP.DAT contains the values 1 through 17, inclusive .
When these values are read using the MAT INPUT # statement, NUM and
NUM2 represent the row and column number, respectively, of the last value
read .
Example
10

	

OPEN "EMP .DAT" FOR INPUT AS FILE #3%
DIM emp name$(5,5)
MAT INPUT #3%, emp name$

20

	

PRINT NUM, NUM2
30

	

END

Output
4

	

2

Arrays 10-17

10.4 Array Input and Output
You can assign values to array elements from within your program, from an
external source, such as terminal input or from files, or with MAT statements .
You can write data from an array with the following statements :
•

	

PRINT
•

	

MAT PRINT
•

	

MAT PRINT #
The following sections tell you how to perform input and output operations on
BASIC-PLUS-2 arrays .

10.4 .1 Assigning Values with the LET Statement
The LET statement assigns values to individual array elements .
Example
10

	

DIM voucher num%(100)

60

	

LET voucher num%(20) = 3253%

100

	

END

You can also assign values to a portion of an array with the LET statement and
a FOR . . .NEXT loop. In the following example, the FOR . . .NEXT loop assigns
zero to array elements (1,5) through (1,10), (2,5) through (2,10), and (3,5)
through (3,10) .
Example
10

	

DIM po number%(100,100)

FOR I % = 1 % TO 3 %
FOR J% = 5% TO 10%

LET po number%(I%,J%) = 0%
NEXT J%

NEXT 1%

END

10-18 Arrays

10.4.2 Listing Array Elements with the PRINT Statement
You print individual array elements by naming those elements in the PRINT
statement. For example :
10

	

PRINT parts_list$(35%)

With a FOR. . . NEXT loop, you can print all or part of an array .

Example
10

	

DIM capture ratio(10,10)

FOR Y% = 7% TO 10%
FOR X% = 7% TO 10%

PRINT capture ratio(X%,Y%)
NEXT X%

NEXT Y%

10.5 Matrix Operators
BASIC-PLUS-2 provides a special set of MAT statements for array
computations. These statements enable you to add, subtract, and multiply
matrices, and to assign values to elements . Note that if you specify an array
without subscripts (for example, MAT A), the default is two dimensions .
BASIC-PLUS-2 also provides matrix functions to transpose and invert
matrices, and to find the determinant of a matrix you invert .

Note
MAT operators do not operate on elements in row or column zero .

10.5.1 Arithmetic Matrix Operations
MAT operators perform matrix assignment, addition, subtraction, and
multiplication .
All of these operations use the keyword MAT, followed by an expression . If the
array has not been previously dimensioned, these operations create an array .
The created output array's dimensions depend on the operation performed, but
must be (10,10) or smaller.

Arrays 10-19

Note

You can use the MAT operators on arrays larger than (10,10) if the
input and output arrays are explicitly created or received as a formal
parameter .

10 .5 .1 .1 Assignment
You can assign all values in one array to another array with the MAT
statement. In the following example, each element of new array is set to
the corresponding element in old array . The dimensions of new array are also
redimensioned to the dimensions of old array .
10

	

MAT new array = old array

10.5 .1 .2 Addition and Subtraction
You can add the elements of two arrays . In the following statement, the
two input lists, first list% and second list%, must have identical dimensions .
The elements of the new list, sum list%, equal the sum of the corresponding
elements in the input lists .
10

	

MAT sum_list% = first_list% + second_list%

You can also subtract the elements of two arrays . The following program
subtracts one array from another .

Example
10 DIM first array(30,30)

DIM second_array(30,30)
DIM difference array(30,30)

MAT difference array = first array - second array

Each element of difference array is the arithmetic difference of the
corresponding elements of the input arrays .

10.5 .1 .3 Multiplication
You can multiply the elements of two arrays, provided that the number of
columns in the first array equals the number of rows in the second array . The
resulting array contains the product of the two input arrays .

10-20 Arrays

Example
10

	

DIM A(2,2), B(2,2), C(2,2)
A(1,1) = 1
A(1,2) = 2
A(2,1) = 3
A(2,2) = 4
B(1,1) = 5
B(1,2) = 6
B(2,1) = 7
B(2,2) = 8

2 0

	

MAT C= A * B
MAT PRINT C

Output
19
22
43
50

You can also multiply a matrix by a scalar quantity. BASIC-PLUS-2
multiplies each element of the input array by the scalar quantity you supply .
The output array has the same dimensions as the input array. Enclose the
scalar quantity in parentheses . The following example multiplies the elements
of inch array by the inch-to-centimeter conversion factor and places these
values in cm array .

Example
10

	

DIM inch array(5), cm array(5)
MAT READ inch-array
DATA 1,12,36,100,39 .37
MAT cm-array = (2 .54) * inch array
MAT PRINT cm array,
END

Output
2 .54

	

30 .48

	

91 .44

	

254

	

99.9998

10.5 .2 Matrix Functions
BASIC-PLUS-2 provides three matrix functions :

•

	

TRN
•

	

INV
•

	

DET
With these functions, you can transpose and invert matrices, and find the
determinant of an inverted matrix .

Arrays 10-21

10.5.2 .1 The TRN Function
The TRN function transposes a matrix . When you transpose a matrix,
BASIC-PLUS-2 interchanges the array's dimensions . For example, a matrix
with n rows and m columns is transposed to a matrix with m rows and n
columns . The elements in the first row of the input matrix become the
elements in the first column of the output matrix . You cannot transpose a
matrix to itself; MAT A = TRN(A) is invalid .
This example creates a 3 by 5 matrix, transposes it, and prints the results .

Example
10

	

DIM B(3,5)
MAT READ B
MAT A = TRN(B)
DATA 1,2,3,4,5
DATA 6,7,8,9,10
DATA 11,12,13,14,15
MAT PRINT B ;
MAT PRINT A ;
END

10-22 Arrays

10.5.2.2 The INV Function
The INV function inverts a matrix . BASIC-PLUS-2 can invert a matrix only
if its subscripts are identical and it can be reduced to the identity matrix by
elementary row operations . The input matrix multiplied by the output matrix
(its inverse) always gives the identity matrix as a result .

Example
10

	

MAT INPUT first array(3,3)
MAT PRINT first array ;
PRINT
MAT inv_array = INV (first-array)
MAT PRINT inv_array ;
PRINT
MAT mult array = first array * inv_array
MAT PRINT mult array ;

Output
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

6 11
2 7 12
3 8 13
4 9 14
5 10 15

Output
? 4,0,0,0,0,2,0,8,0
4 0 0
0 0 2
0 8 0

.25

	

0

	

0
0

	

0

	

.125
0

	

.5

	

0

1 0 0
0 1 0
0 0 1

10.5.2 .3 The DET Function
The DET function returns the determinant of a matrix. The DET function
returns a floating-point number that is the determinant of the last matrix
inverted . If you use the DET function before inverting a matrix, the value of
DET is zero .

Arrays 10-23

11
Program Segmentation

Program segmentation is the process of writing a program as a group of small,
manageable routines and modules, rather than as a large single module . This
chapter describes how to do the following :

•

	

Create and invoke BASIC-PLUS-2 subprograms

•

	

Share data among program modules
•

	

Build a single task image from multiple program modules

•

	

Call non-BASIC-PLUS-2 subprograms

11 .1 Introduction
Writing large programs as a group of program modules provides several
advantages for the programmer . For instance, if you write a large program as
a single module, the program is hard to understand and debug ; however, if you
program a group of program modules so that each module performs a single
logical function of the task, you get the following advantages :

•

	

Faster program design and implementation

•

	

Faster debugging and testing
•

	

Program code that is easier to understand
•

	

Program code that is easier to maintain
•

	

Program code that is easier to transport
Also, a large single module may require more address space than the 32K
word limit. When you write the program as a group of program modules,
each module can be called into memory as needed, thus reducing a program's
memory requirements .
A program module is a block of code that is created and compiled separately
and then invoked or called from another program module . Program modules
can be either main programs or subprograms .

Program Segmentation 11-1

A single executable task contains only one main program, but can contain
several subprograms. The main program is the program module that begins
the execution of the task . The main program then calls the first subprogram,
which can in turn call another subprogram, and so on. After each subprogram
completes execution, control returns to the program module that called it .
Note that subprogram invocations can be nested. That is, a subprogram called
from a main program can call another subprogram ; however, a subprogram
cannot call itself or the subprogram that called it .

11 .2 BASIC-PLUS-2 Subprograms
There are two types of BASIC-PLUS-2 subprograms :
•

	

SUB subprograms
•

	

FUNCTION subprograms
You use the CALL statement to invoke a SUB subprogram . You invoke a
FUNCTION subprogram just as you would a built-in BASIC-PLUS-2 function .

SUB and FUNCTION subprograms are similar to GOSUB and DEF function
subroutines. For example, CALL and GOSUB statements both transfer control
to another part of an executable image . After processing is complete, END
SUB and RETURN statements both return control to the statement following
the CALL or GOSUB statement that transferred control . Similarly, DEF and
FUNCTION statements both let you define functions that return values when
invoked .
The difference between subroutines and subprograms lies in the interface
between the parts of the program . When you divide a large program into small
program modules, the interface between the modules is strictly defined and
well controlled . Variables and data can be shared between program modules
only by way of parameters, COMMON or MAP statements, or files . Thus, it is
much more difficult for one program module to cause unexpected side effects in
another program module .
The interface between a DEF or GOSUB subroutine and the surrounding
program is much less clearly defined ; all program variables and data are
accessible from within a DEF or GOSUB subroutine . Thus, it is much easier
for a DEF or GOSUB to alter or redefine variables unintentionally.
This is not to say that you should never use DEF or GOSUB subroutines ;
however, you should be aware of the possibility of side effects and be more
careful in coding them. Considering possible side effects is even more
important if a program may be modified by other programmers . The following
sections describe SUB and FUNCTION subprograms .

11-2 Program Segmentation

11 .2.1 SUB Subprograms
The SUB statement must be the first statement on the first numbered line of
a BASIC-PLUS-2 SUB subprogram . The format of the SUB statement is as
follows :
SUB sub-name ([[data-type] param]), . . .

sub-name
Is a unique, 1- to 6-character name . Neither the subprogram nor main program
can have a map or a common block of this name .

data-type
Is a data-type keyword . See Chapter 7 for more information about data-type
keywords .

param
Is a parameter. You can specify up to 32 parameters .

Note	
For both SUB and FUNCTION subprograms, the Task Builder requires
a name containing only members of the RAD-50 character set . See C
for information on the RAD-50 character set . The subprogram name
can begin with a dollar sign ($) only if the name is enclosed in quotes .
It is recommended that you do not begin subprogram names with a
dollar sign, as names of this form are reserved for Digital .

The parameters in the SUB statement must agree in number and data type
with the parameters in the calling statement .
The subprogram name can be either a quoted or an unquoted string . For
example, these are valid subprogram names :
10 SUB "SUBPRG"
10 SUB 'SUBPRG'
10 SUB SUBPRG

You can include a dollar sign ($) or a period (.) in a subprogram name ;
however, if a dollar sign or a period is the first character in the name, the
entire name must be enclosed in quotes .
The END SUB statement marks the end of a BASIC-PLUS-2 subprogram .
The format of the END SUB statement is as follows :

END SUB

Program Segmentation 11-3

END SUB transfers control to the statement immediately after the statement
that called the subprogram. The END SUB statement must be the last
statement in the subprogram . The SUBEND statement is identical to the END
SUB statement .
You exit from a subprogram with the EXIT SUB statement . The format of the
EXIT SUB statement is as follows :
EXIT SUB

The EXIT SUB statement is equivalent to an unconditional transfer to the
END SUB statement .

11 .2 .2 FUNCTION Subprograms
The FUNCTION statement marks the beginning of a FUNCTION subprogram .
Its format is as follows :
FUNCTION data-type func-name ([[data-type] param], . . .)

data-type
Is a data-type keyword . The data-type keyword following FUNCTION specifies
the data type of the return value. A data-type keyword preceding a parameter
specifies the data type of that parameter . See Chapter 7 for more information
about data-type keywords .

func-name
Is a unique, 1- to 6-character subprogram name .

param
Is a parameter. You can specify up to eight parameters .
The END FUNCTION statement marks the end of a function subprogram,
returns a value to the calling program, and returns program control to the
statement that called the function subprogram . The format of the END
FUNCTION statement is as follows :
END FUNCTION [exp]

exp
Is the function result unless an EXIT FUNCTION statement is executed . The
optional expression must be compatible with the DEF or FUNCTION data
type. This expression supersedes all function assignments .

11-4 Program Segmentation

The EXIT FUNCTION statement returns program control to the statement
that invoked the function subprogram . It is equivalent to an unconditional
transfer to the END FUNCTION statement . The format of the EXIT
FUNCTION statement is as follows :

EXIT FUNCTION [exp]

exp
Is the function result. It supersedes any function assignment . It also overrides
any expression specified on the END DEF or END FUNCTION statement .

11 .3 Declaring BASIC-PLUS-2 Subprograms
You declare the existence of a subprogram by naming it in an EXTERNAL
statement. Declaring subprograms is optional for SUB subprograms ; the CALL
statement that invokes a SUB subprogram is an implicit declaration ; however,
you must delare FUNCTION subprograms with the EXTERNAL statement .

The EXTERNAL statement also lets you declare the data type for each
parameter passed to the subprogram . If the subprogram is a FUNCTION
subprogram, the EXTERNAL statement requires you to specify the data type
of the returned value . To declare BASIC-PLUS-2 subprograms, the format for
the EXTERNAL statement is:

EXTERNAL SUB {sub-name ([[data-type], . . .])}, . . .

EXTERNAL data-type FUNCTION {func-name ([[data-type], . . .])}, . . .

SUB
Specifies that the external procedure is a BASIC-PLUS-2 SUB subprogram .

sub-name
The 1- through 6-character name of the SUB subprogram .

FUNCTION
Specifies that the external procedure is a BASIC-PLUS-2 FUNCTION
subprogram .

func-name
The 1- through 6-character name of the FUNCTION subprogram .

data-type
Is a data-type keyword. The data-type keyword preceding FUNCTION
specifies the datatype of the value returned by the subprogram . A data-type

Program Segmentation 11-5

keyword within the parameter list specifies the datatype of that parameter .
See Chapter 7 for more information about data-type keywords .
Data-type keywords in the parameter list apply to all the remaining
parameters until you specify a new data type . If you do not specify a
parameter's data type, the default is determined by either the compiler default,
the OPTION statement, or a BASIC-PLUS-2 qualifier .
By declaring all subprograms before calling them, you gain several advantages:
•

	

The program is easier to read and maintain .
•

	

Data types need not be specified when you invoke the subprograms .
•

	

BASIC-PLUS-2 automatically converts expressions to the proper data type
when passing them as parameters .

11 .4 Accessing BASIC-PLUS-2 Subprograms
You access a FUNCTION subprogram by declaring it in an EXTERNAL
statement and by invoking the function name as you would a BASIC-PLUS-2
built-in function . You access a SUB subprogram with the CALL statement .
The CALL statement transfers control to a subprogram, and optionally passes
arguments to it . The format of the CALL statement is as follows :
CALL sub-name ([param], . . .)

sub-name
Is a unique, 1- to 6-character name . Neither the subprogram nor main
program can have a map or a common block of this name .

param
Represents 1 through 8 optional parameters that BASIC-PLUS-2 passes from
the calling program to the subprogram . The parameters must agree in data
type and number with the parameters you define in the SUB statement of the
subprogram. You can also pass null parameters .
The subprogram name can be either a quoted or an unquoted string ; however,
you cannot use string variables to specify a subprogram name because
BASIC-PLUS-2 interprets the string variable as the actual subprogram name .
In the following example, BASIC-PLUS-2 attempts to name the subprogram
NAM$:
10 NAM$ = "SUBPRG"

20 CALL NAM$

11-6 Program Segmentation

When BASIC-PLUS-2 accesses a subprogram, it transfers control from the
calling program to the SUB or FUNCTION statement in the subprogram . It
also passes the specified parameters to the subprogram . A simple example of a
main program that calls a subprogram follows .
Main Program
100

	

EXTERNAL SUB SUBO1(LONG, LONG, LONG)
DECLARE LONG A, B, C
INPUT "Please type three integers" ; A, B, C
CALL SUB01 (A, B, C)

32767

	

END

SUB Subprogram
100

	

SUB SUB01 (LONG X, LONG Y, LONG Z)
PRINT "The sum is" ; X + Y + Z

32767

	

END SUB

The main program prompts for three integers : A, B, and C . It then passes
these variables as parameters to the SUB subprogram . The subprogram prints
the sum of these variables and returns control to the calling program .
The following example performs the same task using a FUNCTION
subprogram .
Main Program
100

	

EXTERNAL LONG FUNCTION FUN01(LONG, LONG, LONG)
DECLARE LONG A, B, C
INPUT "Please type three integers" ; A, B, C
PRINT "The sum is" ; FUN01(A, B, C)

32767

	

END

FUNCTION Subprogram
100

	

FUNCTION LONG FUNK (LONG X, LONG Y, LONG Z)
FUNK = X + Y + Z

32767

	

END FUNCTION

These two sets of programs perform essentially the same operation ; however,
the SUB subprogram performs the addition and displays the sum, while the
FUNCTION subprogram returns a value to the main program, and the main
program prints the sum of the variables .
Note that when coding FUNCTION subprograms, you must specify a data
type for the function in both the main program EXTERNAL statement and the
subprogram FUNCTION statement. This data-type keyword specifies the data
type of the value returned by the function subprogram .

Program Segmentation 11-7

11 .5 Passing Parameters to a BASIC-PLUS-2 Subprogram
When you invoke a subprogram (with a CALL statement, for example), you can
specify up to eight parameters to be passed to the subprogram . This parameter
list contains actual parameters . The actual parameters specify the actual
values used by the subprogram . When you declare a subprogram (for example,
in an EXTERNAL statement), the parameter list contains formal parameters .
The formal parameters specify the order and data type of the information
passed to the subprogram .
Note that a formal parameter list appears in both the EXTERNAL and
SUB or FUNCTION statements . You must make sure that these formal
parameter lists match the number, order, and data types of the parameters .
BASIC-PLUS-2 does not signal an error if the formal parameter lists do not
match, because when you use the EXTERNAL statement, BASIC-PLUS-2
converts them for you .
Parameters can be any of the following :
•

	

Constants
•

	

Variables
•

	

Expressions
•

	

Function references
•

	

Array elements
•

	

Entire arrays
Parameters can be modifiable or nonmodifiable . If the parameter is modifiable,
the value you assign to the parameter in the subprogram replaces the value in
the calling program .
Modifiable parameters include :
•

	

Entire arrays
•

	

Simple string variables
•

	

Simple numeric variables
•

	

Common block or map elements
The term simple means unsubscripted .
If the parameter is nonmodifiable, the value you assign the parameter in the
subprogram does not replace the value used by the calling program .

11-8 Program Segmentation

Nonmodifiable parameters include :
•

	

Constants
•

	

Expressions
•

	

Function references
•

	

Individual array elements
When a program passes a modifiable parameter to a subprogram, it actually
passes a pointer to the parameter's address in memory. If the subprogram
assigns a new value to the parameter, the new value replaces the original
value in memory, and the calling program can then access the modified value .

If a parameter is an expression, a function reference, or an array element, it is
not possible to pass the parameter's address . In these cases BASIC-PLUS-2
makes a local copy of the parameter's value and passes the address of the
local copy. The subprogram can modify only the local copy and not the actual
parameter .
You can force BASIC-PLUS-2 to make a local copy of any parameter by
enclosing it in parentheses . In the following example, the calling program
passes one modifiable and one nonmodifiable parameter to a subprogram .

Main Program
10 A, B(10,10)

XYZ (WORD, WORD)

B(5,5)

DECLARE WORD
EXTERNAL SUB
A = 5
B(5,5) = 10
PRINT "A equals" ; A
PRINT "B(5,5) equals" ;
CALL XYZ (A, B(5,5))
PRINT "A equals" ; A
PRINT "B(5,5) equals" ; B(5,5)

32767

	

END

Subprogram

Program Segmentation 11-9

'!00 SUB XYZ (WORD AAA, WORD BBB)
AAA = 100
BBB = 500

32767

PRINT
PRINT
SUBEND

"AAA equals" ; AAA
"BBB equals" ; BBB

Output
A equals 5
B(5,5) equals 10
AAA equals 100
BBB equals 500
A equals 100
B(5,5) equals 10

In the main program :
1 . The DECLARE statement declares a word integer named A and a 121-

element array of word integers named B .
2 . The EXTERNAL statement declares an external SUB subprogram named

XYZ. The EXTERNAL statement has a formal parameter list specifying
that the subprogram receives two word integers as parameters .

3 . The next two statements assign a value of five to A and a value of 10 to the
array element (5,5) in list B .

4. The PRINT statements display the values of A and B(5,5) .
5. The CALL statement calls the subprogram XYZ and passes A and B(5,5) as

actual parameters .
6. The next two PRINT statements display the values of A and B(5,5) after

control has returned from the subprogram .
7. The END statement ends the main program .
In the subprogram :
1. The SUB statement identifies the program module as a SUB subprogram

receiving two word integers as parameters . The formal parameter list
names these parameters AAA and BBB .

2. The next two statements assign a value of 100 to AAA and 500 to BBB .
3. The PRINT statements display these new values .
4. The SUBEND statement ends the subprogram and returns control to the

main program .
The subprogram assigns a new value to each parameter ; however, when control
returns to the main program, the first parameter has a new value while the
second parameter does not . This is because a simple variable is modifiable
while an individual element of an array is not .
Single array elements are nonmodifiable when passed to the subprogram as
parameters in the CALL statement ; however, if you pass an entire array as a
parameter, you can modify one or all of the elements in that array .

11-10 Program Segmentation

To pass an entire array you must use a special format . In the CALL statement,
you specify the array name followed by n commas enclosed in parentheses,
where n is the number of array dimensions minus one . For example :
!For one-dimensional arrays :
CALL A50()
!For multi-dimensional arrays :
CALL D ARRAY(,,,)

In the EXTERNAL statement you replace the array name with a data type
specifying the array's data type and the DIM keyword indicating that the
parameter is an array. For example :
DIM O or BYTE DIM(,,)

The following example passes an entire array to a subprogram .

Main Program
10

	

DECLARE STRING X(2,2)
EXTERNAL SUB CCC (STRING DIM(,))
MAT X = NUL$
CALL CCC(X(,))
MAT PRINT X

32767

	

END

Subprogram
100

	

SUB CCC (STRING ABC(,))
ABC(1,l) _ "XYZ"

32767

	

SUBEND

Output
XYZ

In the main program :

1 . The DECLARE statement declares a two-dimensional string array named
X.

2. The EXTERNAL statement declares an external SUB subprogram named
CCC . The parameter list specifies that the subprogram receives a two-
dimensional string array as a parameter .

3. The MAT statement sets all elements of string array X to the null string .

4 . The CALL statement calls the subprogram CCC and passes the string
array X to it as a parameter .

5 . The MAT PRINT statement displays the array after control has returned
from the subprogram .

6 . The END statement ends the main program .

Program Segmentation 11-11

In the subprogram:
1 . The SUB statement identifies the program module as a SUB subprogram

receiving one string array as a parameter . The formal parameter list
names this parameter ABC .

2. The next statement assigns a value of "XYZ" to element (1,1) of the string
array.

3. The SUBEND statement ends the subprogram and returns control to the
calling program .

The output from this example shows that entire arrays are modifiable . The
entire array X is passed as a parameter, and the value assigned in the
subprogram remains when control returns to the calling program .

Passing entire virtual arrays as parameters in the CALL statement is not
recommended. Instead, you can share the data in a virtual array between
a calling program and a subprogram by opening a virtual file in either
program and dimensioning the array (using the same channel number) in
both programs .
You must dimension a virtual array before opening the corresponding virtual
file. The two programs need not call the virtual array by the same name or use
the same dimensions ; however, using the same dimensions reduces the risk of
error.
Note that any array redimensioned in a subprogram is redimensioned in the
calling program as well .

11 .6 Sharing Data Between Program Modules
In addition to passing parameters, there are three methods for sharing data
between program modules :
•

	

Common blocks
•

	

Maps
•

	

Files
Common blocks and maps are similar, but it is suggested that common blocks
be used to share the data in program variables and arrays, whereas maps
should be used only for sharing I/O record buffers between modules . Files
should be used to share data between programs when accessing a large amount
of data .

1 1 -12 Program Segmentation

11 .6.1 Common Blocks and Maps
COMMON and MAP statements let you share data among program modules .
These statements define a named area of memory called a program section
(PSECT) containing data that can be shared between any module that defines
a PSECT with the same name .
In a single program module, two COMMON statements with the same name
are concatenated . That is, the storage for the variables named in the second
common block is appended to the storage for the variables named in the first
common block; however, if the same common block name is used in both a
calling program and a subprogram, the storage for the subprogram's common
block overlays the storage for the calling program's common block . Thus, a
calling program variable name and a subprogram variable name can point to
the same storage location .
MAP statements with the same name always overlay the same storage,
regardless of the module in which they reside . Calling programs and
subprograms should share a map area only if they are performing I/O and
need to share a record buffer.
Using a common block or map to share data rather than passing parameters in
a CALL statement has the following advantages :
•

	

BASIC-PLUS-2 can access the data more quickly.

•

	

You can share a larger amount of data .
The COMMON statement has the following format :

I
COM

	

} [(com-name)] { [data-type] com-item }, . . .
COMMON

com-name
Is a 1- to 6-character name you assign to the common block . Common blocks
cannot have the same name as a program module within a single task image ;
however, a common block can have the same name as a map . This means
that they define the same storage. If you do not specify a name, .$$$$. is the
default name for the common block .

data-type
Is a data-type keyword . See Chapter 7 for information on data types .

com-item
Can be a variable, an array, or a FILL item . See Chapter 7 for more
information on FILL items .

Program Segmentation 11-13

Define the common block or map area in your main program and include the
same COMMON or MAP statement in your subprogram to access the data . For
example :
Main Program
10

	

COMMON (RESERV) STRING STRING = 44, REAL RE AL
STRI NG = "Here is the value in the calling program :"
RE_AL = 123
PRINT STRI NG ;RE AL
CALL SUB1
PRINT STRI NG ;RE AL

32767

	

END

Subprogram
10

	

SUB SUB1
COMMON (RESERV) STRING STRING = 44, REAL RE AL
STRING = "Here is the value after the call :"
RE_AL = 345

32767

	

SUBEND

Output
Here is the value in the calling program : 123
Here is the value after the call : 345

The MAP statement has the following format :

MAP (map-name) { [data-type] map-item }, . . .

map-name
Is a 1- to 6-character name you assign to the map . Maps cannot have the same
name as a subprogram within a single task image ; however, a map can have
the same name as a common block . This means that they define the same
storage .

data-type
Is a data-type keyword . See Chapter 7 for information on data types .

map-item
Can be a variable, an array, or a FILL item . See Chapter 7 for more
information on FILL items .
The following example shows a record buffer being shared by two program
modules .

11-14 Program Segmentation

Main Program
100

	

MAP (BUF) STRING PART .NAME = 20,

	

&
WORD EXPIRE .DATE

OPEN "FILE .DAT" AS FILE #3,

	

&
ORGANIZATION RELATIVE,

	

&
MAP BUF

FOR REC .NUM% = 1% TO 50%
GET #3, RECORD REC .NUM%
CALL SUBI(REC .NUM%) IF EXPIRE .DATE = 365%

NEXT REC .NUM%
CLOSE #3

32767 END

Subprogram
100

	

SUB SUB1 (INTEGER N)
MAP (BUF) STRING PART .NAME = 20,

	

&
WORD EXPIRE .DATE

PRINT "Old part name", PART .NAME
INPUT "New part name", PART .NAME
EXPIRE .DATE = 1%
PUT #3, RECORD N

32767 END SUB

The main program opens a file using MAP BUF as its record buffer. If the
variable EXPIRE .DATE is equal to 365, the subprogram SUB1 is called . The
subprogram defines MAP BUF, displays the current value of PART .NAME,
modifies the record buffer, and writes the new record to the file .

In both common blocks and maps, simple numeric variables reserve the
following :
•

	

1 byte of storage for BYTE integers
•

	

2 bytes of storage for WORD integers
•

	

4 bytes of storage for LONG integers
•

	

4 bytes of storage for single-precision, floating-point numbers
•

	

8 bytes of storage for double-precision, floating-point numbers

Note
Examples and explanations in this section assume single-precision,
floating-point variables are used .

Program Segmentation 11-15

String variables reserve fixed amounts of storage. The default length is 16
bytes. You can reserve more or less space by defining lengths for the string
variables in the MAP or COMMON statement .
10 COMMON (RESERV) STRING A = 10, STRING B, WORD C

In this example, BASIC-PLUS-2 reserves a total of 28 bytes for the common
block RESERV, 10 bytes for A, 16 bytes for B (the default), and 2 bytes for C .
You can redefine the area of a common block or map between program modules .

Calling Program
10 COMMON (RESERV) STRING A = 10, STRING B, BYTE C

Subprogram
10 COMMON (RESERV) STRING Al = 4, STRING A2 = 6, STRING B, BYTE C

In the calling program, A is a 10-character string. In the subprogram, A is
subdivided into Al, which contains the first four characters, and A2, which
contains the next six characters .
Each numeric variable in a common block or map should start on a word
boundary. If the total storage allocation preceding the numeric variable is an
odd number of bytes, use the FILL keyword to align the numeric variable on a
word boundary. For example :
COMMON (RESERV) STRING A = 9, STRING FILL = 1, STRING B, REAL C

String variables and byte numerics in a common block or map can start on any
byte boundary; however, numeric variables other than byte integers must start
on a word boundary. For example :
10 MAP (RESERV) STRING A = 3, WORD X

If a program contains this line, BASIC-PLUS-2 signals the error "%Unaligned
COM or MAP variable X in (RESERV)." This warning error tells you that
BASIC-PLUS-2 added one byte of fill ; BASIC-PLUS-2 moves the variable to
the next word boundary in the resulting object file .
In a single program module, the size of a common block PSECT containing
multiple common blocks of the same name is the sum of the lengths of each
common area. The size of a map PSECT containing multiple maps of the same
name is the length of the longest single map area . The order of variables in
the common block and the order of multiple common blocks of the same name,
determine the order of values in the shared area . For example :
10 COMMON (COMO1) STRING A = 10
20 COMMON (COM01) WORD AA, BB, CC, DD, EE
30 MAP (MAP01) STRING B = 10
40 MAP (MAP01) WORD LL, MM, NN, 00, PP

11-16 Program Segmentation

These COMMON statements reserve 20 bytes of storage: 10 bytes for string A
and two bytes for each of five word integers . The MAP statements reserve a
total of 10 bytes ; the first map reserves 10 bytes for string B, and the second
map uses the same 10 bytes for five word integers .
When sharing map and common areas among program modules, you must
make sure that the map or common PSECT is not overwritten when a
subprogram is loaded into memory during program execution . You can ensure
this by placing the map or common block in the root module . See Section 11 .7
for more information on overlaying common and map areas .

11 .6.2 Files
You can open and access a file in a calling program or subprogram . If you
open the file in the calling program, you do not need to reopen the file in the
subprogram to access the data . Files remain open until you open another file
on that channel, close the file, or until the main program END statement is
executed .
Because there is a single set of record pointers for all program modules,
accessing a file on a given channel retrieves the next record, whether you
perform the access from the main program or a subprogram. Similarly, the
RESTORE # statement resets the record pointer to the first record in the file
whether RESTORE # is executed in the main or subprogram .
This example accesses a RELATIVE file in a main and subprogram .

Main Program: SCAN
5

	

ON ERROR GOTO 19000
MAP (EMPDAT) INTEGER EMP.NUM, &

STRING NA .ME = 30%, &
WAGE .CLASS = 2%, &
JOB .TITLE = 20%, &
REVIEW .DATE = 8%

OPEN "EMP .DAT" FOR INPUT AS FILE #6%,

	

&
ORGANIZATION RELATIVE VARIABLE, &
ACCESS MODIFY,

	

&
MAP EMPDAT

REC .NUM% = 1%
START : GET #6%, RECORD REC .NUM%
CHECK : IF WAGE .CLASS = "01"

THEN
CALL REVIEW(REC .NUM%)
GOTO CHECK

ELSE
REC .NUM% = REC .NUM% + 1%
GOTO START

END IF

Program Segmentation 11-17

The calling program opens an existing relative file, using the EMPDAT map .
As the program retrieves records, it checks the WAGE CLASS field for a value
of "01" . If it finds that value, it calls the subprogram REVIEW, passing the
record number as a parameter.

The REVIEW subprogram does the following :

1 . Receives the record number as a parameter
2 . Executes an ON ERROR GO BACK, specifying that the calling program

handles any errors
3 . Remaps EMPDAT as a 64-character string variable

4 . Opens the terminal-format file REVREPDAT with ACCESS APPEND
REVIEW retrieves the record specified by the parameter N% and prints the
variable Z to the terminal format file . Control then returns to the calling
program so it can scan for another record .

11 .7 Building Task Images
In order for a multi-module program to execute, the Task Builder must link the
object files from each module into a single executable image . The Task Builder
requires both a command file and an overlay descriptor language (ODL) file
to create an executable image from multiple object files . The command file
specifies input and output files . The ODL file specifies the way in which the
modules in your program overlay one another.

11-18 Program Segmentation

19000 IF ERR = 11%
THEN

CLOSE #6%
PRINT 'Finished'
RESUME 32767

ELSE
ON ERROR GOTO 0

END IF
32767 END

Subprogram: REVIEW
10 SUB REVIEW (INTEGER N%)

ON ERROR GO BACK
MAP (EMPDAT) STRING Z = 64%

32767

OPEN
GET

"REVREP .DAT" AS FILE #1%, ACCESS APPEND
#6%, RECORD N%

PRINT #1%, Z
CLOSE #1%
END SUB

In the BASIC-PLUS-2 environment, the BUILD command creates both a Task
Builder command file and an ODL file . For example :
BASIC2

OLD MAIN

BASIC2

COMPILE

BASIC2

OLD SUB1

BASIC2

COMPILE

BASIC2

BUILD MAIN,SUBI

BASIC2

EXIT

$ TKB @MAIN
$ RUN MAIN

This command sequence does the following :

1 . The first OLD command reads MAIN .B2S into memory.

2 . The first COMPILE command compiles MAIN, creating an object module
MAIN.OBJ .

3 . The second OLD command reads SUBI .B2S into memory.

4 . The second COMPILE command compiles SUB1, creating an object module
SUB 1.OBJ .

5 . The BUILD command creates two files: MAIN.CMD and MAIN.ODL .

6 . The EXIT command causes BASIC-PLUS-2 to exit, returning to monitor
command level .

7 . The TKB command invokes the Task Builder by using MAIN .CMD and
MAIN.ODL as input files for the link. The Task Builder creates one
executable image from the object modules .

8 . The RUN MAIN command executes the image .

Program Segmentation 11-19

The Task Builder does the following :
1 . Combines the object modules generated by the COMPILE command into a

single, executable task image
2 . Searches the library to resolve global references made by the program
The ODL file created by the BUILD command tells the Task Builder to
concatenate all modules-that is, to perform no overlays . If the resulting
executable image is too large to execute, you must edit the ODL file to specify
an overlay structure .
The overlay structure is the way program code is brought into memory as the
program executes . Changing the overlay structure of a task lets you decrease
the amount of memory space for your task. Figure 11-1 illustrates the overlay
structure .

Figure 11-1 Tree Figure Representing the Overlay Structure

Subprogram

	

Subprogram
(Branch)

	

(Branch)

Main Program
(Root)

NU-2182A-RA

The ODL file defines the root and branches in the task image . The root is
the portion of the task that remains in memory throughout task execution .
It includes the code for the main program, data local to the main program,
data shared between program modules, and the object library modules needed
to resolve the symbols in the generated code . The branches are the region of
memory that contains the program code for subprograms, data local to the
subprogram, and the object library modules needed to resolve symbols not
already resolved in the main program .
In the following example, the main program calls two subprograms, SUB1 and
SUB2, and SUB2 calls SUB3 .

11-20 Program Segmentation

Main Program
10

	

PRINT 'This program adds and subtracts'
PRINT 'two numbers'
DECLARE REAL A, B

20

	

CALL SUB1 (A, B)
CALL SUB2 (A, B)

32767 END

Subprogram 1
10

	

SUB SUB1 (REAL X, Y)
INPUT 'Input two numbers' ; X, Y

32767 END SUB

Subprogram 2
10

	

SUB SUB2 (REAL X, Y)
X_PLUS_Y = X + Y
X_MINUS_Y = X - Y

20

	

CALL SUB3 (X PLUS Y, X MINUS Y)
32767 END SUB

Subprogram 3
10

	

SUB SUB3 (REAL W, V)
PRINT 'A + B = ; W
PRINT 'A - B = ; V

32767 END SUB

Figure 11-2 shows one possible relationship between the calling program or
root segment, and the subprograms or branch segments .

Figure 11-2 Example of Overlay Structure

SUB3
SUB1

	

SUB2

Calling Program
NU-2183A-RA

Each branch of the tree represents a program segment . Parallel branches at
the same level represent program segments whose instructions and data are
overlaid in memory as the program executes .

Program Segmentation 11-21

Figure 11-3 compares the amounts of memory space the task needs if the four
programs are included in the root of the ODL file and if the subprograms are
included in the branches of the ODL file .

Figure 11-3 Nonoverlay and Overlay Memory Requirements

Subprograms Not Overlaid Subprograms Overlaid

Size
of

Task

SUB3

SUB2

SUB1

Calling
Program

0

	

n

11-22 Program Segmentation

SUB1

SUB3

SUB2

Calling
Program

0

	

n

Processing Time Elapsed Processing Time Elapsed
NU-2184A-RA

Figure 11-3 shows how large the task is at a given time during processing and
what parts of the program are in memory at that time . Comparing them, you
can see the nonoverlaid version needs more memory than the overlaid version .
In the figure that shows subprograms overlaid, SUB2 and SUB3 overlay the
memory reserved for SUB1 as the program executes .
To change the overlay structure defined for a task, you must change the
contents of the ODL file before you link your program. To do this, edit
the ODL file. See the RSTS I E Task Builder Reference Manual or the
RSX-11M/M-PLUS Task Builder Reference Manual for more information
about ODL files .
The ODL file for the task illustrated above where the subprograms are not
overlaid looks like this :

.ROOT USER
USER :

	

FCTR SY :MAIN-SUBI-SUB2-SUB3-LIBR
LIBR :

	

FCTR LB :BP20TS/LB
.END

You can edit your ODL file to overlay your subprograms, reducing the amount
of memory space required for the task :

.ROOT USER
USER :

	

FCTR SY :MAIN-LIBR-*(BR1,BR2)
BR1 :

	

FCTR SY :SUB1-LIBR
BR2 :

	

FCTR SY :SUB2-SUB3-LIBR
LIBR :

	

FCTR LB :BP20TS/LB
.END

The ODL file defines the root portion of the task :
USER :

	

FCTR SY :MAIN-LIBR-*(BR1,BR2)

and two overlaid branches :
.FCTR SY :SUB1-LIBR
.FCTR SY :SUB2-SUB3-LIBR

The main program is concatenated with the BASIC-PLUS-2 disk library
and the two subprograms, BR1 and BR2 . Check your file to make sure the
autoload operator (*) is included in the file. The autoload operator tells the
Task Builder to generate autoload code to automatically load the appropriate
program segment into memory as the program executes . See the RSTS /E Task
Builder Reference Manual or the RSX-11M/M-PLUS Task Builder Reference
Manual for more information on the autoload operator.

Check your ODL file to make sure that each branch and root segment is
concatenated with the BASIC-PLUS-2 disk library so that the Task Builder
can resolve global symbols such as thread names . Failure to concatenate object
modules with the disk library can cause the Task Builder to signal the error
"?Undefined symbol ."
If you intend to use maps or common blocks to share data between main
programs and subprograms, make sure the common block or map is defined in
the main program. The main program is located in the root of the ODL file,
and the data contained within is not overlaid .
For more information on linking and overlay procedures, see the RSTS /E Task
Builder Reference Manual or the RSX-11M/MPLUS Task Builder Reference
Manual .
You can also run multi-module programs in the BASIC-PLUS-2 environment .
To do this you must compile each subprogram, load the resulting object
modules into memory with the LOAD command, read the main program in
memory, and RUN the main program . For example :

Program Segmentation 11-23

BASIC2

OLD SUB1

BASIC2

COMPILE

BASIC2

OLD SUB2

BASIC2

COMPILE

BASIC2

LOAD SUB1+SUB2

BASIC2

OLD MAIN

BASIC2

RUN

The COMPILE command generates an object module for each program module .
The main program is compiled when the RUN command is executed . Note that
the loaded object modules are concatenated and not overlaid .

11 .8 Non-BASIC-PLUS-2 Subprograms
Accessing subprograms written in languages other than BASIC-PLUS-2 can
be useful. For example, MACRO subprograms have these advantages over
BASIC-PLUS-2 subprograms :
•

	

You can pass more parameters to a MACRO subprogram than to a
BASIC-PLUS-2 subprogram .

•

	

Some MACRO subprograms run faster than comparable BASIC-PLUS-2
subprograms .

•

	

MACRO subprograms let you perform tasks that are difficult or impossible
with BASIC-PLUS-2 .

However, BASIC-PLUS-2 does not support the following operations in MACRO
subprograms :
•

	

Performing I/O or monitor operations
•

	

Accessing virtual arrays or other kinds of files

•

	

Creating strings or altering the lengths of existing strings

11-24 Program Segmentation

These operations may overwrite portions of the main program with subprogram
instructions and data . They can cause the main program to abort or generate
unpredictable results. Therefore, you should use extreme care when coding
non-BASIC-PLUS-2 subprograms .
The following sections use MACRO as an example of a non-BASIC-PLUS-2
language because of its widespread use and versatility.

11 .8.1 Parameter-Passing Mechanisms
Different languages can use different methods for receiving and storing
parameters. Therefore, calling non-BASIC-PLUS-2 subprograms from a
BASIC-PLUS-2 program module may require special parameter-passing
mechanisms .
The parameter-passing mechanism refers to the way in which data is passed to
a subprogram . You can pass parameters in the following ways :

•

	

By immediate value
•

	

By reference
•

	

By descriptor
BASIC-PLUS-2 supports these methods with the three BY clauses to the
CALL statement :
•

	

BY VALUE specifies that BASIC-PLUS-2 passes a value to the
subprogram .

•

	

BY REF specifies that BASIC-PLUS-2 passes the address of a value to the
subprogram .

•

	

BY DESC specifies that BASIC-PLUS-2 passes the address of a string or
array descriptor to the subprogram . These descriptors include pointers to
the data .

The parameter-passing mechanism determines whether a subprogram can
modify the parameter. If you send a parameter BY VALUE, the subprogram
does not receive the address of the parameter and therefore cannot modify it .
On the other hand, parameters passed BY REF or BY DESC can be modified
because the subprogram receives either the address of the parameter or the
address of the parameter's descriptor.
Table 11-1 shows allowable parameters for each parameter-passing
mechanism .

Program Segmentation 11-25

'Specifies the default parameter-passing mechanism
2Two asterisks indicate that the value can have 16 bits, at most

The default parameter-passing mechanisms for the CALL statement
correspond precisely to the way a BASIC-PLUS-2 subprogram expects to
receive the parameters .

11-26 Program Segmentation

Table 11-1 BASIC-PLUS-2 Parameter-Passing Mechanisms

Parameter BY VALUE

	

BY REF BY DESC

Integer and Real Data

Variables
Constants

Expressions

Elements of a
nonvirtual array
Virtual
array elements
Nonvirtual
entire array
Virtual
entire array

Yes 2
Yes 2

Yes2

Yes2

Yes2

No

No

Yes'
Local
copy'
Local
copy'
Local
copy'
Local
copy'
Yes

No

No
No

No

No

No

Yes'

Yes

String Data

Variables
Constants

Expressions

Nonvirtual
array elements
Virtual
array elements
Nonvirtual
entire arrays
Virtual
entire arrays

No
No

No

No

No

No

No

Yes
Local
copy
Local
copy
Local
copy
Local
copy
Yes

No

Yes'
Local
copy'
Local
copy'
Local
copy
Local
copy'
Yes'

Yes'

If a BY clause appears before the parameter list, that parameter-passing
mechanism applies to all parameters in the list ; however, this can be
overridden by another BY clause after an individual parameter.
If the parameter list contains two commas with no expression between them,
BASIC-PLUS-2 passes a null argument in that position . For example :
2000 CALL MACR01 BY REF (SS_STRING$ BY DESC, , , 35% BY VALUE)

This statement calls a MACRO subprogram specifying the following :

•

	

The first parameter is a string, passed by descriptor

•

	

The second and third parameters are null

•

	

The fourth parameter is an integer constant, passed by value
Specifying a null parameter is the same as specifying -1% BY VALUE for that
parameter, and BASIC-PLUS-2 places this value in the argument list . You
cannot pass null parameters to a BASIC-PLUS-2 subprogram .
The BY VALUE parameter-passing mechanism is recommended only for system
directives and subprograms written in MACRO-11 . Moreover, you should use
BY VALUE only for values that can fit in a 16-bit word . This is because the
argument list allows only 16 bits per argument .

11 .8.2 Declaring Non-BASIC-PLUS-2 Subprograms
When calling non-BASIC-PLUS-2 subprograms, you should always declare
them with the EXTERNAL statement . The format of the EXTERNAL
statement is as follows :

BY VALUE
EXTERNAL SUB { sub-name [BY REF

	

]
BY DESC

BY VALUE
[[data-type] [

	

BY REF
BY DESC

sub-name
Is the 1- to 6-character name of the subprogram . A subprogram cannot have
the same name as any other subprogram, MAP, or COMMON within the same
task. The name can be a quoted or unquoted string but cannot be a string
variable .

Program Segmentation 11-27

BY VALUE
BY REF
BY DESC
Specifies the parameter-passing mechanism . A BY clause preceding the
parameter list specifies the default passing mechanism . A BY clause appearing
in the parameter list applies only to the particular parameter it follows .

data-type
Is a data-type keyword . See Chapter 7 for more information about data-type
keywords .
By declaring the non-BASIC-PLUS-2 subprogram, you need to specify the data
types and parameter-passing mechanisms only once . After the subprogram
is declared, BASIC-PLUS-2 automatically converts parameters to the proper
data type and specifies the proper parameter-passing mechanism each time the
subprogram is called . For example :
100

	

DECLARE WORD XYZ, STRING ABC
200

	

EXTERNAL SUB MACRO1(LONG BY VALUE, STRING BY DESC)

5000 CALL MACRO1 BY REF (XYZ, ABC)

Line 100 declares two program variables: a WORD integer XYZ and a dynamic
string ABC . The EXTERNAL statement at line 200 declares MACR01 as
a subprogram with two parameters: a LONG integer and a string. When
MACR01 is called at line 5000, BASIC-PLUS-2 automatically passes the value
contained in XYZ as a LONG integer because this is the data type specified in
the EXTERNAL statement .
Note that in a CALL using parameters passed by reference, if the actual
parameter's data type does not match that specified in the EXTERNAL
statement, BASIC-PLUS-2 signals the error "?Mode for parameter of routine
changed to match declaration." This tells you that BASIC-PLUS-2 has made
a local copy of the value of the parameter and that this local copy has the data
type specified in the EXTERNAL declaration . BASIC-PLUS-2 warns you of
this only when the change means that the parameter can no longer be modified
by the subprogram .

11-28 Program Segmentation

11 .8.3 Calling Non-BASIC-PLUS-2 Subprograms
To transfer control from a BASIC-PLUS-2 main program to a non-
BASIC-PLUS-2 subprogram, use the CALL statement .
The CALL statement passes parameters to the subprogram either by reference,
by value, or by descriptor, depending on the type of parameter and the BY
clause . The format of the CALL statement is as follows :

BY VALUE

	

BY VALUE
CALL sub-name [BY REF

	

] [param [BY REF
BY DESC

	

BY DESC

sub-name
Is the 1- to 6-character name of the non-BASIC-PLUS-2 subprogram . A
subprogram cannot have the same name as any other subprogram, MAP, or
COMMON within the same task. The name can be a quoted or unquoted string
but cannot be a string variable .

BY VALUE
BY REF
BY DESC
Specifies the parameter-passing mechanism . A BY clause preceding the
parameter list specifies the default passing mechanism . A BY clause appearing
in the parameter list applies only to the particular parameter it follows .

param
Is an argument, or parameter, passed from the main program to the
subprogram. The number of parameters you can include is limited by the
size of the temporary storage area (stack) allocated in your task image . The
maximum number of parameters you can pass to a MACRO subprogram is
255 . For example :
300 CALL SUBPRG BY REF (A$,B%,C$(1%,1%))

Note

The Task Builder requires a name containing only members of the
RAD-50 character set . See C for information on the RAD-50 character
set. The subprogram name can begin with a dollar sign ($) only if
the name is enclosed in quotes . It is recommended that you do not
begin subprogram names with a dollar sign, as names of this form are
reserved for DIGITAL .

Program Segmentation 11-29

11 .9 MACRO Subprograms
When calling MACRO subprograms, the name in the CALL statement
must correspond to the name of the MACRO subprogram, as defined by the
subprogram's global entry-point label . This can be different from the name
of the file containing the code and the name defined by the TITLE assembly
directive; however, if the subprogram includes only a single entry point, you
should use the same name for the entry-point label and the title . For example,
suppose a main program includes the following statement:
50 CALL INSRT

The code of the MACRO subprogram should include the title and label-name
INSRT, as in the example below :

.TITLE INSRT

MODULE FUNCTION :
THIS MODULE DEMONSTRATES
THE FORMAT FOR MACRO SUBPROGRAMS

.PSECT INSRT
INSRT : :

	

; SUBPROGRAM NAME
RTS PC

	

; RETURN TO MAIN PROGRAM
.END

The RTS PC (or RETURN) instruction returns control to the calling program .
It corresponds to the SUBEND statement of a BASIC-PLUS-2 subprogram .

For more information on linking and overlay procedures, see the RSTS /E Task
Builder Reference Manual or the RSX-11M/MPLUS Task Builder Reference
Manual .

11 .9 .1 Passing Parameters
You can pass data from a BASIC-PLUS-2 main program to a MACRO
subprogram by including parameters in the CALL statement of the main
program. BASIC-PLUS-2 imposes two restrictions on the kinds of parameters
that main programs can pass to MACRO subprograms :

•

	

BASIC-PLUS-2 main programs cannot pass virtual arrays to MACRO
subprograms .

• MACRO subprograms cannot change the length of strings passed to them
as parameters by BASIC-PLUS-2 main programs, nor can they create new
strings .

11-30 Program Segmentation

If you need to access virtual arrays or change string lengths in a MACRO
subprogram, place the string and array data in a COMMON or MAP area
before calling the subprogram. Once the subprogram has performed its
operations on the data and has returned control to the main program, the
main program can move the data back into arrays and dynamic strings . For
information on using COMMONs and MAPs with MACRO subprograms, see
Section 11.9.2 .
MACRO subprograms do not have SUB statements to define the parameters
they receive . Therefore, in order to access those parameters, you need to know
where the main program stores them .
Like BASIC-PLUS-2 subprograms, MACRO subprograms that receive
parameters from a main program receive an argument list containing
information about those parameters . The information in the argument list
varies, depending on whether a given parameter is passed by reference or by
descriptor :
© The first word of the argument list always contains, in its low-order byte,

the number of arguments in the list . The high-order byte in this word is
undefined .

©

	

Each word after the first contains a pointer to one of the parameters in the
CALL statement, in the same order as the parameters appear in the CALL
statement. If you pass a parameter by reference, the subprogram receives
in the argument list the address where that parameter, or a local copy of it,
is located . If you pass a parameter by descriptor, the subprogram receives
in the argument list the address of a descriptor block . The descriptor
block contains information about the parameter or its local copy, including
the address where the parameter or copy is located and the length of the
parameter. See C for more information about descriptor blocks .

The argument lists look like the illustration in Figure 11-4 .

Whenever BASIC-PLUS-2 encounters a CALL statement, it stores the address
of the argument list's first word in general register R5 . Therefore, subprograms
can express parameter addresses as offsets from the value stored in register
R5 .
BASIC-PLUS-2 passes most parameters by reference ; however, it automati-
cally passes certain parameters, such as string data and arrays, by descriptor .
When you specify the BY REF clause, BASIC-PLUS-2 passes all parameters
to the MACRO-11 subprogram by reference. Therefore, all the addresses in the
argument list generated by a CALL statement with a BY REF clause refer to

Program Segmentation 11-31

Figure 11-4 Argument List Format

Undefined
Number

of
arguments

Parameter #1

Parameter #2

Parameter #n

NU-2185A-RA

the parameters themselves or to local copies of them . If the subprogram needs
to know a string length, you must pass that information as a parameter. For
example, a main program might contain the following CALL statement :
19000 CALL MACSUB BY REF (STR .NG$,LEN .STR%,A$(1%,5%))

This statement would generate an argument list like the following :
ADDRESS VALUE

022060

	

000003
022062

	

004560

	

ARGUMENT LIST
022064

	

005632
022066

	

035766

The actual addresses and the values stored in them depend on your program .
In this example, memory location 22060 contains the octal value 000003,
since there are three parameters in the argument list . Locations 22062 and
22064 contain the addresses of string variable STR.NG$ and integer variable
LEN.STR% . Location 22066 contains the address of a local copy of string array
element A$(1%,5%) .
General register R5 contains the value 22060, the address of the first word in
the argument list . Therefore, to access the parameters, define their locations
as offsets from R5 . For example, use this MACRO statement to move the first
two bytes of variable STR .NG$ into general register Rl :
MOV @2(R5),R1

	

; SET RI = STR .NG$

11-32 Program Segmentation

The following example shows how a subprogram accesses and modifies
parameters passed by reference from a BASIC-PLUS-2 main program . Note
that the parameters passed in the CALL BY REF statement include the
lengths of strings A$ and B$.
BASIC-PLUS-2 Main Program
10

	

PRINT 'This program writes substring B$ into string A$,'
PRINT 'starting at character position C .'
PRINT

ASK: INPUT 'Enter string A$' ;A$
GOTO 32767 IF A$ = 'DONE'
INPUT 'Enter sub-string B$' ;B$
INPUT 'Enter C ' ;C%
CALL INSRT BY REF (A$,LEN(A$),B$,LEN(B$),C%)
IF C% = 0%

THEN PRINT 'New value of A$ is ' ;A$
ELSE PRINT 'Attempt unsuccessful'

END IF
PRINT
PRINT 'Do you want to continue?'
PRINT 'If not, type "(DONE)" .'
PRINT

COTO ASK
32767

	

END

MACRO Subprogram
.TITLE INSRT
.IDENT /01/

MODULE FUNCTION :
THIS SUBPROGRAM WRITES SUBSTRING B$
INTO STRING A$, BEGINNNING AT CHARACTER C%

;LOCAL MACROS :

LOCAL DATA BLOCKS :

.PSECT DATA,D,RW

LOCAL OFFSETS :

A = 2 .
LNA = 4 .
B = 6 .
LNB = 8 .
C

	

= 10 .

Program Segmentation 11-33

FUNCTION DETAILS :

11-34 Program Segmentation

Compile the main program with the BASIC-PLUS-2 compiler. Assemble the
subprogram with the MACRO assembler. Then build and run them as you
would any multi-segment BASIC-PLUS-2 task, by including the MACRO
object module name with the main program name in the BUILD command .
When you run the program, it returns the following :

INPUTS :
ARGI = ADDRESS OF A$
ARG2 = ADDRESS OF LENGTH OF A$
ARG3 = ADDRESS OF B$
ARG4 = ADDRESS OF LENGTH OF B$
ARG5 = ADDRESS OF C%

OUTPUTS :
C% = 0 IF OPERATION SUCCESSFUL
C% _ -1 IF OPERATION UNSUCCESSFUL

PAGE
SBTTL
.PSECT

INSRT : :
MOV
BLE

INSRT

@C(R5),R2
ERREX 0

R2 = C %
GOTO ERREX IF C <=

ADD
DEC
CMP
BGT
MOV
MOV
DEC

@LNB(R5),R2
R2
R2,@LNA(R5)
ERREX
A(R5),R0
@C(R5),R2
R2

R2 = C% + LEN(B$)
MAKE R2 A LENGTH
DOES B$ FIT INTO A$?
IF NOT, GOTO ERREX
RO = ADDRESS OF A$
SET
SET

R2 = C%
R2 = C % - 1

ADD
MOV
BEQ

R2,R0
@LNB(R5),R2
ERREX

SET
SET
GO

RO = ADDRESS OF A$ + C%
R2 = LEN(B$)
TO ERREX IF LEN(B$) = 0

MOV B(R5),Rl SET RI = ADDRESS OF B$
1$:

ERREX :

MOVB
SOB
CLR
RTS

MOV
RTS
.END

(R1)+,(R0)+
R2,i$
@C(R5)
PC

#-1,@C(R5)
PC

INSERT CHAR FROM B$ INTO A$
REPEAT FOR REMAINING CHARACTER
SUCCESS . SET C% = 0
RETURN TO MAIN PROGRAM

FAILURE . SET C% = -1
RETURN TO MAIN PROGRAM

$ RUN MNPROG

This program writes substring B$ into string A$,
starting at character position C .

Enter string A$? ABCDEF
Enter sub-string B$? XYZ
Enter C? 1

New value of A$ is XYZDEF

Do you want to continue? DONE

Note

Unmatched parameter boundaries or data types in the main program
and subprogram can cause the error "?Odd address trap" or "?Memory
management violation ."

Simple variables and entire arrays are modifiable parameters . For example,
the previous subprogram changes A$ and then returns the changed value to
the main program .
All constants, expressions, and array elements, however, are nonmodifiable .
That is, when a subprogram receives these parameters, the addresses in the
argument list point to local copies of the parameters rather than to the actual
data. A MACRO subprogram can change local-copy values, but such changes
do not affect the constants, expressions, and arrays of the main program.
You can pass local copies of simple variables and entire arrays by enclosing the
individual variable and array names in parentheses . In the following example,
A$ is a modifiable parameter but B$ is nonmodifiable .
19000 CALL MACSUB BY REF (A$,(B$))

When the CALL parameter is a string, the corresponding value in the
argument list points to a 2-word descriptor block . The first word of this block
contains the address of the first byte in the string . The second word expresses
the length of the string, in bytes .
For example, suppose a main program includes the statement :
50 CALL INSRT BY REF (A$ BY DESC, B$ BY DESC, C% BY REF)

Program Segmentation 11-35

This generates a 4-word argument list :

The actual addresses, and the values stored in them, depend on your program .
In this example, the second word in the argument list contains the address of
the descriptor block for A$. If A$ were a 6-byte string, such as ABCDEF, the
descriptor block would look like this :
ADDRESS VALUE

004532

	

020652

	

DESCRIPTOR BLOCK
004534

	

000006

If you include an array in a CALL statement, the argument list contains the
address of the second word of the descriptor block . This word in turn contains
the address of the first element in the array. (The first word in the descriptor
block is the array descriptor word, which defines the array type and length .
See C for more information on the array descriptor word .)
This example shows how a MACRO subprogram can access parameters passed
by descriptor .
BASIC-PLUS-2 Main Program
10

	

PRINT 'This program writes substring B$ into string A$"
PRINT 'starting at character position C .'
PRINT

ASK : INPUT 'Enter string A$' ;A$
IF A$ = "DONE" GOTO 32767
INPUT 'Enter sub-string B$' ;B$
INPUT 'Enter C ' ;C%
CALL INSRT BY REF (A$ BY DESC, B$ BY DESC, C% BY REF)
IF C% = 0%

THEN PRINT 'New value of A$ is ' ;A$
ELSE PRINT 'Attempt unsuccessful'

END IF
PRINT
PRINT 'Do you want to continue?'
PRINT 'If not, type "DONE" .'

GOTO ASK
32767

	

END

11-36 Program Segmentation

ADDRESS VALUE

022060 000003
022062 004532 ARGUMENT LIST
022064 023462
022066 026534

MACRO Subprogram
.TITLE INSRT
.IDENT /01/

;MODULE FUNCTION :
THIS SUBPROGRAM OVERWRITES SUBSTRING B$
INTO STRING A$, BEGINNING AT CHARACTER C% .

LOCAL MACROS :

LOCAL DATA BLOCKS :

.PSECT DATA,D,RW

Program Segmentation 11-37

LOCAL OFFSETS :
A = 2 .
B = 4 .
C = 6 .

FUNCTION DETAILS :

INPUTS :
ARG1
ARG2
ARG3

OUTPUTS :
C% =
C% C% =C%

= ADDRESS OF A$ STRING DESCRIPTOR
= ADDRESS OF B$ STRING DESCRIPTOR
= ADDRESS OF C%

0 IF SUCCESSFUL
-1 IF UNSUCCESSFUL

PAGE
SBTTL
.PSECT

INSRT : :
MOV
MOV
MOV
BLE
ADD
DEC
CMP
BGT
MOV
MOV
DEC
ADD
MOV
BEQ
MOV

INSRT

A(R5),R0
B(R5),RI
@C(R5),R2
ERREX
2(R1),R2
R2
R2,2(R0)
ERREX
(R0),R0
@C(R5),R2
R2
R2,R0
2(RI),R2
ERREX
(RI),R1

SET RO = ADDRESS OF A$ DESC
SET R1 = ADDRESS OF B$ DESC
SET R2 = C%
GO TO ERREX IF C <= 0
SET R2 = C% + LENGTH OF B$
MAKE R2 A LENGTH
DOES B$ FIT INTO A$?
IF NOT, GO TO ERREX
SET RO = ADDRESS OF A$
SET R2 = C%
SET R2 = C% -1
SET RO = ADDRESS OF FIRST CHAR
SET R2 = LENGTH OF B$
IF B$ = 0, GO TO ERREX
SET R1 = ADDRESS OF B$

In this example, the lengths of A$ and B$ are part of the descriptor blocks
instead of being passed as parameters in the CALL statement .

11 .9.2 Common Blocks and Maps
BASIC-PLUS-2 allows you to access COMMON and MAP areas from MACRO
subprograms. This enables you to share large amounts of data between your
BASIC-PLUS-2 main programs and your MACRO subprograms . In addition,
you can use MACRO subprograms to initialize COMMON or MAP areas in
BASIC-PLUS-2 main programs .
You can rewrite the main program and subprogram in the previous example
so that they share data by means of a MAP statement rather than by passing
parameters in the CALL statement .
Main Program
10

	

MAP (RESERV) STRING A, INTEGER LNA,

	

&
STRING B=8%, INTEGER LNB, &
INTEGER C

ASK : PRINT 'This program writes substring B into string A'
PRINT 'starting at character position C .'
PRINT
INPUT 'Enter 16-character string A' ;A
INPUT 'Enter 8-character sub-string B' ;B
INPUT 'Enter C ' ;C
LNA = LEN(A)
LNB = LEN(B)
CALL INSET
IF C = 0

THEN PRINT 'New value of A is ' ;A
ELSE PRINT 'Attempt unsuccessful'

END IF
PRINT
PRINT 'Do you want to continue?'
PRINT 'If not, type "DONE" .'

GOTO ASK
32767

	

END

The MAP statement in this program sets the size of the A and B strings to a
predetermined 16 and 8 bytes .

11-38 Program Segmentation

1$:
MOVE
SOB

(Ri)+,(RO)+
R2,1$

INSERT A CHAR FROM B$ INTO A$
REPEAT

ERREX :

CLR
RTS

MOV

@C(R5)
PC

#-1,@C(R5)

SUCCESS . SET C% = 0
; RETURN TO MAIN PROGRAM

FAILURE . SET C% _ -1
RTS
.END

PC RETURN TO MAIN PROGRAM

When the BASIC-PLUS-2 compiler generates object code from the
BASIC-PLUS-2 source program, it creates PSECTs for all COMMON and
MAP statements with the same name. You can see this most clearly if you
compile the previous BASIC-PLUS-2 source program with the COMPILE
/MACRO command. The compiler generates the following MACRO code for the
MAP statement in that program :

.PSECT RESERV,RW,D,GBL,REL,OVR
RESERV :

.PSECT RESERV

.BLKW 15 .

In order for the MACRO subprogram to access the data stored in MAP area
RESERV, you have to define a subprogram PSECT of the same name and
attributes as that created by the MAP statement of the main program . The
subprogram can then assign variable names to the data in that PSECT, and
use those variables as operands in its instructions. For example :

.TITLE INSRT

.IDENT /01/

;MODULE FUNCTION :
THIS SUBPROGRAM USES A MAPPED AREA
TO OVERWRITE SUBSTRING B INTO STRING A,
BEGINNING AT CHARACTER C .

FUNCTION DETAILS :

INPUTS :
PSECT RESERV CONTAINS A,LNA
B,LNB, AND C

OUTPUTS :
C = 0 IF OPERATION WAS SUCCESSFUL
C = -1 IF OPERATION FAILED

Program Segmentation 11-39

LOCAL MACROS :

LOCAL DATA BLOCKS :
.PSECT RESERV RW,D,GBL,REL,OVR

A : BLKB 16 .
LNA : BLKW
B : BLKB 8 .
LNB : BLKW
C : BLKW

When you build this multi-segment task, the Task Builder defines a single area
named RESERV. If the buffer allocations in the main program and subprogram
differ, the Task Builder defines an area equal to the larger allocation .
The Task Builder does not check to see that the main program and subprogram
define the same data types and boundaries in their common areas . If the
areas do not correspond, BASIC-PLUS-2 signals the error "Odd address trap"
or "Memory management violation" when you run the task . For this reason,
be sure you properly align your data definitions in the main program and
subprogram. Remember that COMMON statements of the same name within
a single program module are concatenated . For example :
10 COMMON (RESERV) STRING VR .STR = 30%, STRING FX .STR = 30%
20 COMMON (RESERV) STRING A, INTEGER B

These statements generate a single PSECT :
.PSECT RESERV,RW,D,GBL,REL,OVR

RESERV :
.PSECT RESERV
.BLKW 39 .

11-40 Program Segmentation

CODE BEGINS
.PAGE
.SBTTL
.PSECT

INSRT : :
MOV
BLE
ADD
DEC
CMP
BGT
MOV
DEC

HERE :

INSRT

C,R2
ERREX
LNB,R2
R2
R2,LNA
ERREX
C,R2
R2

SET R2 = C
IF C <= 0, GO TO ERREX
SET R2 = C + LEN(B)
MAKE R2 A LENGTH
DOES B FIT INTO A?
IF NOT,
SET R2
SET R2

GO TO ERREX
= C
= C - 1

MOV
ADD
MOV
BEQ
MOV

#A,RO
R2,R0
LNB,R2
ERREX
#B,R1

SET RO
SET RO
SET R2
IF B =
SET RI

= ADDRESS OF A
= ADDRESS OF FIRST CHAR REPLACED
= LENGTH OF B
0, GO TO ERREX
= ADDRESS OF B

1$:
MOVB
SOB
CLR
RTS

ERREX :
MOV
RTS
.END

(R1)+,(R0)+
R2,1$
C
PC

#-1,C
PC

INSERT CHARACTER FROM B IN A
REPEAT
SUCCESS . SET C = 0
RETURN TO MAIN PROGRAM

FAILURE . SET C = -1
RETURN TO MAIN PROGRAM

The total area set aside for RESERV is 78 bytes, the sum of the two COMMON
statements. Variable A begins at byte location 60 of RESERV, not at location
0. If these were MAP statements, the area set aside for RESERV would equal
the larger allocation, that is, 30 words . Variables VR .STR and A, in that case,
would both begin at byte location 0 .
In using MAP or COMMON areas to share data between main programs and
subprograms, remember the following :

©

	

You must check the lengths of your string and integer elements to make
sure that you correctly line up the areas reserved by your main and
subprograms .

© You must reserve eight bytes of storage for each floating-point variable in
the corresponding PSECT of your MACRO subprogram if you compile your
BASIC-PLUS-2 program with double precision .

©

	

You must assign the same name and attributes to a MAP or COMMON
area of the main program and the corresponding PSECT of the subprogram .

11 .9.3 Initializing COMMONs and MAPs
You can use MACRO routines to initialize COMMONs and MAPs in a
BASIC-PLUS-2 main program. For example, a main program could begin with
COMMON statements, in which it stored data that both the main program
and subprogram want to use in printing error messages or checking maximum
values. If you were to assign values to those COMMON areas by means of
statements in the main program, the first lines of the BASIC-PLUS-2 source
code would look like this :

Program Segmentation 11-41

10 COMMON (FIXSTR) STRING OUT .STR = 10%,

	

&
BAD .INFO = 24%, &

20 COMMON (FIXDAT)
ATLIN = 8%
WORD MAXNUM, &
DOUBLE MAXVAL, &
WORD BADNUM, &
STRING FUN .STR = 6%

30 OUT .STR = 'Output is'

40

BAD .INFO = 'Bad information supplied'
ATLIN

	

' At line'
MAXNUM

	

100
MAXVAL

	

2E6
BADNUM

	

-1
FUN.STR

	

' FUNNY'

In this example, seven statements are executed to initialize variables in the
COMMON area. In addition, storage is allocated to each constant before
they are placed in the COMMON, and none of this storage is recovered . The
following MACRO code performs the same initialization procedure as the
previous BASIC-PLUS-2 code :

.TITLE INIT

MODULE FUNCTION :

This routine is not, strictly speaking, a subprogram . The main program cannot
call it, as it does not contain any executable statements . But, if you build
this module into your task as though it were a subprogram, you can omit
statements 30 and 40 in the main program . An initialization routine like this
one, therefore, can save you both time and memory space when you run the
task .

Note
Because this routine contains no code and is not a subprogram, you
cannot call it later in the main program to reinitialize values in the
COMMON.

11 .9.4 Building Task Images
Follow this general procedure when you build your segmented task :
©

	

Compile the BASIC-PLUS-2 modules and assemble the MACRO modules .

11-42 Program Segmentation

THIS MODULE INITIALIZES THE COMMON
AREAS OF THE MAIN PROGRAM

INITIALIZE
.ENABLE

FIXSTR
LC ;ENABLE LOWER CASE

.PSECT

.ASCII
FIXSTR,RW,D,GBL,REL,OVR
/Output is / ;OUT .STR$ len = 10

.ASCII /Bad information supplied/ ;BAD .INFO$ len = 24

.ASCII / at line/ ;ATLIN$ len = 8
INITIALIZE

.PSECT

.WORD .

FIXDAT
FIXDAT,RW,D,GBL,REL,OVR
100 . ;MAXNUM%

.FLT4 2E6 ;MAXVAL

.WORD -1 ;BADNUM

.ASCII / FUNNY/ ;FUN .STR$ len = 6

.END

© Include in the BUILD command all the object modules you wish to combine
into a single task image, or modify the BUILD-generated ODL file to
include individual subprograms in the task . If your program includes
RMS file operations, use the appropriate BUILD command qualifier to
incorporate RMS-11 code into your task .

©

	

Use the TKB command to link your program .
The ODL file generated by the BUILD command causes the Task Builder to
concatenate all the modules in the root of the task . Since the operating system
and hardware impose restrictions on task size, you may need to design an
overlay structure for the task. For more information on overlay structures,
see Section 11.7 and the RSTS/E Task Builder Reference Manual or the
RSX-11M/MPLUS Task Builder Reference Manual .
When designing an overlay structure for a task that includes either
BASIC-PLUS-2 or MACRO subprograms, you should do the following :

©

	

Think about overlay structure in the early stages of programming . Design
your task to take advantage of overlays .

©

	

Test each module separately, writing small programs to call the modules
and supply whatever data they need .

©

	

Be sure you know where global symbols will be resolved and when overlays
will be brought into memory when you run the task .

©

	

Be sure to align MAP and COMMON variables in the main program and
subprograms .

©

	

Use co-trees (that is, overlay structures with independent root segments)
only when necessary.

Designing an overlay structure for a task that includes a MACRO subprogram
is similar to designing an overlay structure for a task that includes a
BASIC-PLUS-2 subprogram; however, a knowledge of MACRO may enable
you to take advantage of BASIC-PLUS-2 threaded code to decrease task size
and enhance performance.
When the BASIC-PLUS-2 compiler translates a source program into object
code, it generates threaded, rather than in-line code . That is, the compiler
generates from the BASIC-PLUS-2 source program a series of global symbols
and arguments . These symbols are names of routines that perform the
operations the user task requires . When you build the task image, the Task
Builder resolves the global symbols by searching within the modules of the
task itself, and within the BASIC-PLUS-2 object library and resident library,
for the routines they refer to .

Program Segmentation 11-43

You can determine which global symbols the Task Builder will need to resolve
if you compile your program with the /MACRO qualifier . For example :
20 PRINT A%

From this line, the compiler generates the following threaded code :

The code generated when you compile a program with the /MACRO qualifier
is not the same as MACRO code you might use when programming the task .
Rather, it is the MACRO equivalent of the object code generated by the
BASIC-PLUS-2 compiler. In the previous example, L20 : is a label identifying
this particular block of code, while such symbols as LIN$ and CLI$ are global
symbols representing BASIC-PLUS-2 routines . The Task Builder resolves
these global symbols by performing the following sequence of operations :
1 . It searches within the module itself, and within other modules in the same

segment, for a resolution of the symbol .
2 . It searches in modules along the same branch toward the root, in the root

module, and in the memory-resident library if there is one .
3 . It searches in modules along the same branch away from the root .
4 . It searches co-trees .
5 . It searches in the BASIC-PLUS-2 object library.

Your design of the overlay structure for a task should reflect this resolution
sequence. Otherwise, your task may not be executable . For example, suppose
you design an overlay structure in which one subprogram calls a second
subprogram. The second subprogram contains an undefined symbol that
you expected the Task Builder to resolve by searching the BASIC-PLUS-2
object library; however, the Task Builder resolves that symbol by bringing a
third subprogram into memory and overlaying that third subprogram before
searching the BASIC-PLUS-2 object library. When the second subprogram is
finished and attempts to return to the first subprogram, the task aborts with a
"?Memory management violation" or "?Odd address trap" error.

You can avoid this problem, and at the same time conserve space in the task,
by placing in the root any threads needed to resolve global symbols, especially
potentially ambiguous ones. Inspect your task's map file to find the OTS
module that contains the thread you need . Then edit the ODL file to put
the module in the root segment . The ODL file in the following example, for

11-44 Program Segmentation

L20 : LIN$,20

	

; #20
CLI$S
IPT$
MOI$MS
PVI$SI

,$IDATA+800
,0

A%
#0

EOL$

instance, shows how a RSTS/E system uses the $START module to force the
string arithmetic into the root segment of the task MNPROG :

.ROOT BASIC-PLUS-22-RMSROT-USER,RMSALL
USER :

	

FCTR SY :MNPROG-LB :BP20TS/LB :$START-LIBR-*(BR1,BR2)
BR1 :

	

FCTR SY :SUBPRI-LIBR
BR2 :

	

FCTR SY :SUBPR2-LIBR
LIBR :

	

FCTR LB :BP20TS/LB
@LB :BP2IC1
@LB :RMS11S

.END

The file specifications in the ODL file vary, depending on the operating system .
See the RSTS/E Task Builder Reference Manual or the RSX-11M/M-PLUS
Task Builder Reference Manual for more information .

11 .9 .5 Handling Errors
MACRO subprograms should not contain error-handling routines that
will abort the task. If a fatal error occurs in a MACRO subprogram, the
subprogram should return control to the main program and signal to it that an
error has occurred .
You can use parameters or common blocks to return status information to
the calling program. Or, you can use ERR, ERL, and ERN$ functions in the
program to determine the kind and source of error . The information returned
by ERN$ and ERL differs, depending on whether the program uses a BY REF
clause :
©

	

If the program does not use a BY REF clause, ERN$ returns the name of
the subprogram called, and ERL returns a value of 0 .

©

	

If the program uses a BY REF clause, ERN$ returns the name of the
calling program, and ERL returns the line number of the CALL BY REF
statement .

©

	

If the program does not use a BY REF clause, you cannot use Ctrl/C
trapping .

Program Segmentation 11-45

12
File Input-Output

This chapter explains the BASIC-PLUS-2 file organizations and record
operations that are implemented through PDP-11 Record Management
Services (RMS-11). For a more thorough understanding of file organization
and file and record operations, see the RMS documentation for your system .

12 .1 Introduction
When you open a file from a BASIC-PLUS-2 program and specify a
sequential, relative, or indexed file organization with the OPEN statement,
BASIC-PLUS-2 invokes Record Management Services (RMS-11) to handle the
file . If the file already exists, RMS-11 checks to see that the file's attributes
match the attributes you specify in the OPEN statement . For new files,
RMS-11 defines a file structure and writes a label describing that structure .

The advantages of using RMS-11 are as follows :

©

	

RMS-11 has the ability to perform more complex file operations, such as
the use of indexed files

©

	

RMS-11 protects you against overwriting old records with new records

©

	

RMS-11 is standardized so you can easily transport your files to different
operating systems

RMS stores data in physical blocks . A block is the smallest number of bytes
BASIC-PLUS-2 transfers in a read or write operation . On disk, a block is 512
bytes. On magnetic tape, it is between 18 and 8192 bytes .

RMS stores one or more data records in each block. A data record can also be
divided into smaller units, called fields . A data record can be smaller than,
equal to, or larger than a disk block .
If you open a file without specifying a file name or an ORGANIZATION clause,
the operating system describes the file structure and handles file operations .
On RSTS/E systems, these files are called native mode or block I/O files . On
RSX systems, these files are called files-11 files .

File Input-Output 12-1

Native mode and files-11 format files have a simpler file structure than
RMS-11 files and are stored as a stream of ASCII characters with embedded
line feeds and carriage returns indicating the end of the records . The simpler
structure makes these files easier to access, although they cannot perform the
complex functions RMS-11 files can perform . See the RSTS I E Programmer's
Utilities Manual for information on RSTS/E native mode or block I/O files .
See the RSX-11M/M PLUS Utilities Manual for information on RSX files-11
format files .
The following sections describe how to use RMS files in BASIC-PLUS-2 .

12 .2 Record Formats
The format of a record determines how RMS stores the record in a block. You
specify the record format in an OPEN statement. The following are valid
BASIC-PLUS-2 record formats :
©

	

Fixed-length records
©

	

Variable-length records
©

	

Stream records

12.2.1 Fixed-Length Records
Fixed-length records are all the same length . RMS stores fixed-length records
as they appear in the record buffer, including any spaces or null characters
following the data ; this process is called padding . Processing these records
involves less overhead than other record formats ; however, this format can use
disk storage space less efficiently than variable-length or stream records .

12.2.2 Variable-Length Records
Variable-length records can have different lengths, but no record can exceed a
maximum size set for the file. When the record is written to a file, RMS adds
a record length header that contains the length of the record (excluding the
header) in bytes . When your program retrieves a record, this header is not
included in the record buffer. While variable-length records usually make more
efficient use of storage space than fixed-length records, manipulation of the
record length headers generates processor overhead .

12-2 File Input-Output

12.2.3 Stream Records
BASIC-PLUS-2 interprets stream records as a continuous sequence, or
stream, of bytes. Unlike the fixed- and variable-length formats, stream records
do not contain control information such as record counts, segment flags, or
other system-supplied boundaries . Stream records are delimited by special
characters or character sequences called terminators . In BASIC-PLUS-2,
stream records can be delimited by any special character (usually a carriage
return/line-feed pair). Note that stream record formats are valid only in
sequential files .

12.3 File Organizations
BASIC-PLUS-2 provides several types of file organization : sequential,
relative, indexed, and virtual . If you do not specify a file organization when
creating a file, the default is a terminal-format file . The following sections
describe each type of file organization .

Note

On RSTS/E systems, only files opened with ORGANIZATION
SEQUENTIAL, RELATIVE, or INDEXED are RMS files . Files
opened with ORGANIZATION VIRTUAL or with no ORGANIZATION
clause are RSTS/E native-mode files .

12.3.1 Terminal-Format Files
On RSX systems, a terminal-format file is a sequential file of variable-length
records. Terminal-format files are the default ; that is, you create a terminal-
format file when you do not specify a file organization when opening a file .
You can then use the PRINT, INPUT, INPUT LINE, and LINPUT statements
to access a terminal-format file. See Chapters 5 and 10 for more information
about terminal-format files .
On RSTS/E systems, terminal-format files are RSTS/E native mode stream
files . See Chapter 17 for more information about RSTS/E terminal-format files .

12.3.2 Sequential Files
A sequential file contains records that are stored in the order they are written .
Sequential files can contain records of any valid BASIC-PLUS-2 record format :
fixed-length, variable-length, or stream . Sequential files can reside on both
disk and magnetic tape devices . Those stored on disk support shared access .

File Input-Output 12-3

12 .3 .3 Relative Files

A relative file contains a series of "cells" that are numbered consecutively from
1 to n, where n represents the relative record number . Each cell can contain
only a single record. For fixed-length records, the length of each cell equals the
record length plus 1 byte . For variable-length records, the length of the cell
equals the maximum record size plus 3 bytes .
You can access records in a relative file either sequentially or randomly. The
relative record number is the key value in random access mode ; that is, to
access a record in a relative file in random access mode, you must know the
relative record number of that record. You can add records to a relative file
either at the end of the file or into any empty cell .
Relative files are most useful when randomly accessed and when the record
can be identified by its cell number (for example, when inventory numbers
correspond to cell numbers) . Relative files support shared access . You can
delete records from relative files, but not from sequential files .

12.3.4 Indexed Files

An indexed file contains data records that are sorted in ascending order
according to a primary index key value (descending keys are not supported) .
The index key is a record field (or set of fields) that determines the order in
which the records are logically accessed . Keys must be variables declared in a
MAP statement. Keys can be either strings or WORD integers .
String keys can also be segmented ; the key can be composed of up to eight
string variables in a map .
Along with the primary index key value, you can also specify up to 254
alternate keys; RMS creates one index for each key you specify. For each of
these keys you can also specify an ascending collating sequence . Each index
is stored as part of the file, and each entry in the index contains a pointer to
a record. Therefore, each key you specify corresponds to a sorted list of record
pointers .
An indexed file of library books, for example, might be ordered by book title ;
that is, the title of the book is the primary key for the file . The keys for
alternate indexes might include the author's name and the book's Library
of Congress number. Neither of these alternate indexes contains the actual
records; instead, these indexes contain sorted pointers to the appropriate
records .
Indexed files are most useful when randomly accessed or when you want to
access the records in more than one way .

12-4 File Input-Output

12.3.5 Virtual Files
A virtual file is a random access file that stores one or more data records
or virtual array elements in each physical 512-byte disk block . You create a
virtual file by specifying the ORGANIZATION VIRTUAL clause as part of the
OPEN statement and dimensioning an array on the file with the DIMENSION
statement. You perform operations on virtual arrays just as you do with arrays
in memory. Virtual array files allow you to use disk files for arrays too large to
fit in memory.

12 .4 Record Access and Record Context
Record access modes determine the order in which your program retrieves or
stores records in a file . They determine the record context : the current record
and the next record to be processed . When your program successfully executes
any record operation, the current record and next record pointers can change .
If a record operation is unsuccessful, these pointers do not change .
The four record access modes valid for RMS are as follows :

©

	

Sequential access-valid on any file organization

©

	

Random-by-record number access-valid on sequential fixed and all relative
files

©

	

Random-by-key access-valid on indexed files

©

	

Random-by-RFA (Record File Address) access-valid on any RMS file
located on disk

With sequential access, the next record is the next logical record in the file .
In the case of relative files, the next logical record is the next existing record
(deleted or never-written records are skipped) . In the case of indexed files,
the next logical record is the record with the next value in the current key of
reference depending on that key's collating sequence . You can therefore access
relative or indexed files sequentially by not specifying a relative record number
or key value .
You can also access sequential fixed-length and relative files randomly by
record number; that is, you can specify the record number of the record to be
retrieved . For relative files, this record number corresponds to the cell number
of the desired record .
You can access indexed files randomly by key. The key specification includes a
primary or alternate key and its value . BASIC-PLUS-2 retrieves the record
corresponding to that value in the particular key chosen .

File Input-Output 12-5

You can access disk files of any organization by Record File Address (RFA) ;
this means that you specify an RFA variable whose value uniquely identifies
a particular record . The RFA requires six bytes of information . For more
information about RFAs, see Section 12 .7.9 .

12 .5 I/O and Record Buffers
An I/O buffer is a storage area in your program that RMS uses to store data for
I/O operations . You do not have direct access to I/O buffers ; they are controlled
entirely by RMS . The I/O buffer holds blocks of data transferred from the
device, and its size is always greater than or equal to that of the record buffer.
For more information about the amount of storage allocated for I/O buffers, see
the RMS documentation for your system .
A record buffer is another storage area in your program . You have direct
access to and control of the record buffer. When your program reads a record
from a file, the information is transferred from the file to the I/O buffer in one
large chunk of data, and then the requested record is transferred to the record
buffer. When your program writes a record, data is transferred from the record
buffer to the I/O buffer, and then to the file either when the I/O buffer is full or
when other blocks need to be read in .

You can use MAP statements to create static record buffers and associate
program variables with areas (fields) of the buffer. Static record buffers are
buffers whose size does not change during program execution and whose
program variables are always associated with the same fields in the buffer.

You can create dynamic record buffers with the MAP DYNAMIC and REMAP
statements. These statements, when used after a MAP statement, associate
a particular program variable with a different area (field) of the record buffer .
However, the total size of a record buffer does not change during program
execution .

Note
If you do not specify a map, you must use MOVE TO and MOVE FROM
statements to transfer data back and forth from the record buffer to
program variables . However, MOVE statements do not transfer data to
or from a file .

12-6 File Input-Output

12.6 Accessing the Contents of a Record
BASIC-PLUS-2 provides several different methods for accessing the contents
of a record :
©

	

MAP statement
©

	

MAP DYNAMIC, and REMAP statements (dynamic mapping)

©

	

MOVE statements
©

	

FIELD statements
The FIELD statement is a declining feature and is not recommended for new
program development. It is recommended that you use either MAP statements,
dynamic mapping, or MOVE statements to access record contents .

12 .6 .1 The MAP Statement
Normally, a record is divided into predetermined fields, the sizes of which are
known at compile time. The MAP statement creates the storage area for this
record and determines its total size .

Example 1
50

	

STRING last-name = 15,

	

&
street name = 30, &

INTEGER house num

MAP (People) name addr student-info

Example 2

STRING Department = 4

12.6.2 The MAP DYNAMIC and REMAP Statements
There are situations where predetermined fields are not applicable or possible .
In these situations, you must perform record defielding in your program at
run time . Using the MAP DYNAMIC statement, you can specify the variables
in the map whose positions can change at run time. The REMAP statement
then specifies the new positions of the variables named in the MAP DYNAMIC
statement .
The following example shows how you can use MAP, MAP DYNAMIC, and
REMAP to deblock your record fields . The MAP statement allocates a storage
area of 2048 bytes and names it Emprec . The MAP DYNAMIC statement
specifies that the variables Emp name, Badge, Address, and Department are

File Input-Output 12-7

100 MAP (Emprec)
STRING Emp name = 25,

	

&
LONG Badge, &
STRING Address = 25,

	

&

all located in Emprec, and that their positions can be changed at run time with
the REMAP statement . The REMAP statement then redefines these variables
to their appropriate sizes .
Example
100 MAP (Emprec) FILL$ = 2048

MAP DYNAMIC (Emprec) &
STRING Emp name, &
LONG Badge, &
STRING Address, &
STRING Department

REMAP (Emprec) FILL$ = Record offset, &
Emp_name = 25, &
Badge, &
Address = 25, &
Department = 4

Note that when accessing virtual or sequential files, you can specify a RECORD
clause for the GET statement. The following program opens a virtual file with
each block containing 512 bytes . However, each block contains 4 logical records
that are 128 bytes long . Each of these logical records consists of a 20-character
first name field, a 44-character last name field, and a 64-character company
name field .
Example
100

	

DECLARE WORD Record-number
MAP (Virt) STRING FILL = 512
MAP DYNAMIC (Virt) STRING First name,

	

&
Last name,

	

&
Company

OPEN "VIRT .DAT" FOR INPUT AS FILE #5,

	

&
VIRTUAL, MAP Virt

Record-number = 1%
ON ERROR GOTO 19000

WHILE -1%
GET #5, RECORD Record number
FOR 1% = 0% TO 3%

REMAP (Virt) STRING FILL = (1% * 128%), &
First name = 20, &
Last name = 44, &
Company = 64

PRINT First name, Last name, Company
NEXT I%
Record-number = Record-number + 1%

NEXT

12-8 File Input-Output

19000

	

IF ERR = 11%
THEN

PRINT "Finished"
RESUME 32767
ELSE ON ERROR GOTO 0
END IF

END

After the first 512-byte block is brought into memory, the FOR. . .NEXT loop
deblocks the data into 128-byte logical records . At each iteration of the
FOR. .. NEXT loop, the REMAP statement uses the loop variable to mask
off 128-byte sections of the block .
For more information on the MAP DYNAMIC and REMAP statements, see
Chapter 7 and the BASIC-PLUS-2 Reference Manual .

12 .6.3 The MOVE Statement
The MOVE statement defines data fields and moves them to and from the
record buffer created by BASIC-PLUS-2 . For example :

Example
MOVE FROM #9%, A$, Cost, Name$ = 30%, ID num%

This statement moves a record with four data fields from the record buffer to
the variables in the list :

©

	

A string field A$ with a default length of 16 characters

©

	

A number field Cost of the default data type

©

	

A second 30-character string field Name$

©

	

An integer field ID num%
Valid variables in the MOVE list are as follows :

©

	

Scalar variables
©

	

Arrays
©

	

Array elements
©

	

FILL items
Because BASIC-PLUS-2 dynamically assigns space for string variables, the
default string length during a MOVE TO operation is the length of the string .
The default for MOVE FROM is 16 characters . An entire array specified in
a MOVE statement must include the array name, followed by n-1 commas,
where n is the number of dimensions in the array. Note that these commas
must be enclosed in parentheses .

File Input-Output 12-9

You specify a single array element by naming the array and the subscripts of
that element . The following statement moves three arrays from the program
to the record buffer. A$ specifies a one-dimensional string array, C specifies
a two-dimensional array of the default data type, and D% specifies a three-
dimensional integer array . B(3,2) specifies the element of array B that appears
in row 3, column 2 .
MOVE TO #5%, A$(), C(,), D%(,,), B(3,2)

Successive MOVE statements to or from the buffer start at the beginning of the
record buffer. If a MOVE TO operation only partially fills the buffer, the rest
of the buffer is unchanged . You use the GET statement to read a record from
a file, and then you move the data from the buffer to variables and reference
the variables in your program. A MOVE TO operation moves data from the
variables into the buffer created by BASIC-PLUS-2 . A PUT or UPDATE
statement then moves the data from the buffer to the file .
The following program opens file MOV DAT, reads the first record into the
buffer, and moves the data from the buffer into the variables specified in the
MOVE FROM statement.
Example
10 DECLARE STRING Emp name, Address, Department

DECLARE LONG Badge
OPEN "MOV .DAT" AS FILE #1%, &

RELATIVE VARIABLE, &
ACCESS MODIFY, ALLOW NONE, &
RECORDSIZE 512%

GET #1%
MOVE FROM #1%, &

Emp name = 25, &
Badge, &
Address = 25, &
Department = 4

MOVE TO #1%, &
Emp name = 25, &
Badge, &
Address = 25, &
Department = 4

UPDATE #1%
CLOSE #1%
END

12-10 File Input-Output

The MOVE TO statement moves the data from the named variables into the
buffer. The UPDATE statement writes the record back into file MOV DAT. The
CLOSE statement closes the file .

12 .7 File and Record Operations
You can perform a variety of operations on files and on the records within a
file . The following is a list of all the file and record operations supported by
BASIC-PLUS-2 :
©

	

Open a file for processing with the OPEN statement .

©

	

Locate a record in a file with the FIND statement .

©

	

Read a record from a file with the GET statement .

©

	

Write a record to a file with the PUT statement .

©

	

Delete a record from a file with the DELETE statement .

©

	

Change the contents of a record field with the UPDATE statement .

©

	

Unlock the last record accessed with the UNLOCK statement .

©

	

Unlock all previously locked records with the FREE statement .

©

	

Write data to a terminal-format file with the PRINT # statement .

©

	

Read data from a terminal-format file with the INPUT # statement .

©

	

Reset the current record pointer to the beginning of a file with the
RESTORE/RESET # statements .

©

	

Delete all the records after a certain point ; that is, truncate the records,
with the SCRATCH statement .

©

	

Rename a file with the NAME AS statement .

©

	

Close an open file with the CLOSE statement.

©

	

Delete an entire file with the KILL statement .
Note that before you can perform any operations on the records in a file, you
must first open the file for processing .

File Input-Output 12-11

12.7.1 Opening Files
The OPEN statement opens a file for processing, specifies the characteristics
of the file to RMS, and verifies the result . Opening a file with the specification
FOR INPUT specifies that you want to use an existing file . Opening a file with
the specification FOR OUTPUT indicates that you want to create a new file .
If you do not specify FOR INPUT or FOR OUTPUT, BASIC-PLUS-2 tries to
open an existing file . If no such file exists, BASIC-PLUS-2 then creates a new
file. Note that if you do not specify an ACCESS clause, files are opened with
MODIFY ACCESS by default .
Clauses to the OPEN statement allow you to specify the characteristics of a
file. All OPEN statement clauses concerning file or record format are optional
when you open an existing file ; those attributes that are not specified default
to the attributes of the existing file . When you open an existing file, you must
specify the file name, channel number, and unless the file is a terminal-format
file, an organization clause. If you do not know the organization of the file you
want to open, you can specify ORGANIZATION UNDEFINED . If you specify
ORGANIZATION UNDEFINED, also specify RECORDTYPE ANY .
If you do not specify a map in the OPEN statement, the size of your program's
record buffer is determined by the OPEN statement RECORDSIZE clause, or
by the record size associated with the file . If you specify both a MAP clause
and a RECORDSIZE clause in the OPEN statement, the specified record size
overrides the size specified by the MAP clause .
The following statement opens a new sequential file of stream format records :
OPEN 'TEST .DAT" FOR OUTPUT AS FILE #1%,

	

&
SEQUENTIAL STREAM

The following example creates a relative file and associates it with a static
record buffer. The MAP statement defines the record buffer's total size and the
data types of its variables . When the program is compiled, BASIC-PLUS-2
allocates space in the record buffer for one integer, one 16-byte string, and one
double-precision floating-point number . The record size is the total of these
fields, or 28 bytes. All subsequent record operations use this static buffer for
I/O to the file .
Example
10 MAP (Inv) LONG Part number, &

STRING Inv_name = 16, &
DOUBLE Unit_price

OPEN "INVENT .DA'T" FOR OUTPUT AS FILE #1% &
,ORGANIZATION RELATIVE FIXED, ACCESS MODIFY &
,ALLOW READ, MAP Inv

12-12 File Input-Output

The following OPEN statement opens a sequential file for reading only
(ACCESS READ). Because the OPEN statement does not contain a MAP
clause, BASIC-PLUS-2 creates a record buffer. This record buffer is 100 bytes
long .
Example
10 OPEN "CASE .DAT" AS FILE #1% &

,ORGANIZATION SEQUENTIAL VARIABLE &
,ACCESS READ &
,RECORDSIZE 100%

When you do not specify a MAP statement, your program must use MOVE TO
and MOVE FROM statements to move data between the record buffer and a
list of variables .
The OPEN statement for indexed files must have a MAP clause . Moreover,
if you are creating an indexed file, a PRIMARY KEY clause is required. You
can create a segmented index key containing more than one string variable
by separating the variables with commas and enclosing them in parentheses .
All the string variables must be part of the associated map . In the following
example, the primary key is made up of three string variables . This key causes
the records to be sorted in alphabetical order according to the person's last
name, first name, and middle initial .

Example
10 MAP (Segkey) STRING First name = 15, MI = 1, Last name

	

15
OPEN "NAMES .IND" FOR OUTPUT AS FILE #1%, &

ORGANIZATION INDEXED, &
PRIMARY KEY (Last name, First name, MI), &
MAP Segkey

Note that there are restrictions on the maximum record size allowed
for various file and record formats . For more information, see the RMS
documentation for your system .
You can identify a device either by a physical device name or by a logical device
name. Logical names are assigned using the DCL command ASSIGN. An
example of the ASSIGN command is as follows :
$ ASSIGN DUI : MYDISK :

This command assigns the logical name MYDISK : to the disk DU1 : .

You can use the DEASSIGN command to delete logical name assignments . The
following DEASSIGN command deletes the logical name MYDISK : .
$ DEASSIGN MYDISK :

File Input-Output 12-13

The main advantage in using logical names is that your programs no longer
depend on the availability of a specific device . In the following example, for
instance, the magnetic tape drive MM2: must be available for your program
to run. If it is not available, you must recode the OPEN statement to specify
another device, recompile, build, and then link your program .
10

	

OPEN 'MM2 :TEST .FIL' FOR OUTPUT AS FILE #2%

If you change the OPEN statement to include a logical name such as MYTAPE :,
however, you can assign any available device to MYTAPE : . The new OPEN
statement looks like the following :
10

	

OPEN 'MYTAPE :TEST .FIL' FOR OUTPUT AS FILE #2%

When MM2 : is not available, you can move your magnetic tape to a new
magnetic tape drive and assign the logical name MYTAPE : to the new device .

See the RSTS/E System User's Guide or the RSX-11M-PLUS Command
Language Manual for more information on the ASSIGN and DEASSIGN
commands .

12.7.2 Creating Virtual Array Files
BASIC-PLUS-2 virtual arrays let you define arrays that reside on disk . You
use them just as you would an ordinary array. You create a virtual array by
dimensioning an array with the DIM # statement, then opening a VIRTUAL
file on that channel . You access virtual arrays just as you do normal arrays .
The following DIM # statement dimensions a virtual array on channel #1 . The
OPEN statement opens a virtual file that contains the array. The last program
line assigns a value to one array element .
Example
100 DIM #1%, LONG Int array(10,10,10)

OPEN "VIRT .DAT" FOR OUTPUT AS FILE #1%, VIRTUAL

Int array(5,5,5) = 100%

Note that you cannot redimension virtual arrays with an executable DIM
statement. See Chapter 10 for more information on virtual arrays .

12-14 File Input-Output

12.7 .3 Locating Records
The FIND statement locates a specified record and makes it the current record.
Using the FIND statement to locate records can be faster than using a GET
statement because the FIND statement does not transfer any data to the
record buffer ; therefore, it executes faster than a GET statement . However, if
you are interested in the contents of a record, you must retrieve it with a GET
operation .
The FIND statement sets the current record pointer to the record just found,
making it the target for a GET, UPDATE, or DELETE statement . (Note that
you must have write access to a record before issuing a PUT, UPDATE, or
DELETE operation.) A sequential FIND operation searches records in the
following order :
©

	

Sequential files from beginning to end
©

	

Relative files in ascending relative record or cell number order
©

	

Indexed files in ascending order, based on the current key of reference and
the key's collating sequence

For sequential fixed-length and relative files, you can find a particular record
by specifying a RECORD clause . This is called a random access FIND . You
can also perform a random access FIND for indexed files by specifying a key of
reference, a relational test, and a key value . In the following example, the first
FIND statement finds the first record whose key value either equals or follows
SMITH in the key's collating sequence . The second FIND statement finds the
first record whose key value follows JONES in the key's collating sequence .
Each record found by the FIND statement becomes the current record . (Note
that you can only have one current record at a time .)

Example
10 MAP (Emp) STRING Emp name, WORD Emp number, SSN

OPEN "EMP .DAT" AS FILE #1%, INDEXED, &
ACCESS READ, &
MAP Emp, &
PRIMARY KEY Emp name

FIND #1%, KEY #0% GE "SMITH"
FIND #1%, KEY #0% GT "JONES"

The string expression can contain fewer characters than the key of the record
you want to find . However, if you want to locate a record whose string key
field exactly matches the string expression you provide, you must pad the
string expression with spaces to the exact length of the key of reference . For
example :

File Input-Output 12-15

Example
10 FIND #5%, KEY #0% EQ "TOM

FIND #5%, KEY #0% EQ "TOM"

The first FIND statement locates a record whose primary key field equals
"TOM " . The second FIND statement locates the first record whose
primary key field begins with "TOM" .
Table 12-1 displays the status of the current record and next record pointers
after both a sequential and a random access FIND .

Table 12-1 Record Context After a FIND Operation

Note that a random access FIND operation locates the specified record and
makes it the current record, but the next record pointer does not change .

12.7.4 Reading Records
The GET statement moves a record from a file to a record buffer and makes the
data available for processing. GET statements are valid on sequential, relative,
and indexed files . You should not use GET statements on terminal-format files,
or virtual array files .
For sequential files, a sequential GET retrieves the next record in the file . For
relative files, a sequential GET retrieves the next existing record . For indexed
files, a sequential GET retrieves the record with the next ascending value in
the current key of reference, depending on that key's collating sequence .

Table 12-2 shows the current record and next record pointers after a GET
operation. Note that the values of these pointers vary depending on whether
or not the previous operation was a FIND .

12-16 File Input-Output

Record Access
Mode

File
Type

Current
Record

Next
Record

Sequential FIND

Random access FIND

Sequential
Relative
Indexed

All

Record found
Record found
Record found

Record found

Current record + 1
Next existing record
Next record in current key
order
Unchanged

If you precede a sequential GET operation with a FIND operation, the current
record is the one located by FIND . If you do not perform a FIND operation
before a sequential GET operation, the current record is the next sequential
record .

The following example illustrates the use of the GET operation to sequentially
access records in an indexed file. The example opens an indexed file and
displays the first 25 records with serial numbers greater than AB2721 in
ascending primary key value order.

Example
10 MAP (Bec) STRING Owner = 30%, WORD Vehicle number,

	

&
STRING Serial-number = 22%

OPEN "VEH .IDN" FOR INPUT AS FILE #2%, &
ORGANIZATION INDEXED, PRIMARY KEY Serial number, &
MAP Bec, ACCESS READ

GET #2%, KEY #0% EQ "AB2721"
FOR 1% = 1% TO 25%

GET #2%
PRINT "Vehicle Number = " ;Vehicle number
PRINT "Owner is : " ;Owner
PRINT

NEXT I%

The following example performs random GET operations by specifying a record
number :

File Input-Output 12-17

Table 12-2 Record Context After a GET Operation

Record Access File Current Next
Mode Type Record Record

Sequential GET Sequential Record found Current record + 1
with FIND

Relative Record found Next existing record
Indexed Record found Next record in current key

Sequential GET Sequential Next record Next record + 1
without FIND

Relative Next existing Next existing record + 1
record

Indexed Next record in Record following next record in
current key current key

Random GET All Record specified Next record in succession

Example
10 MAP (Bec) STRING Owner = 30%, WORD Vehicle number,

	

&
STRING Serial -number = 22%

OPEN 'VEH .IDN" FOR INPUT AS FILE #2%,

	

&
ORGANIZATION SEQUENTIAL FIXED,

	

&
MAP Bec, ACCESS READ

INPUT "Which record do you want" ;A%
WHILE (A% <> 0%)

GET #2%, RECORD A%
PRINT "The vehicle number is", Vehicle number
PRINT "The serial number is", Serial number
PRINT "The owner of vehicle" ;Vehicle number ; "is", Owner
INPUT "Next Record" ;A%

NEXT
CLOSE #2%
END

If you are trying to access a locked record, BASIC-PLUS-2 signals
"Record/bucket locked" (ERR=154) .

12.7.5 Writing Records
For a file opened with ACCESS WRITE or ACCESS MODIFY, the PUT
statement moves data from the record buffer to a file using the I/O buffer.
PUT statements are valid on RMS sequential, relative, and indexed files . You
cannot use PUT statements on terminal-format files, or virtual array files .

Sequential access is valid on RMS sequential, relative, and indexed files .
For sequential, variable, and stream files, a sequential PUT operation adds
a record at the end of the file. For sequential fixed and relative files, PUT
writes records sequentially or randomly depending on the presence of a
RECORD clause. For indexed files, RMS stores records in order of the primary
key's collating sequence. Therefore, you do not need to specify a random
or sequential PUT. The following table shows the record context after both
random and sequential PUT operations .

Table 12-3 Record Context After a PUT Operation

12-18 File Input-Output

Record Access
Mode

File
Type

Current
Record

Next
Record

Sequential PUT
Sequential PUT
Sequential PUT
Random PUT

Sequential
Relative
Indexed
Relative

None
None
None
None

End of file
Next record
Undefined
Unchanged

After a PUT operation, the current record pointer has no value . However, the
value of the next record pointer changes depending on the file type and the
record access mode used with the PUT operation. In a sequential, stream, or
variable file, records can be added only at the end of the file ; therefore, the
next record after PUT is the end of the file . In a relative, sequential, or fixed
file, the next record after a PUT operation is the next logical record .

The following example opens a sequential file with ACCESS APPEND
specified . For sequential files, this is almost identical to ACCESS WRITE .
The only difference is that, with ACCESS APPEND, BASIC-PLUS-2 positions
the file pointer after the last record in the file when it opens the file for
processing . All subsequent PUT operations append the new record to the end
of the existing file .
Example
50 MAP (Buff) STRING Code = 4%, Exp date = 9%, Type desig = 32%

OPEN "INV.DAT" FOR INPUT AS FILE #2%, &
ORGANIZATION SEQUENTIAL FIXED, ACCESS APPEND, &
MAP Buff

WHILE -1%
INPUT "What is the specification code" ;Code
INPUT "What is the expiration date" ;Exp date
INPUT "What is the designator" ;Type desig
PUT #2%

NEXT

If the current record pointer is not at the end of the file when you attempt a
sequential PUT operation to a sequential file, BASIC-PLUS-2 signals "Not at
end of file" (ERR=149) .
In the following example, the PUT statement writes records to an existing
indexed file. In this case, the error message "Duplicate key detected"
(ERR=134) indicates that a record with a matching key field already exists,
and you did not allow duplicates on that key .

File Input-Output 12-19

Example
10

	

MAP (Myrec) STRING R num = 5,

	

&
Dept name = 10,

	

&
Pur_dat = 9

20

	

OPEN "INFO .DAT" FOR OUTPUT AS FILE #2,

	

&
ORGANIZATION INDEXED FIXED, ACCESS WRITE, &
PRIMARY KEY R num, MAP Myrec

30

	

WHILE 1%
INPUT "Requisition number" ;R num
INPUT "Department name" ;Dept name
INPUT "Date of purchase" ;Pun dat
PRINT
PUT #2%

NEXT

Output
Requisition number? 2522A
Department name? COSMETICS
Date of purchase? 15-JUNE-1990

Requisition number? 2678D
Department name? AUTOMOTIVE
Date of purchase? 15-JUNE-1990

Requisition number? 4167C
Department name? AUTOMOTIVE
Date of purchase? 6-JANUARY-1990

Requisition number? 2522A
Department name? SPORTING GOODS
Date of purchase? 25-FEBRUARY-1990

%Duplicate key detected at line

	

30 in

12-20 File Input-Output

"MAP "

12 .7.6 Deleting Records
The DELETE statement removes a record from a file that was opened with
ACCESS MODIFY After you have deleted a record you cannot retrieve it .
DELETE works with relative and indexed files only.
A successful FIND or GET operation must precede the DELETE operation .
These operations make the target record available for deletion . In the following
example, the FIND statement locates record 67 in a relative file, and the
DELETE statement removes this record from the file. Because the cell itself
is not deleted, you can use the PUT statement to write a record into that cell
after deleting its contents .

Example
10 FIND #1%, RECORD 67%

DELETE #1%

Note
There is no current record after a deletion. The next record pointer is
unchanged.

12 .7.7 Updating Records
UPDATE writes a new record at the location indicated by the current record
pointer. UPDATE is valid on RMS sequential, relative, and indexed files .

The UPDATE statement operates on the current record, provided that you
have write access to that record . In order to successfully update a variable-
length record, you must know the exact size of the record you want to
update. BASIC-PLUS-2 has access to this information after a successful
GET operation. If you have not performed a successful GET operation on the
variable-length record, then you must specify a COUNT clause in the UPDATE
statement that contains the record size information .

An UPDATE will fail with the exception "No current record" (ERR=131) if
you have not previously established a current record with a successful GET or
FIND. Therefore, when updating records you should include error trapping in
your program to make sure all GET operations execute successfully.

An UPDATE operation on a sequential file is valid only when :

©

	

The file containing the record is on disk .

©

	

The new record is the same size as the one it is replacing .

©

	

You have established a current record via a GET or FIND operation .
Note that COUNT defaults to the size of the current record if a GET was
performed. If a FIND operation was used to locate the current record, then
you must supply a COUNT value .

The following program searches to find a record in which the L name field
matches the specified Search name$. Once this record is found and retrieved,
the Rm num field of that record is updated ; the program then prompts for
another Search name$. If a match is not found, BASIC-PLUS-2 prints the
message No such record and prompts the user for another Search name$.
The program ends when the user enters a null string for the Search name$
value .

File Input-Output 12-21

Example
20

	

MAP (AAA) STRING L-name = 60%, F-name = 20%, Rm num = 8%
30

	

OPEN "STU .DAT" FOR INPUT AS FILE #9%,

	

&
ORGANIZATION SEQUENTIAL FIXED, MAP AAA

50

	

INPUT "Last name" ;Search name$
55

	

Search name$ = EDIT$(Search name$, -1%)
60

	

IF Search name$ = ""
THEN GOTO 32010

END IF
65

	

RESTORE #9%
70

	

ON ERROR GOTO 19000
75

	

GET #9% WHILE Search name$ <> L _name
80

	

INPUT "Room number"Rm_num
90

	

UPDATE #9%
100

	

GOTO 50

19000

	

IF ERR=11
THEN

PRINT "No such record"
RESUME 50

ELSE
ON ERROR GOTO 0

END IF
32010

	

CLOSE #9%
32030

	

PRINT "Update complete"
32767

	

END

Note
An UPDATE operation invalidates the value of the current record
pointer. The next record pointer is unchanged .

12-22 File Input-Output

When you update a record in a relative variable file, the new record can be
larger or smaller than the record it replaces, provided that it is smaller than
the maximum record size set for the file . When you update a record in an
indexed variable file, the new record can also be larger or smaller than the
record it replaces . The updated record :
©

	

Can be no longer than the maximum record size, if specified
©

	

Must include at least the primary key field
The following program updates a specified record on an indexed file :

Example
200 MAP (UPD) STRING Enrdat = 8%, LONG Part num, Sh num, REAL Cost

210 OPEN "REC .ING" FOR INPUT AS FILE #8%,

	

&
INDEXED, MAP UPD, PRIMARY KEY Part num

300 INPUT "Part number to update" ;A%
500 Loopl :

WHILE -1%
GET #8%, KEY #0%, EQ A%
INPUT "Revised Cost is" ;Cost
UPDATE #8%
INPUT "Next Record" ;A%
IF A% = 0%
THEN

EXIT Loop1
END IF

600 NEXT
700 CLOSE #8%
800 END

If the new record either omits one of the old record's alternate key fields or
changes one of them, the OPEN statement must specify a CHANGES clause
for that key field when the file is created. Otherwise, BASIC-PLUS-2 signals
the error "Key not changeable" (ERR=130) .

12.7.8 Controlling Record Access
When you open a file, BASIC-PLUS-2 allows you to specify how you will
access the file and what types of access you will allow other running programs
while you have the file open .
If you open a file for read access only (ACCESS READ), BASIC-PLUS-2 by
default allows other programs to have unrestricted access to the file . You can
restrict access with an ALLOW clause only if the file's security constraints
allow you write access to the file .
BASIC-PLUS-2 by default prevents access by other programs to any file
you open with ACCESS WRITE, ACCESS MODIFY, or ACCESS SCRATCH
(sequential files only) . This default action is equivalent to specifying the OPEN
statement ALLOW NONE clause . To allow less restrictive access to the open
file, specify ALLOW READ or ALLOW MODIFY.
When a file is open for read access only and you have not restricted access
to other programs with ALLOW NONE, BASIC-PLUS-2 allows other
programs to read any record in the file, including records that your program
is concurrently accessing . However, when you retrieve a record with the
GET statement from a file you have opened with the intent to modify,
BASIC-PLUS-2 normally restricts other programs from accessing that record .
This restriction is called locking .

File Input-Output 12-23

To allow other programs to access a record you have locked, you must release
the lock on the record in one of the following ways :
©

	

Retrieve another record on the same channel .
©

	

Explicitly unlock the record with the UNLOCK or FREE statement . The
UNLOCK statement releases the current record. The FREE statement
releases all records locked on a given channel .

©

	

Perform an UPDATE operation on the record. An UPDATE statement
causes the current record to be unlocked .

©

	

Close the file .
In addition to the capability of restricting access via the OPEN statement
ALLOW clause, BASIC-PLUS-2 allows programs to explicitly control record
locking on each record that is retrieved .

12 .7 .9 Accessing Records by Record File Address
A Record File Address (RFA) uniquely specifies a record in a file. Accessing
records by RFA is therefore more efficient and faster than other forms of
random record access .
Because an RFA requires six bytes of storage, BASIC-PLUS-2 has a special
data type, RFA, that denotes variables that contain RFA information . Variables
of data type RFA can be used only with the I/O statements and functions that
use RFA information, and in comparison and assignment statements . You
cannot print these variables or use them in any arithmetic operation ; however,
you can compare RFA variables using the equal to (=) and not equal to (<>)
relational operators .
You cannot create named constants of the RFA data type . However, you can
assign values from one RFA variable to another, and you can use RFA variables
as parameters .
Accessing a record by RFA requires three steps :
1 . Explicitly declare the variable or array of data type RFA to hold the

address .
2. Assign the address to the variable or array element. You can do this either

with the GETRFA function, or by reading a file of RFAs generated by
previous GETRFA functions .

3 . Specify the variable in the RFA clause of a GET or FIND statement .

12-24 File Input-Output

The GETRFA function returns the RFA of the last record accessed on a
channel. Therefore, you must access a record in the file with a GET, FIND,
or PUT statement before using the GETRFA function . Otherwise, GETRFA
returns a zero, which is an invalid RFA. The following example declares an
array of type RFA containing 100 elements. After each PUT operation, the RFA
of the record is assigned to an element of the array. Once the RFA information
is assigned to a program variable or array element, you can use the RFA clause
on a GET or FIND statement to retrieve the record .
Example
100 DECLARE RFA R array(100)

DECLARE LONG I
MAP (XYZ) STRING A = 80
OPEN "TEST .DAT" FOR OUTPUT AS FILE #1,

	

&
SEQUENTIAL, MAP XYZ

FOR I = 1% TO 100%

PUT #1
R array(I) = GETRFA(1%)

NEXT I

You can use the RFA clause on GET statements for any file organization ; the
only restriction is that the file must reside on a disk that is accessible to the
node that is executing the program . The following example continues the
previous one. It randomly retrieves the records in a sequential file by using
RFAs stored in the array.
Example
200 DECLARE RFA R_array(100%)

DECLARE LONG I
MAP (XYZ) STRING A = 80
OPEN "TEST .DAT" FOR OUTPUT AS

SEQUENTIAL, MAP XYZ
FOR I = 1% TO 100%

FILE #1,

	

&

PUT #1
R array(I) = GETRFA(1%)

NEXT I
WHILE -1%

PRINT "Which record would you like to see" ;
INPUT "type a carriage return to exit" ;Rec num%
EXIT PROGRAM IF Rec_num% = 0%
GET #1, RFA R_array(Rec_num%)
PRINT A

NEXT

File Input-Output 12-25

12.7.10 Transferring Data to Terminal-Format Files
The PRINT # statement transfers program data to a terminal-format file . In
the following example, the INPUT statements prompt the user for three values :
S name$, Area$, and Quantity% . Once these values are entered, the PRINT #
statement writes these values to a terminal-format file that is open on channel
#4 .
Example
100 FOR I% = 1% TO 10%

INPUT "Name of salesperson" ;S name$
INPUT "Sales district" ;Area$
INPUT "Quantity sold" ;Quantity%
PRINT #4%, S name$, Area$, Quantity%

NEXT 1%

If you do not specify an output list in the PRINT # statement, a blank line is
written to the terminal-format file. A PRINT statement without a channel
number transfers program data to a terminal . See Chapter 5 for more
information .

12.7.11 Resetting the File Position
The RESTORE # statement resets the current record pointer to the beginning
of the file ; it does not change the file . RESET # is a synonym for RESTORE .
For example :
Example
100 RESTORE #3%, KEY #2%

RESET #3%

The RESTORE # statement restores the file in terms of the second alternate
key. The RESET # statement restores the file in terms of the primary key.
The RESTORE # statement can be used by all RMS file organizations .
RESTORE without a channel number resets the data pointer for READ and
DATA statements but does not affect any files .

12 .7.12 Truncating Files
The SCRATCH statement is valid only on sequential files . Although you
cannot delete individual records from a sequential file, you can delete all
records starting with the current record through to the end of the file . In order
to do this, you must first specify ACCESS SCRATCH when you open the file .
To truncate the file, locate the first record to be deleted . Once the current
record pointer points to this record, execute the SCRATCH statement . The
following program locates the thirty-third record and truncates the file
beginning with that record .

12-26 File Input-Output

Example
10 OPEN "MMM .DAT" AS FILE #2%,

	

&
SEQUENTIAL FIXED, ACCESS SCRATCH

first-bad-record = 33%
FIND #2%, RECORD first-bad-record
SCRATCH #2%
CLOSE #2%
END

SCRATCH does not change the physical size of the file ; it reduces the amount
of information contained in the file. Therefore, you can write records with the
PUT statement immediately after a SCRATCH operation .

12.7.13 Renaming Files
If the security constraints permit, you can change the name or directory of a
file with the NAME . . .AS statement. For example :
Example
20 NAME "MONEY .DAT" AS "ACCOUNT .DAT"

This statement changes the name of the file MONEY.DAT to ACCOUNTS .DAT.

Note

The NAME . . .AS statement can change only the name and directory of
a file ; it cannot be used to change the device name .

You must always include an output file type because there is no default . If you
use the NAME . . .AS statement on an open file, the new name does not take
effect until you close the file .

12 .7.14 Closing Files and Ending I/O
All programs should close files before the program terminates . However,
BASIC-PLUS-2 automatically closes files in the following situations :
©

	

At an END, END PROGRAM, or EXIT PROGRAM statement
©

	

When it completes the last statement in the program if no END statement
exists

©

	

While executing a CHAIN statement
BASIC-PLUS-2 does not close files after executing a STOP, END SUB, or
END FUNCTION statement .

File Input-Output 12-27

The CLOSE statement closes files and disassociates these files and their
buffers from the channel numbers . If the file is a magnetic tape device and the
data is written to a tape, CLOSE writes trailer labels at the end of the file .
The following is an example of the CLOSE statement :
Example
300 CLOSE #1%

B% = 4%
CLOSE #2%, B%, 7%
CLOSE I% FOR I% = 1% TO 20%

12.7.15 Deleting Files
If the security constraints permit, you can delete a file with the KILL
statement .
100 KILL "TEST .DAT"

This statement deletes the file named TEST .DAT. Note that this statement
deletes only the most current version of the file . Do not omit the file type,
because there is no default . You can delete only one file at a time .
You can delete a file that is currently being accessed by other users ; however,
the file is not deleted until all users have closed it . You cannot open or access
a file once you have deleted it .

12.8 File-Related Functions
BASIC-PLUS-2 provides built-in functions for finding the following :
©

	

The characteristics of the last file opened (FSP$)
©

	

The file name and status of the specified file name string (FSS$)
©

	

The number of bytes moved in the last I/O operation (RECOUNT)
©

	

The file status (STATUS)
These functions are discussed in the following sections .

12.8.1 The FSP$ Function
If you do not know the organization of a file, you can find out by opening the
file for input with the ORGANIZATION UNDEFINED and RECORDTYPE
ANY clauses. Your program can then use the FSP$ function to determine the
characteristics of that file . Your program must execute FSP$ immediately after
the OPEN FOR INPUT statement .

12-28 File Input-Output

Example
10 MAP (A) A$ = 32
20 MAP (A) WORD ORG RAT, MRS, LONG ALQ,

	

&
WORD BKS BLS, NUM KEYS, LONG MRN

	

&
30 OPEN "FIL .DAT" FOR INPUT AS FILE #1%,

	

&
ORGANIZATION UNDEFINED,
RECORDTYPE ANY, ACCESS READ

40 A$ = FSP$(1%)

In this example, FSP$ generates the following values :

©

	

ORG RAT, which returns file characteristics :

- High Byte is the RMS organization (ORG) field .

- Low Byte is the RMS record attributes (RAT) field .

©

	

MRS returns the RMS maximum record size (MRS) field .

©

	

ALQ returns the RMS allocation quantity (ALQ) field .

©

	

BKS_BLS returns the RMS bucket size (BKS) field for disk files or the
RMS block size (BLS) field for magnetic tape files .

©

	

NUM KEYS returns the number of keys .

©

	

MRN returns the RMS maximum record number (MRN) if the file is
relative .

For more information on the FSP$ function, see the BASIC-PLUS-2 Reference
Manual and the RMS documentation for your system .

12.8.2 The FSS$ Function
The FSS$ function performs a file name scan on the argument string and
returns a string describing the file name and status . Because file specifications
differ from system to system, the returned string contains system-specific
information .
The output returned by the FSS$ function is a 30-character string encoded as
shown in Table 12-4 .

File Input-Output 12-29

Table 12-4 File Name String : Flag Word Bytes 1-30

Byte

	

Meaning

1

	

Job number multiplied by two .
2

	

Undefined on RSTS/E systems. On RSX systems, byte 2 contains the
version number. If the version number is undefined, the byte returns zero .

3-4

	

Undefined on RSTS/E systems . On RSX systems, this byte contains the
last three characters of the file name .

5-6

	

Project and programmer number .
7-10

	

File name in Radix-50 format .
11-12

	

File extension in Radix-50 format .
13-14

	

Undefined on RSX systems . On RSTS/E systems, these bytes contain the
FILESIZE clause specification .

15-16

	

Undefined on RSX systems . On RSTS/E systems, these bytes contain the
CLUSTERSIZE clause specification .

17-18

	

Undefined on RSX systems . On RSTS/E systems, these bytes contain the
MODE clause specification .

19-20

	

Undefined .
21

	

Undefined on RSX systems . On RSTS/E systems, this byte contains zero
unless a protection code is specified or a default exists .

22

	

Protection code if byte 21 is non-zero .
23-24 Device name if specified. If the device name is logical and not translatable,

byte 23 contains the first two characters in ASCII format; byte 24 contains
the last two characters .

25

	

Unit number of the device . If no device is given, byte 25 returns a zero .
26

	

255 if the unit number was specified .
27-28

	

Flag word 1 . See Table 12-5 .
29-30

	

Flag word 2 . See Table 12-6 .

Bytes 27 and 28 provide additional information about the file name as
described in Table 12-5 .

12-30 File Input-Output

Table 12-5 File Name String: Scan Flag Word 1

Flag Word 1 : Where SO% = M%(27%) + SWAP%(M%(28%))

(continued on next page)

File Input-Output 12-31

Bit Logical Test Meaning

0 (SO% and 1%)<>0% The /CLUSTERSIZE:n switch was specified .

1
(SO% and 1%) = 0%
(SO%o and 2%)<>0%

No /CLUSTERSIZE:n was found .

Either the /MODE :n or /RONLY switch was specified .

2
(SO% and 2%) = 0%
(SO% and 4%)<>0%

Neither /MODE :n nor /RONLY was found .
Either the FILESIZE:n or /SIZE :n was specified .

3-7
(SO% and 4%) = 0% Neither the FILESIZE :n nor /SIZE :n was found .

Not used.

8 (SO% and 256%)<>0% A file name was found in the source string (and is

9
(SO% and 256%) = 0%
(SO% and 512%)<>0%

returned in Radix-50 format in bytes 7 through 10) .
No file name was found .
A dot (.) found in the source string .

(S0% and 512%) = 0% No dot was found in the source string, implying that no

10 (SO% and 1024%)<>0%
extension was specified .
A project-programmer number was found in the source

(SO% and 1024%) = 0%

string .
No project-programmer number was found.

11 (SO% and 2048%)<>0% A left angle bracket (<) was found in the source string,

(SO% and 2048%) = 0%
implying that a protection code was found .
No left angle bracket (<) was found, implying that no

12 (SO% and 4096%)<>0%
protection code was specified .

A colon (:) (but not necessarliy a device name) was

(SO% and 4096%) = 0%
found .
No colon was found, implying that no device was
specified.

Table 12-5 (Cont .) File Name String : Scan Flag Word 1

Flag Word 1 : Where SO% = M%(27%) + SWAP%(M%(28%))

Bytes 29 and 30 provide additional information about the specified file name as
described in Table 12-6 .

Table 12-6 File Name String : Scan Flag Word 2

Flag Word 2 : Where S1% = M%(29%) + SWAP%(M%(30%))

12-32 File Input-Output

addition, the specified device name does not correspond
to any logical device assignments . The program must
test bits of flag word 2 for wildcard characters and
device name .

Bit Logical Test Meaning

0 (S1% and 1%)<>0% File name was found in the source string .

1
(S1% and 1%) = 0%
(S1% and 2%)<>0%

No file name was found, and bits 1 and 2 return zero .
File name was an asterisk (*) and is returned in bytes

2
(S1% and 2%) = 0%
(S1% and 4%)<>0%

7 through 10 as the Radix-50 representation of the
string "??????" .
File name was not an asterisk.
File name contained at least one question mark (?) .

3
(S1% and 4%) = 0%
(S1% and 8%)<>0%

File name did not contain any question marks .
A dot (.) was found .

4

(S1% and 8%) = 0%

(S1% and 16%)<>0%

No dot was found, implying that no extension was
specified and bits 4, 5, and 6 return zero .
An extension was found (the field after the dot was not

(S1% and 16%) = 0%
null) .
No extension was found (the field after the dot was
null), and bits 5 and 6 return zero .

(continued on next page)

Bit Logical Test Meaning

13 (S0% and 8192%)<>0% A logical name was specified .
(S0% and 8192%) = 0% A device name was not specified .

15 S0%<0% Source string contained wildcard characters in the
file name, extension, or project-programmer fields . In

Table 12-6 (Cont.) File Name String : Scan Flag Word 2

Flag Word 2: Where S1% = M%(29%) + SWAP%(M%(30%))

(continued on next page)

File Input-Output 12-33

Bit Logical Test Meaning

5 (S1% and 32%)<>O% The extension was an asterisk (*) and is returned in

(S1% and 32%) = 0%

bytes 11 and 12 as the Radix-50 representation of the
string "???" .
The extension was not an asterisk .

6 (S1% and 64%)<>O% The extension contained at least one question mark (?) .

(S1% and 64%) = 0% The extension did not contain any question marks .

7 (S1% and 128%)<>0% A project-programmer number was found .

(S1% and 128%) = 0% No project-programmer number was found, and bits 8

8 (S1% and 256%)<>O%
and 9 return zero .
Project number was in the form of [*,PROG] and is

(S1% and 256%) = 0%
returned in byte 6 as 255 .
Project number was not an asterisk .

9 (S1% and 512%)<>0% Programmer number was in the form [PROJ,*] and is

(S1% and 512%) = 0%

returned in byte 5 as 255 .
Programmer number was not an asterisk .

10 (S1% and 1024%)<>0% A protection code was found .

(S1% and 1024%) = 0% No protection code was found .

11 (S1% and 2048%)<>0% The protection code set as default by the current job

(S1% and 2048%) = 0%

was used .
The protection code is the default (<60>) or that found

12 (S1% and 4096%)<>0%

in the source string .
A colon (but not necessarily a device name) was found .

(S1% and 4096%) = 0% No colon or device was found, and bits 13, 14, and 15

13 (S1% and 8192%)<>0%
return zero .
A device name was found .

(S1% and 8192%) = 0% No device name was found ; bits 14 and 15 return zero .

Table 12-6 (Cont .) File Name String : Scan Flag Word 2

Flag Word 2 : Where S1% = M%(29%) + SWAP%(M%(30%))

Meaning

A logical device name was specified .
An actual device name was specified ; bit 15 returns
zero .
The specified device name was logical and is not
assigned to an actual device . The logical name is
returned in bytes 23 through 26 as a Radix-50 string .
A physical device is assigned to the physical or logical
device name. This physical device name is returned in
bytes 23 and 24 ; unit information is returned in bytes
25 and 26 .

The following is an example of the FSS$ function :

12-34 File Input-Output

10 DIM Y%(30%)
20 LINPUT 'Enter file name string' ;A$

30
INPUT 'Enter offset' ;B%
Y$ = FSS$ (A$, B%)

40
CHANGE Y$
PRINT J%,

TO Y%
Y%(J%) FOR J% = 1% TO 30%

32767 END

RUN

Bit Logical Test

14 (S1% and 16384%)<>0%
(S1% and 16384%) = 0%

15 S1%<0%

S1% = 0%

ENTER FILE NAME STRING? FILE .EXT
ENTER OFFSET? 1

In this program output :
1 . Byte 1 (32) is the job number multiplied by 2 .

2 . Bytes 5 and 6 are the project and programmer number (1,1) .

3 . Bytes 7 through 12 are the file name and extension in Radix-50 format .

4 . Bytes 23 and 24 are the device name in Radix-50 format .

5 . Byte 26 indicates that the unit number was specified .

6. Byte 28 (23) is the binary number 00010111 . The bits indicate the
following :

The file name was found (bit 8) .

A dot was found (bit 9) .
The project and programmer numbers were found (bit 10) .

File Input-Output 12-35

1 32
2 0
3 0
4 0
5 1
6 1
7 244
8 38
9 64
10 31
11 20
12 35
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 0
23 68
24 66
25 0
26 255
27 0
28 23
29 153
30 48

- A colon was found (bit 12) .
7 . Byte 29 (153) is the binary number 010011001. The bits indicate the

following:
The file name was found (bit zero) .
A dot was found (bit 3) .
The extension was found (bit 4) .
The project and programmer numbers were found (bit 7) .

8 . Byte 30 (48) is the binary number 110000 . The bits indicate the following :
- A colon was found (bit 12) .
- The device name was found (bit 13) .

12 .8.3 The RECOUNT Function
Read operations can transfer varying amounts of data . The system variable
RECOUNT contains the number of characters (bytes) read after each read
operation .
After a read operation from your terminal, RECOUNT contains the number of
characters transferred, including the line terminator . After accessing a record,
RECOUNT contains the number of characters in the record .

RECOUNT is reset by every read operation on any channel, including the
controlling terminal. Therefore, if you need to use the value of RECOUNT,
copy it to another variable before executing another read operation . RECOUNT
is undefined if an error occurs during a read operation .

RECOUNT is often used as the argument to the COUNT clause in the
UPDATE or PUT statement for variable-length files . The following sequence of
statements ensures that the output record on channel #5 is the same length as
the input record on channel #4 .

Example
80 GET #4%

bytes_read% = RECOUNT

PUT #5%, COUNT bytes_read%

12-36 File Input-Output

12 .8 .4 The STATUS Function
The STATUS function returns an integer value containing information about
the last opened channel . Your program can test each bit to determine the
status of the channel.
The information returned depends on the error and is different on RSTS/E
and RSX systems . For more information, see the BASIC-PLUS-2 Reference
Manual .

12 .9 OPEN Statement Clauses
This section describes the OPEN statement clauses that enable you to control
how a file is created or opened . These clauses are as follows :

BUCKETSIZE
BUFFER
CONNECT
CONTIGUOUS
CLUSTERSIZE
DEFAULTNAME
EXTENDSIZE
FILESIZE
NOSPAN
RECORDTYPE
TEMPORARY
USEROPEN
WINDOWSIZE

For more information on the OPEN statement and OPEN statement clauses,
see the BASIC-PLUS-2 Reference Manual .

12.9 .1 The BUCKETSIZE Clause
The BUCKETSIZE clause applies only to relative and indexed files . A bucket
is a logical storage structure that RMS uses to build and maintain relative and
indexed files on disk devices . A bucket consists of 1 or more disk blocks . The
default bucket size is the record size rounded up to a block boundary. Although
RMS defines the bucket size in terms of disk blocks, the BUCKETSIZE clause
specifies the number of records a bucket contains . For example :

File Input-Output 12-37

Example
10 OPEN "STOCK .DAT" FOR OUTPUT AS FILE #1%,

	

&
ORGANIZATION RELATIVE FIXED, BUCKETSIZE 12%

This example specifies a bucket containing approximately 12 records . RMS
reads the entire bucket into the I/O buffer at once, and a GET statement
transfers one record from the I/O buffer to your program's record buffer .

When you open an existing relative or indexed file and specify a bucket size
other than that originally assigned to the file, BASIC-PLUS-2 signals "File
attributes not matched" (ERR=160) .
Records cannot span bucket boundaries. Therefore, when you specify a bucket
size in your program, you must consider the size of the largest record in the
file . Note that a bucket must contain at least one record . Buckets in both
relative and indexed files contain information in addition to the records stored
in the bucket. You should take this into consideration .
There are two ways to establish the number of blocks in a bucket . The first is
to use the BASIC-PLUS-2 default . The second is to specify the approximate
number of records you want in each bucket. BASIC-PLUS-2 then calculates a
bucket size based on that number.
The default bucket size assigned to relative and indexed files is as small as
possible. A small bucket size, however, is rarely desirable .
BASIC-PLUS-2 selects a default bucket size depending on the following:
©

	

The record length
©

	

The file organization (relative or indexed)
©

	

The record format
If you do not define the BUCKETSIZE clause in the OPEN statement,
BASIC-PLUS-2 does the following :
©

	

Assumes that there is a minimum of one record in the bucket
©

	

Calculates a size
©

	

Assigns the appropriate number of blocks
Note that when you specify a bucket size for files in your program, you must
keep in mind the space versus speed trade-offs . A large bucket size increases
file processing speed because a greater amount of data is available in memory
at one time. However, it also increases the memory space needed for buffer
allocation and the processing time required to search the bucket . Conversely, a
small bucket size minimizes buffer requirements, but increases the number of
accesses to the storage device, thereby decreasing the speed of operations .

12-38 File Input-Output

12.9.2 The BUFFER Clause
The BUFFER keyword applies to disk files of any organization . In the case of
sequential files, the BUFFER clause sets the number of blocks read in on each
disk access. For relative and indexed files, the BUFFER clause determines the
number of I/O buffers that are allocated . You can specify up to 255 buffers .

12.9.3 The CLUSTERSIZE Clause
The CLUSTERSIZE clause allows you to specify the smallest amount of
contiguous disk space to be allocated when an RMS or RSTS/E file's present
allocation is exhausted. The CLUSTERSIZE clause can be used on RSTS/E
systems only. On RSX systems, use the EXTENDSIZE clause for similar
functionality.
The integer expression you specify with the CLUSTERSIZE clause must be
a power of two . For example, a CLUSTERSIZE of 8 means that each time
the file requires more disk space, the RSTS/E operating system must have at
least 8 contiguous blocks to allocate . If there is not enough contiguous space
available, BASIC-PLUS-2 signals the error "No room for user on device"
(ERR=4) .

12.9.4 The CONNECT Clause
The CONNECT clause can be used only on indexed files . CONNECT lets you
process different groups of records on different indexed keys or on the same key
without incurring all of the RMS overhead of opening the same file more than
once. For example, a program can read records in an indexed file sequentially
by one key and randomly by another. Each stream is an independent, active
series of record operations .

Example
10 MAP (Indmap) WORD Emp num, &

STRING Emp_last name = 20, &
SINGLE Salary, &
STRING Wage code = 2

OPEN "IND .DAT" FOR INPUT AS FILE #1%, &
ORGANIZATION INDEXED, &
MAP Indmap, &
PRIMARY KEY Emp num, &
ALTERNATE KEY Emp_last name

OPEN "IND .DAT" FOR INPUT AS FILE #2% &
ORGANIZATION INDEXED, &
MAP Indmap, &
CONNECT 1

File Input-Output 12-39

OPEN "IND .DAT" FOR INPUT AS FILE #3% &
ORGANIZATION INDEXED, &
MAP indmap, &
PRIMARY KEY Emp num, &
ALTERNATE KEY Wage code, &
CONNECT 1

The channel on which you open the file for the first time is called the parent .
The CONNECT clause specifies another channel on which you access the same
file; connected channels are called children . More than one OPEN statement
can connect to the parent channel ; however, you cannot connect to a channel
that has already been connected to another channel . If you close a parent
file, all of its children must also be closed . See the BASIC-PLUS-2 Reference
Manual for more information about the CONNECT clause .

12.9.5 The CONTIGUOUS Clause
A contiguous file with physically adjoining blocks minimizes disk searching
and decreases file access time. Once the system knows where a contiguous file
starts on the disk, it does not need to use as many retrieval pointers to locate
the pieces of that file. Rather, it can access data by calculating the distance
from the beginning of the file to the desired data . If there is not enough
contiguous disk space, BASIC-PLUS-2 signals an error .
Opening a file with both the FILESIZE and CONTIGUOUS clauses preextends
the file contiguously or in as few disk extents as possible .

12.9.6 The DEFAULTNAME Clause
The DEFAULTNAME clause in the OPEN statement lets you specify a default
file specification for the file to be opened. On RSTS/E systems, you cannot
specify the DEFAULTNAME clause with block I/O files ; that is, files opened
with ORGANIZATION VIRTUAL .
BASIC-PLUS-2 uses the DEFAULTNAME clause for any part of the file
specification that is not explicitly supplied .
Example
20 LINPUT "Next data file" ;Fil$
30 OPEN Fil$ FOR INPUT AS FILE #50,

ORGANIZATION SEQUENTIAL,

	

&
DEFAUL'TNAME "MYDISK : .DAT"

12-40 File Input-Output

The DEFAULTNAME clause supplies default values for the device, directory,
and file type portions of the file specification . Typing ABC in response
to the Next data file?" prompt causes BASIC-PLUS-2 to try to open
MYDISK:ABC.DAT.
BASIC-PLUS-2 uses the DEFAULTNAME values only if you do not supply
those parts of the file specification appearing in the DEFAULTNAME
clause. For example, if you enter MYDISK :ABC in response to the prompt,
BASIC-PLUS-2 tries to open MYDISK :ABC .DAT. In this case, MYDISK:
overrides the device default in the DEFAULTNAME clause . Any part of the
file specification still missing is filled in from the current default device and
directory of the process .

12.9.7 The EXTENDSIZE Clause
The EXTENDSIZE attribute determines how many disk blocks RMS adds to
the file when the current allocation is exhausted. The EXTENDSIZE clause
only has an effect when creating a file . You specify EXTENDSIZE as a number
of blocks. For example :
Example
10 OPEN "TSK .ORN" FOR OUTPUT AS FILE #2%,

	

&
ORGANIZATION RELATIVE, EXTENDSIZE 128%

The EXTENDSIZE clause causes RMS to add 128 disk blocks whenever the
current space allocation is exhausted and the file must be extended .

The value you specify must conform to the following requirements :

©

	

It must be specified when you create the file .

©

	

It cannot exceed 65,535 disk blocks .
If you specify zero, the extension size equals the default extension size for
the volume . The EXTENDSIZE value can be overridden for single OPEN
operations .

12 .9 .8 The FILESIZE Clause
With the FILESIZE attribute, you can allocate disk space for a file when you
create it. The following statement allocates 50 blocks of disk space for the file
VALUES.DAT"

10 OPEN "VALUES .DAT" FOR OUTPUT AS FILE #3%, FILESIZE 50%

Preextending a file has several advantages :

©

	

The system can create a complete directory structure for the file, instead of
allocating and mapping additional disk blocks when needed .

File Input-Output 12-41

© You reserve the needed disk space for your application. This ensures that
you do not run out of space when the program is running .

©

	

Preextension can make some of the file's disk blocks contiguous, especially
when used with the CONTIGUOUS keyword .

Note that preextension can be a disadvantage if it allocates disk space needed
by other users. The FILESIZE clause is ignored when BASIC-PLUS-2 opens
an existing file .

12.9.9 The NOSPAN Clause
By default, sequential files allow records to cross or span block boundaries .
If records cross block boundaries, RMS packs records into the file end-to-end
throughout the file, leaving space for control information and padding .
The NOSPAN clause overrides this default, forcing records to fit into individual
blocks (with space provided for control information and padding) . When block
boundaries restrict records, fixed-length records must be less than 512 bytes,
and variable-length records less than 510 bytes . This can waste extra bytes
at the end of each block . However, when records span block boundaries, RMS
writes records end-to-end without regard for block boundaries . For example,
if you specify NOSPAN, only four 120-byte records fit into a disk block. If you
do not specify NOSPAN, BASIC-PLUS-2 begins writing the fifth record in
the block, and continues writing that record in the next block . This minimizes
wasted disk space and improves the file's capacity, at the minimal expense of
increased processing overhead .

12 .9.10 The RECORDTYPE Clause
The RECORDTYPE clause lets you specify record formats that are compatible
with files created by other language processors . You can choose one of the
following qualifiers :
©

	

ANY
©

	

FORTRAN
©

	

LIST
©

	

NONE
The default for BASIC-PLUS-2 is LIST, which specifies carriage return
format. This is standard for ASCII text files and means that carriage control is
performed by RMS when writing the file to a unit-record device .

12-42 File Input-Output

If your program accesses a file created with a FORTRAN language processor,
you may need to use the FORTRAN qualifier. In the following example, the
FORTRAN qualifier sets the FORTRAN carriage control attribute in the RAT
field in the FAB . For more information on the FAB control structure, see
Section 12 .9.12. The first byte of the record is assumed to be the carriage
control information .
20 OPEN "FIL .DAT" FOR INPUT AS FILE #1%,

	

&
ORGANIZATION SEQUENTIAL, RECORDTYPE FORTRAN

If your program accesses a file created by an unknown language processor
or by DCL, the ANY qualifier causes BASIC-PLUS-2 to handle any record
attribute type . Specifying the ANY qualifier is the same as specifying LIST.
20 OPEN "FIL .DAT" FOR INPUT AS FILE #1%,

	

&
ORGANIZATION INDEXED, RECORDTYPE ANY

12.9.11 The TEMPORARY Clause
If you specify the TEMPORARY clause in the OPEN statement, BASIC-PLUS-2
deletes that file in any one of the following cases :

©

	

When you close the file
©

	

When the program aborts or exits

©

	

When your process terminates
No entry for this file is made in any directory .

12.9.12 The USEROPEN Clause
The USEROPEN clause specifies a MACRO-l1 routine that BASIC-PLUS-2
executes when you open or create a file . (You do not need to declare the
USEROPEN routine with an EXTERNAL FUNCTION statement .) This
procedure can then specify additional OPEN parameters for the file . For
example :
Example
100 OPEN "FILE .DAT" FOR INPUT AS FILE #2%,

	

&
ORGANIZATION INDEXED, USEROPEN Myopen, MAP ABC

The code in Myopen determines how the file FILE .DAT is opened .
A USEROPEN routine sets the File Access Block (FAB) and Record Access
Block (RAB) RMS control structures . A USEROPEN procedure should not
alter the allocation of these structures, although it can modify the contents of
many of the fields . You should not modify fields set by other OPEN statement
keywords. For example, you should use the RECORDSIZE clause, not a
USEROPEN routine, to set the record length .

File Input-Output 12-43

The allocation of the RMS control structures lasts only for the duration of the
OPEN statement. Therefore, your USEROPEN routine can retain only the
RAB address for use after the OPEN operation is complete . Note that any
additional structures that you allocate and link into the RMS structures must
be unlinked before exiting the USEROPEN .
The following steps describe the execution of the USEROPEN routine :
1 . BASIC-PLUS-2 performs normal OPEN statement processing up to

the point where it would call the RMS OPEN/CREATE and CONNECT
routines . BASIC-PLUS-2 then passes control to the USEROPEN routine .

2 . BASIC-PLUS-2 passes the address of the FAB as the first parameter and
the address of the RAB as the second parameter.

3 . The USEROPEN routine can modify the contents of the RMS control
structures, and it must call the RMS OPEN or RMS CREATE routine and
the RMS CONNECT routine and return the status in R0 .

Note
The USEROPEN routine may use any register; however, the stack
must be in the same state at routine exit as it was at routine entrance .
RMS STS status value must be passed back to the OTS in R0 .
You cannot use a USEROPEN routine to fill the RBF, UBF, BKS, or
CTX fields in the RAB . These fields are filled in after the USEROPEN
routine returns ; any values placed there by the USEROPEN routine
are overwritten .
Also, you must not set RMS Locate mode when using a USEROPEN
routine on sequential files .

The following example uses a USEROPEN routine to set the protection of a
file .

12-44 File Input-Output

EFFECT :

EXTERNALS :
.MCALL

	

$GNCAL,FAB$B,RABB,XABB,NAM$B,$FBCAL,$RBCAL
$GNCAL
$FBCAL
$RBCAL

USR : :

Example
.TITLE

	

USR

This routine will link a protection XAB to
the end of a linked list of XABs so that the
file will be created with a protection code different
from the default protection code for the disk it is on .

INPUT :
2(R5) - Address to the FAB
4(R5) - Address to the RAE

OUTPUT :
RO - the STS field of either the FAB or RAB

The file is created a connect is done if no errors occured

R1 - R3 are destroyed .

MOV

	

2(R5),R2

Walk down through the linked list
insert the PRO XAB at the end .

$FETCH

	

R3,XAB,R2
BEQ

	

2$
1$:

	

SFETCH

	

R1,NXT,R3
BEQ

	

3S
MOV

	

Rl,R3
BR

	

1$
2$:

	

$STORE

	

#PROCOD,XAB,R2
BR

	

4$
3$:

	

$STORE

	

#PROCOD,NXT,R3
4$:

	

$CREATE

	

R2
MOV

	

O$STS(R2),RO
BLE

	

5$
MOV

	

4(R5),Rl
$CONNECT R1
MOV

	

O$STS(R1),RO
5$:

	

RETURN

Get FAB pointer

of XABs (if any) and

Get the first XAB addr if any
BR if none
Get the next XAB on the list
If none left BR
R3 = current XAB address
Cont until done
Store our XAB address in the FAB
Cont
Store our XAB address in the Last XAB on list
Create the file
Get error status
Quit on error
Get rah RAB pointer
Connect the RAB-FAB
Get error status
RETURN

File Input-Output 12-45

12.9.13 The WINDOWSIZE Clause
The WINDOWSIZE clause specifies the number of block retrieval pointers in
memory for the file . The WINDOWSIZE clause is valid only on RSX systems .
WINDOWSIZE is not a file attribute, and therefore can be changed any time
you open a file .
Retrieval pointers are associated with the file header and point to contiguous
blocks on disk . By keeping retrieval pointers in memory, you can reduce
the I/O associated with locating a record because the operating system does
not have to access the file header for pointers as frequently . The number of
retrieval pointers in memory at any one time is determined by the system
default or by the value you supply in the WINDOWSIZE clause . The usual
default number of retrieval pointers is 7 . You can specify up to 127 retrieval
pointers .
On RSTS/E systems, the number of pointers in a window block is fixed at
7. Thus, you cannot use the WINDOWSIZE clause . Use the CLUSTERSIZE
clause to increase the number of contiguous blocks mapped by one retrieval
pointer.

12-46 File Input-Output

Set the protection code for the XAB

PROCOD :

.IF
XAB$B

DF
X$PRO

XB$PRO
RSX
60942 (R,RWED,R,R)

IFF
XSPRO 40 ; Set protection

ENDC
XAB$E
.END

13
Formatting Output

The PRINT USING statement controls the appearance and location of data on
a line of output. With it, you can create formatted lists, tables, reports, and
forms. This chapter describes how to format data with the PRINT USING
statement .

13 .1 Introduction
The ability to format data with the PRINT USING statement is useful because
the way in which BASIC-PLUS-2 displays data is often limited. For example,
a program may use floating-point numbers to represent dollars and cents .
The PRINT statement displays floating-point numbers with up to six digits
of accuracy, and places the decimal point anywhere in that 6-digit field .
In contrast, PRINT USING lets you display floating-point numbers in the
following ways :
©

	

Rounded to two decimal places
©

	

Vertically aligned on the decimal point
©

	

Preceded by a dollar sign
©

	

With commas every third digit to the left of the decimal point
Formatting monetary values in this way provides a much more readable
report. Another use for formatted numeric values might be to print checks on
a computer's line printer . PRINT USING lets you print numbers with a dollar
sign and an asterisk-filled field preceding the first digit .

PRINT USING also formats string data . With it you can left- and right justify
string expressions, or center a string expression over a specified column
position. Further, the PRINT USING statement can contain string literals .
These are strings that do not control the format of a print item, but instead are
printed exactly as they appear in the format string .

Formatting Output 13-1

13.2 Using Format Strings
Format strings determine the way in which items are to be printed in the
output file . Format strings can be the following :

©

	

String variables
©

	

String literals
©

	

Named string constants

©

	

A combination of the above
The PRINT USING statement must contain one or more format strings . Each
format string is made up of one format field . Each format field controls the
output of one print item and can contain only certain characters, as described
throughout the chapter.
The PRINT USING statement must also contain a list of items you want
printed. To format print items, you must separate them with commas or
semicolons . Separators between print items do not affect output format as they
do with the PRINT statement. However, if a comma or semicolon follows the
last print item, BASIC-PLUS-2 does not return the cursor or print head to the
beginning of the next line after it prints the last item in the list .

When BASIC-PLUS-2 encounters an invalid character within the current
format field, it automatically ends the format field. Therefore, you do not need
to delimit between format fields . The character that terminates the previous
field can be either a new format field or a string literal .

In the following example, the first three characters in the format string (###)
make up a valid numeric format field. The fourth character (A) is invalid in
a numeric format field ; therefore, BASIC-PLUS-2 ends the first format field
after the third character. BASIC-PLUS-2 continues to scan the format string,
searching for a character that begins a format field . The first such character
is the number sign at character position seven . Therefore, the characters at
positions four, five, and six are treated as a string literal . The characters at
positions seven, eight, and nine make up a second valid numeric format field .

Example
10

	

PRINT USING "###ABC###", 123, 345

13-2 Formatting Output

Output
123ABC345

When the statement executes, BASIC-PLUS-2 prints the first number in the
list using the first format field, then prints the string literal ABC, and finally
prints the second number in the list using the second format field . If you were
to supply a third number in the list, BASIC-PLUS-2 would reuse the first
format string. This is called reversion .
Example
10

	

PRINT USING "###ABC###", 123, 345, 564

Output
123ABC345
564ABC

Because any character not part of a format field is printed just as it appears
in the format field, you can use a space or multiple spaces to separate format
fields in the format string as shown in the following example .

Example
10

	

DECLARE STRING CONSTANT format_string
DECLARE SINGLE A,B
A = 2 .565
B = 100 .350
PRINT USING format_string, A, B, A, B

Output
2 .57

	

100 .35
2 .57

	

100 .35

When the BASIC-PLUS-2 compiler encounters the PRINT USING statement,
BASIC-PLUS-2 prints the value of A (rounded according to PRINT USING
rules), three spaces, then the value of B . BASIC-PLUS-2 prints the three
spaces because they are treated as a string literal in the format string . Notice
that when BASIC-PLUS-2 reuses a format string, it begins on a new line .

13 .3 Printing Numbers
With the PRINT USING statement, you can specify the following :

©

	

The number of digits to print, thus rounding the number to a given place
©

	

The decimal point location, thus vertically aligning numbers at the decimal
point

©

	

Special symbols, including trailing minus signs, asterisk-filled number
fields, floating currency symbols, embedded commas, and E notation

`-

	

© Debits and credits

Formatting Output 13-3

© Leading zeros or leading spaces
©

	

Blank-if-equal-to-zero fields
©

	

A special character that is to be printed as a literal
Unlike the PRINT statement, PRINT USING does not automatically print a
space before and after a number . Unless you reserve enough digit positions
to contain the integer portion of the number (and a minus sign, if necessary),
BASIC-PLUS-2 prints a percent sign (%) and displays the number in PRINT
format .

13.3 .1 Specifying the Number of Digits
You reserve places for digits by including a number sign (#) for each digit
position. If you print negative numbers, you must also reserve a place for the
minus sign .
Example

Output
123
12345
-678

If there are not enough digits to fill the field, BASIC-PLUS-2 prints spaces
before the first digit .
Example

Output
1

10
-1709
12345

If you have not reserved enough digits to print the fractional part of a number,
BASIC-PLUS-2 rounds the number to fit the field .

13-4 Formatting Output

10 PRINT USING "###",123 !Three places reserved
20 PRINT USING "#####",12345 !Five places reserved
30 PRINT USING

END
"####",-678 !Four places reserved

10 format_string$
PRINT USING format_string$, 1
PRINT USING format_string$, 10
PRINT USING format string$, -1709
PRINT USING format_string$,
END

12345

Example
10

	

PRINT USING "###",126 .7
PRINT USING "#",5 .9
PRINT USING "#",5 .4
END

Output
127
6
5

If you have not reserved enough places to print a number's integer portion,
BASIC-PLUS-2 prints a percent sign (%) as a warning symbol followed by the
number in PRINT statement format . After BASIC-PLUS-2 prints the number,
it completes the rest of the list in PRINT USING format .
In the following example, PRINT USING displays the first number. Because
there are not enough places to the left of the decimal point to display a 3-
digit number, BASIC-PLUS-2 prints the second number in PRINT statement
format, with a space before and after, but includes a warning sign (%) .

Example
10 PRINT USING 256

PRINT USING "##", 256
END

Output
256

256

13.3.2 Specifying Decimal Point Location
The decimal point's position in the format string determines the number of
reserved places on either side of it . If the print item's fractional part does not
use all of the reserved places to the right of the decimal point, BASIC-PLUS-2
fills the remaining spaces with zeros .

Example

Formatting Output 13-5

10 DECLARE STRING CONSTANT FM
20 PRINT USING FM, 15 .72
30 PRINT USING FM, 39 .3758
40 PRINT USING FM, 26

Output
15 .720
39 .376
26 .000

If there are more fractional digits than reserved places to the right of the
decimal point, BASIC-PLUS-2 rounds the number to fit the reserved places .
Note that there must be enough places reserved to the left of the decimal
point for the integer portion of the number . Otherwise, BASIC-PLUS-2 prints
the number in PRINT format preceded by a warning sign (%) . The following
example shows how PRINT USING rounds numbers when you specify decimal
point location .
Example
10

	

PRINT USING

	

25.789
PRINT USING

	

100 .2
PRINT USING "# .##", .999
END

Output
25 .79

100 .2
1 .00

BASIC-PLUS-2 always fills all reserved spaces to the left of the decimal point
with specified digits, spaces, or the minus sign .

Example
10

	

PRINT USING

	

5 .25
PRINT USING

	

-5 .25
PRINT USING
END

Output
5 .25

-5 .25
-5 .25

13.3.3 Printing Numbers with Special Symbols
Special symbols let you print numbers with trailing minus signs, asterisk-
fill fields, floating currency symbols, commas, or E notation. You can also
specify debits, credits, leading zeros, leading blanks, and blank-if-zero fields .
Table 13-1 summarizes these special characters .

13-6 Formatting Output

Table 13-1 Format Characters for Numeric Fields

Character

	

Effect on Format

number sign

	

Reserves a place for one digit .
decimal point (period)

	

Determines decimal point location and reserves a
place for the radix point .

comma Prints a comma before every third digit to the left
of the decimal point and reserves a place for one
digit or digit separator .

** two asterisks

	

Print leading asterisks before the first digit and
reserve places for two digits .

$$ two dollar signs

	

Print a currency symbol before the first digit . They
also reserve places for the currency symbol and
one digit . By default, the currency symbol is a
dollar sign . To change the currency symbol, see
Section 13 .3 .3 .3 .

AAAA four carets

	

Print a number in E (exponential) format and
reserve four places for E notation .

- minus sign Prints a trailing minus sign for negative numbers .
Printing a negative number in an asterisk-fill or
a currency field requires that the field also have a
trailing minus sign or credit/debit character .

<0> Zero in angle brackets

	

Prints leading zeros instead of leading spaces .

<%> Percent sign in angle

	

Prints all spaces in the field if the value of the print
brackets

	

item, when rounded to fit the numeric field, is zero.

<CD> CD in angle brackets

	

Prints credit and debit characters immediately
following the number. BASIC-PLUS-2 prints CR
for negative numbers and zero, and DR for positive
numbers .

_ Underscore

	

Specifies that the next character is a literal, not a
formatting character.

13.3.3.1 Commas
You can place a comma anywhere in a number field to the left of the decimal
point or to the right of the field's first character. A comma cannot start a
format field. BASIC-PLUS-2 prints a comma to the left of every third digit
from the decimal point . If there are fewer than four digits to the left of the
decimal point, BASIC-PLUS-2 omits the comma .

Formatting Output 13-7

Example

Output
10,000

759
$25,694 .30
**7,259
25,239 .00

13.3.3 .2 Asterisk Fill Fields
To print asterisks (*) before the first digit of a number, you must start the field
with two asterisks .
Example

Output
***1 .20
**27 .95
*107 .00
1007 .50

Note that the asterisks reserve two places as well as cause asterisk fill .
To specify a negative number in an asterisk-fill field, you must place a trailing
minus sign in the field . The trailing minus sign must be the last character in
the format string.
Example
10

	

DECLARE STRING CONSTANT FM
PRINT USING FM, 27 .95
PRINT USING FM, -107
PRINT USING FM, -1007 .5
END

13-8 Formatting Output

10 DECLARE STRING CONSTANT FM
20 PRINT USING FM, 1 .2
30 PRINT USING FM, 27 .95
40 PRINT USING FM, 107
50 PRINT USING FM, 1007 .5
60 END

10 PRINT USING "##,###",10000
PRINT USING "##,###",759
PRINT USING "$$#,### .##",25694 .3
PRINT USING "**#,###",7259
PRINT USING
END

"####,# .##",25239

Output
**27 .95
*107 .00-
1007 .50-

If you try to print a negative number in an asterisk fill field that does not
include a trailing minus sign, BASIC-PLUS-2 signals "PRINT USING format
error" (ERR=116) .
You cannot specify both asterisk-fill and zero-fill for the same numeric field .

13.3.3.3 Currency Symbols
To print a currency symbol before the first digit of a number, you must start
the field with two dollar signs . If the data contains both positive and negative
numbers, you must include a trailing minus sign .

Example

Output
$77 .44

$304 .55
2211 .42

$125 .60-
$127 .82

Note that the dollar signs reserve places for the currency symbol and only
one digit; the dollar sign is always printed . (Hence the warning indicator (%)
when the third PRINT USING statement executes .) Contrast this with the
asterisk-fill field, where BASIC-PLUS-2 prints asterisks only when there are
leading spaces .
If you try to print a negative number in a dollar sign field that does not
include either a trailing minus sign or the CR/DR formatting character,
BASIC-PLUS-2 signals "PRINT USING Format error" (ERR=116) .

Formatting Output 13-9

10 DECLARE STRING CONSTANT FM
PRINT USING FM, 77 .44
PRINT USING FM, 304 .55
PRINT USING FM, 2211 .42
PRINT USING FM, -125 .6
PRINT USING FM,
END

127 .82

13.3.3.4 Negative Fields
To allow for a field containing negative values, you must place a trailing minus
sign in the format field. A negative format field causes the value to be printed
with a trailing minus sign . You can also denote negative fields with CR and
DR. See Section 13.3 .3.8 for more information .

You must use a trailing minus or the CR/DR formatting character to indicate a
negative number in an asterisk fill or floating dollar sign field .
For fields with trailing minus signs, BASIC-PLUS-2 prints a minus sign after
negative numbers as shown in Example 1, and a space after positive numbers
as shown in Example 2 :
Example 1
10

	

!Standard field
PRINT USING "### .##",-10 .54
PRINT USING "### .##",10 .54
END

Output
-'0 .54
10 .54

Example 2
i0

	

!Fields with Trailing Minus Signs
PRINT USING "## .##-",-10 .54
PRINT USING "## .##-",10 .54
END

Output
"'0 .54-
10 .54

13.3.3.5 E (Exponential) Format
To print a number in E format, you must place four carets (AAAA) at the end
of the field. The carets reserve space for the following :
©

	

The capital letter E
©

	

A plus or minus sign (which indicates a positive or negative exponent)
©

	

An exponent (the exponent is 2 digits for single and double)
In exponential format, BASIC-PLUS-2 does not pad the digits to the left of the
decimal point. Instead, the most significant digit shifts to the leftmost place of
the format field, and the exponent compensates for this adjustment .

13-10 Formatting Output

Example
10

	

PRINT USING
PRINT USING "### .## ^^^",1000
PRINT USING " .##^"^^",5
END

Output
500 .00E-02
100 .00E+01
.50E+01

If you use fewer than four carets, the number does not print in E format ;
the carets print as literal characters . If you use more than four carets,
BASIC-PLUS-2 prints the number in E format and includes the extra carets
as a string literal .
Example
10

	

PRINT USING "### .##

	

",5
20

	

PRINT USING "### .##^^^^^",5
30

	

END

Output
5 .00^^^

500 .00E-02^

You must reserve a place for a minus sign to the left of the decimal
point to display negative numbers in exponential format. If you do not,
BASIC-PLUS-2 prints a percent sign (%) .
You cannot use exponential format with asterisk fill, floating dollar sign, or
trailing minus formats.

13.3.3.6 Leading Zeros
To print leading zeros in a numeric field, you must start the format field with a
zero enclosed in angle brackets (<0>) . These characters also reserve one place
for a digit .
Example
10

	

DECLARE STRING CONSTANT FM = "<0>#### .##"
PRINT USING FM, 1 .23, 12 .34, 123 .45, 1234 .56, 12345 .67

Output
00001 .23
00012 .34
00123 .45
01234 .56
12345 .67

When you specify zero-fill, you cannot specify asterisk-fill or floating-dollar sign
format for the same field .

Formatting Output 13-11

13.3.3.7 Blank-If-Zero Fields
To make BASIC-PLUS-2 print a blank field for values which round to zero,
you must start the numeric field with a percent sign (%) enclosed in angle
brackets (<%>) .
In the following example, PRINT USING displays spaces in each reserved
position for the second and third items in the list . The value of the second item
is zero, while the value of the third item becomes zero when rounded to fit the
numeric field .
Example
10

	

DECLARE STRING CONSTANT FM = "<%>#### .##"
20

	

PRINT USING FM, 1000, 0, .001, -5000

Output
1000 .00

-5000

13.3.3.8 Debits and Credits
You can have BASIC-PLUS-2 use credit and debit notation to differentiate
positive and negative numbers . To do this, you place <CD> (Credit/Debit) at
the end of the numeric format string . This causes BASIC-PLUS-2 to print CR
(Credit Record) after negative numbers and zero, and DR (Debit Record) after
positive numbers .
Example
10

	

DECLARE STRING CONSTANT FM = "$$#### ##<cd>"
20

	

PRINT USING FM, -552 .35, 200, -5

Output
$552 .35CR
$200 .00DR

$5 .00CR

You cannot use a trailing minus sign and Credit/Debit formatting in the same
numeric field .

13 .4 Printing Strings
You can format strings with the PRINT USING statement when you specify
the following :
©

	

The number of characters
©

	

Left justified format
©

	

Right justified format

13-12 Formatting Output

© Centered format

©

	

Extended field format

Table 13-2 summarizes the format characters and their function . Note only
uppercase letter format characters are valid in BASIC-PLUS-2 .

Table 13-2 Format Characters for String Fields

Character

	

Effect on Format

single quotation mark

	

Starts the string field and reserves a place for one
character.

L (uppercase)

	

Left-justifies the string and reserves a place for one
character.

R (uppercase)

	

Right justifies the string and reserves a place for one
character.

C (uppercase)

	

Centers the string in the field and reserves a place for
one character.

E (uppercase) Left-justifies the string ; expands the field, as necessary,
to print the entire string; and reserves a place for one
character.

\ \ two backslashes

	

Reserves n+2 character positions, where n is the
number of spaces between the two backslashes . PRINT
USING left justifies the string in this field . This
formatting character is included for compatibility with
BASIC-PLUS . It is recommended that you do not use
this type of field for new program development .

! exclamation point

	

Creates a one-character field . The exclamation point
both starts and ends the field . This formatting
character is included for compatibility with BASIC-
PLUS. It is recommended that you do not use this type
of field for new program development. Instead, use a
single quotation mark to create a one-character field .

You must start string format fields with a single quotation mark (') that
reserves a space in the print field, followed by one of the following :

©

	

A contiguous series of uppercase Ls for left justified output

©

	

A contiguous series of uppercase Rs for right-justified output

©

	

A contiguous series of uppercase Cs for centered output

©

	

A contiguous series of uppercase Es for extended field output

Formatting Output 13-13

BASIC-PLUS-2 ignores the overflow of strings larger than the string format
field except for extended fields . For extended fields, BASIC-PLUS-2 extends
the field to print the entire string . If a string to be printed is shorter than
the format field, BASIC-PLUS-2 pads the string field with spaces. For more
information on extended fields, see Section 13 .4 .4 .
A string field containing only a single quotation mark is a one-character
string field . BASIC-PLUS-2 prints the first character of the string expression
corresponding to a one-character string field and ignores all following
characters .
Example
10

	

PRINT USING "'","ABODE"
END

Output
A

13.4.1 Left-Justified Format
BASIC-PLUS-2 prints strings in a left justified field starting with the
left-most character. BASIC-PLUS-2 pads shorter strings with spaces and
truncates longer strings on the right to fit the field .
A left-justified field contains a single quotation mark followed by a series of Ls .
Example
10

	

PRINT USING "'LLLLLL","ABCDE"
PRINT USING '- LLLL","ABC"
PRINT USING "'LLLLL","12345678"
END

Output
ABCDE
ABC
123456

13.4.2 Right-Justified Format
BASIC-PLUS-2 prints strings in a right-justified field starting with the right-
most character. BASIC-PLUS-2 pads the left side of shorter strings with
spaces. If a string is longer than the field, BASIC-PLUS-2 left-justifies and
truncates the right side of the string .
A right justified field contains a single quotation mark (') followed by a series
of Rs .

1 3-14 Formatting Output

Example
10

	

DECLARE STRING CONSTANT right-justify = "'RRRRR"
PRINT USING right_justify,"ABCD"
PRINT USING right_justify,"A"
PRINT USING right_justify,"STUVWXYZ"
END

Output
ABCD

A
STUVWX

13.4.3 Centered Fields

BASIC-PLUS-2 prints strings in a centered field by aligning the center of
the string with the center of the field. If BASIC-PLUS-2 cannot exactly
center the string, as is the case for a 2-character string in a 5-character field,
BASIC-PLUS-2 prints the string one character off center to the left .

A centered field contains a single quotation mark followed by a series of Cs .

Example
10

	

DECLARE STRING CONSTANT center = "'CCCC"
20

	

PRINT USING center, "A"
PRINT USING center, "AB"
PRINT USING center, "ABC"
PRINT USING center, "ABCD"
PRINT USING center, "ABCDE"

30

	

END

Output
A

AB
ABC

ABCD
ABCDE

If there are more characters than places in the field, BASIC-PLUS-2 left-
justifies and truncates the string on the right .

13 .4.4 Extended Fields

An extended field contains a single quotation mark followed by one or more Es .
The extended field is the only field that automatically prints the entire string .
In addition, note the following :
©

	

If the string is smaller than the format field, BASIC-PLUS-2 left-justifies
the string as in a left-justified field .

Formatting Output 13-15

© If the string is longer than the format field, BASIC-PLUS-2 extends the
field and prints the entire string .

Example
10

	

PRINT USING "'E", "THE QUICK BROWN"
PRINT USING "'EEEEEEE', "FOX"
END

Output
THE QUICK BROWN
FOX

The following example uses left justified, right justified, centered, and extended
fields .

Example
10 PRINT USING

PRINT USING
PRINT USING
PRINT USING
PRINT USING
PRINT USING
PRINT USING
PRINT USING
PRINT USING
PRINT USING
PRINT USING
PRINT USING
PRINT USING
PRINT USING
END

Output
THIS TEXT
SHOULD PRINT
AT LEFT MARGIN
1,2,3
1,2,3

1,2
1
A

ABC
ABCDE

ABCDEFG
ABCDEFGHI
YOU ONLY SEE PART
YOU CAN SEE ALL OF THE LINE WHEN EXTENDED

13-16 Formatting Output

' - LLLLLLLLL","THIS TEXT"
"'LLLLLLLLLLLLLL","SHOULD PRINT"
"'LLLLLLLLLLLLLL", 'AT LEFT MARGIN'
'- RRRR" "1 2 3 4"
"'RRRR",'1,2,3'
'- RRRR' "1,2"
"'RRRR","1"
"'CCCCCCCCC","A"
"'CCCCCCCCC","ABC"
"'CCCCCCCCC","ABCDE"
"'CCCCCCCCC","ABCDEFG"
"'CCCCCCCCC","ABCDEFGHI"
"'LLLLLLLLLLLLLLLLL',"YOU ONLY SEE PART OF THIS"
"'E","YOU CAN SEE ALL OF THE LINE WHEN EXTENDED"

13.5 Error Conditions
There are two types of PRINT USING error conditions : error and warning .
BASIC-PLUS-2 signals an error if any of the following conditions exist :

©

	

The format string is not a valid string expression

©

	

There are no valid fields in the format string

©

	

You specify a string for a numeric field
©

	

You specify a number for a string field
©

	

You separate the items to be printed with characters other than commas or
semicolons

©

	

A format field contains an invalid combination of characters
©

	

You print a negative number in a floating dollar sign or asterisk-fill field
without a trailing minus sign

BASIC-PLUS-2 issues a warning if a number does not fit in the field . If a
number is larger than the field allows, BASIC-PLUS-2 prints a percent sign
(%) followed by the number in the standard PRINT format and continues
execution .
If a string is larger than any field other than an extended field,
BASIC-PLUS-2 truncates the string and does not print the excess characters .
If a field contains an invalid combination of characters, BASIC-PLUS-2 does
not recognize the first invalid character or any character to its right as part of
the field . These characters may form another valid field or be considered text .
If the invalid characters form a new valid field, a fatal error condition may
arise if the item to be printed does not match the field .
The following examples demonstrate invalid character combinations in numeric
fields .
Example 1
10

	

PRINT USING "$$**## .##",5 .41,16 .30

$$ forms a complete field and **## .## forms a second valid field . The first
number (5 .41) is formatted by the first valid field ($$) . It prints as "$5". The
second number (16 .30) is formatted by the second field (**## .##) and prints as
44** 16 .30" .
Output 1
$5**16 .30

Formatting Output 13-17

Example 2
10

	

PRINT USING "## .#^""",5 .43E09

Because the field has only three carets instead of four, BASIC-PLUS-2 prints
a percent sign and the number, followed by the AAA ©

Output 2
% .543E+10^^^

Example 3
10

	

PRINT USING "'LLEEE","VWXYZ"

You cannot combine two letters in one field . BASIC-PLUS-2 interprets EEE
as a string literal .
Output 3
VWXEEE .

13-18 Formatting Output

Compiler directives are instructions that tell BASIC-PLUS-2 to perform
certain operations as it translates a source program . This chapter describes
how to control program compilation using compiler directives .

14 .1 Introduction
With compiler directives, you can do the following :
©

	

Place program titles and subtitles in the header that appears on each page
of the listing file

©

	

Place a program version identification string in both the listing file and the
object module

©

	

Start or stop the inclusion of listing information for selected parts of a
program

©

	

Start or stop the inclusion of cross-reference information for selected parts
of a program

©

	

Include BASIC-PLUS-2 code from another source file or a text library

©

	

Display a message at compile time
©

	

Conditionally compile parts of a program

©

	

Terminate compilation
All compiler directives :
©

	

Must begin with a percent sign (%)

©

	

Can be preceded by an optional line number
©

	

Must be the only text on the line (except for %IF-%THEN-%ELSE-%END
%IF)

©

	

Cannot appear within a quoted string
©

	

Cannot follow an END, END SUB, or END FUNCTION statement

Compiler Directives
14

Compiler Directives 14-1

14.2 Controlling the Compilation Listing
Listing directives let you control the content and appearance of the compilation
listing . There are eight compiler listing directives :

©

	

%TITLE (Places a title string on the first line of the listing header)

©

	

%SBTTL (Places a subtitle string on the second line of the listing header)
©

	

%IDENT (Places an identification string on the second line of the listing
header and within the object module)

©

	

%PAGE (Causes BASIC-PLUS-2 to skip to top-of-form in the output
listing)

©

	

%NOLIST (Causes BASIC-PLUS-2 to stop accumulating information for
the output listing)

©

	

%LIST (Causes BASIC-PLUS-2 to resume accumulating information for
the output listing)

©

	

%NOCROSS (Causes BASIC-PLUS-2 to stop accumulating cross-reference
information for the output listing)

©

	

%CROSS (Causes BASIC-PLUS-2 to resume accumulating cross-reference
information for the output listing)

These directives are described in the following sections .

These listing control directives have no affect if no source program listing is
being produced . Similarly, the %CROSS and %NOCROSS directives have no
affect if no cross-reference listing is being produced . However, the %IDENT
directive places the specified text in the object module whether or not a listing
is produced. For more information on how these directives affect your source
code, see the BASIC-PLUS-2 Reference Manual .

14.2.1 The %TITLE and %SBTTL Directives
The %TITLE directive lets you specify a line of text that appears on the first
line of every page in the compilation listing. This text line is a quoted string of
up to 48 characters and normally contains the source program title and other
information .
If the %TITLE directive is the first source text in a module, then the quoted
string appears in the first line of every page of the compilation listing .
Otherwise, the quoted string appears in the first line of every subsequent
page in the compilation listing . That is, if BASIC-PLUS-2 encounters a
%TITLE directive after it has begun creating a page in the output listing, the

14-2 Compiler Directives

title information will not appear on that page . Rather, it appears on all of the
following pages until it encounters another %TITLE directive .

The quoted string appears in the first line of the listing header . %TITLE must
appear on its own line . For example :
10

	

%TITLE "File OPEN Subprogram -- Author Hugh Ristics"
SUB FILSUB (STRING F -NAME)

The %SBTTL directive lets you specify a line of text that appears on the
second line of every page in the compilation listing (beneath the title) . If
BASIC-PLUS-2 encounters a %SBTTL directive after it has begun creating
a page in the output listing, the subtitle information will not appear on that
page . Rather, it appears on all following pages until it encounters another
%SBTTL or %TITLE directive . If you want the subtitle to appear on the first
page, the %SBTTL directive must appear directly after the %TITLE directive .

Any number of %SBTTL directives can appear in a source file ; thus, you can
use subtitle text to identify parts of the source program . As in %TITLE, the
text you use in %SBTTL must be a quoted string not exceeding 48 characters .
The quoted string appears in the first line of the listing header . Note, however,
that title and subtitle information only appears on listing pages that contain
the actual source code .
The following example shows the use of both %TITLE and %SBTTL directives .
The first line of the listing's first page contains "Payroll Program" and
the second line contains "Constant Declarations ." When BASIC-PLUS-2
encounters the %SBTTL directive, the second line on each subsequent page
becomes "Subroutines." When BASIC-PLUS-2 encounters the %SBTTL
directive, the second line on each subsequent page becomes "Error Handler ."

Example
10

	

%TITLE "Payroll Program"
%SBTTL "Constant Declarations"

%SBTTL "Subroutines"

%SBTTL "Error Handler"

Compiler Directives 14-3

14.2 .2 The %IDENT Directive
The %IDENT directive identifies the version of a program module . The
identification text must be a quoted string of up to 6 characters. The
information contained within the identification text appears in the listing
file and the object module . Thus, the map file created by the task builder also
contains this information .
The identification text appears in the first 6 character positions of the second
line on each subsequent listing page . For instance, in the following example,
the %IDENT information appears as the first entry on the second line of the
listing . The information is also included in the object module if the compilation
produces one . If the task builder generates a map listing, this information also
appears there .
Example
10

	

%IDENT "V5 .3"
SUB PAY

If your source module contains multiple %IDENT directives, BASIC-PLUS-2
signals a warning and uses the version specified in the first %IDENT directive .

14.2.3 The %PAGE Directive
The %PAGE directive causes BASIC-PLUS-2 to begin a new page in the listing
file. In the following example, the %PAGE directives cause BASIC-PLUS-2
to skip to a new page in the listing file just before each new subtitle . Note
that, in order to have title and subtitle information appear in the heading of
each page, you cannot place a line number between the %PAGE, %TITLE, and
%SBTTL directives .

Note
You can use multiple %TITLE directives in a single source file ;
however, whenever BASIC-PLUS-2 encounters a %TITLE directive,
the %SBTTL information is set to the null string . Therefore, if you
want to display subtitle information, each new %TITLE directive
should be accompanied by a new %SBTTL directive.

14-4 Compiler Directives

Example
10

	

%TITLE "Payroll Program"
%SBTTL "Constant Declarations"

%PAGE
%SBTTL "Subroutines"

%PAGE
%SBTTL "Error Handler"

14.2.4 The %LIST and %NOLIST Directives
The %LIST directive causes BASIC-PLUS-2 to resume adding information
to the listing file, while the %NOLIST directive causes BASIC-PLUS-2
to stop adding information to the listing file . %LIST and %NOLIST are
complementary directives . Therefore, you can control which parts of the source
program are to be listed .
In the following example, as soon as BASIC-PLUS-2 encounters the %LIST
directive, it resumes adding new information to the listing file .

Compiler Directives 14-5

Example
10

	

%TITLE "Payroll Program"
%SBTTL "Constant Declarations"

%NOLIST

%LIST

%PAGE
%SBTTL "Subroutines"

%PAGE
%SBTTL "Error Handler"

If you have not requested the creation of a compilation listing, the %LIST and
%NOLIST directives have no effect .
If a program line contains a syntax error, BASIC-PLUS-2 overrides the
%NOLIST directive for that line and produces the normal error diagnostics in
the listing file

14.2.5 The %CROSS and %NOCROSS Directives
The %CROSS directive causes BASIC-PLUS-2 to resume adding cross-
reference information while the %NOCROSS directive causes BASIC-PLUS-2
to stop adding cross-reference information to the listing file . Therefore, you can
specify that only certain parts of the source program are to be cross-referenced .
In the following example, as soon as BASIC-PLUS-2 encounters the %CROSS
directive, it resumes adding new cross-reference information to the listing file .

14-6 Compiler Directives

Example
10

	

%TITLE "Payroll Program"
20

	

%SBTTL "Constant Declarations"

30

	

%NOCROSS

%CROSS

40

	

%PAGE
%SBTTL "Subroutines"

%PAGE
%SBTTL "Error Handler"

If you have not requested the creation of a cross-reference listing, the %CROSS
and %NOCROSS directives have no effect .

14.3 Accessing External Source Files (%INCLUDE)
The %INCLUDE directive lets you access BASIC-PLUS-2 source text from a
file into the source program . The line on which a %INCLUDE directive resides
can be continued, but cannot contain any other directives or statements .

If you are including a source text file, you must supply a file specification . If
you do not provide a file type, BASIC-PLUS-2 uses the default type B2S . For
example :
10

	

%INCLUDE "SAMPLE .B2S"

The source files accessed with %INCLUDE cannot contain line numbers . This
requirement means that all statements in the accessed file are associated with
the BASIC-PLUS-2 line containing the %INCLUDE directive . A file accessed
by %INCLUDE can itself contain a %INCLUDE directive .
When a program is compiled, BASIC-PLUS-2 inserts the included text at the
point at which it encounters the %INCLUDE directive. The compilation listing
identifies any text obtained from an included file by placing a mnemonic in the
first character position of the line in which the text appears .

Compiler Directives 14-7

© In specifies text that was accessed from a source file .

©

	

I tells you that the text was accessed with an %INCLUDE directive .

©

	

n is a number that tells you the nesting level of the included text .

The %INCLUDE directive is useful when you want to share code among
multiple program modules . To do this, you must first create a file which
contains the shareable code, then include that file in all the modules that
require it . Thus, you reduce the chance of a typographical error.

You can prevent the %INCLUDE file code from appearing in the compilation
listing by preceding the %INCLUDE directive with a %NOLIST directive .

14.4 Controlling Compilation
BASIC-PLUS-2 lets you control the compilation of a program by creating and
testing lexical constants . You create and assign values to lexical constants with
the %LET directive . These constants are always WORD integers .

You control the compilation by using the %IF-%THEN-%ELSE-%END %IF
directive to test these lexical constants . Thus, you can conditionally :

©

	

Supply different values for program variables and constants

©

	

Skip over part of a program
©

	

Abort a compilation
©

	

Include BASIC-PLUS-2 source code from another file
©

	

Display informational messages during the compilation
BASIC-PLUS-2 also supplies the lexical built-in function %VARIANT that
can be used to conditionally control compilation . For more information, see
Section 14.4.2 .

%IF-%THEN-%ELSE-%END %IF uses lexical expressions to determine whether
to execute directives in the %THEN clause or the %ELSE clause . The following
sections describe the use of :

©

	

Lexical constants and expressions (%LET Directive)

©

	

%VARIANT

©

	

%ABORT

©

	

%PRINT

©

	

%IF-%THEN-%ELSE-%END %IF

14-8 Compiler Directives

14.4 .1 Lexical Constants and Expressions (%LET)
The %LET directive creates and assigns values to lexical constants . Lexical
constants are always WORD integers . These constants control the execution of
the %IF-%THEN-%ELSE-%END %IF directive .
All lexical constants must be created with %LET before they can be used in a
%IF-%THEN-%ELSE-%END %IF, and each lexical constant must be created
with a separate %LET directive . All lexical constant names must also be
preceded by a percent sign and cannot end with a dollar sign or percent sign .
A lexical expression can be any of the following :
©

	

A lexical constant
©

	

An integer literal
©

	

A lexical built-in function (%VARIANT)
©

	

Any combination of these, separated by logical, relational, or arithmetic
operators

The %LET directive lets you create constants that control conditional
compilation. For example :
10

	

%LET %debug on = 0%
See Section 14 .4.5 for an example of using %LET with %IF-%THEN-%ELSE .

14.4.2 The %VARIANT Directive
The %VARIANT directive is a built-in lexical function that returns an integer .
The value of this returned integer is specified when you use the /VARIANT
qualifier with the COMPILE, SET, or RUN commands in the BASIC-PLUS-2
environment. The default value for the %VARIANT function is zero . See
Section Section 14 .4.5 for an example of controlling compilations with the
%VARIANT directive .

14.4.3 The %ABORT Directive
The %ABORT directive terminates the compilation and displays a message you
provide .
The text must be a quoted string literal . This information is displayed on your
terminal and in the compilation listing if one is requested . BASIC-PLUS-2
stops the compilation and terminates the listing file as soon as it encounters a
%ABORT directive. This means that BASIC-PLUS-2 does not perform syntax
checking on the remainder of the program . See Section 14 .4.5 for an example
of using %ABORT.

Compiler Directives 14-9

14.4.4 The %PRINT Directive
The %PRINT directive allows you to insert a message into your source code
that the BASIC-PLUS-2 compiler displays at compilation time .
The text must be a quoted string literal . This information is displayed on your
terminal and in the compilation listing if one is requested . BASIC-PLUS-2
prints the message specified as soon as it encounters a %PRINT directive . See
Section 14 .4.5 for an example of using %PRINT.

14.4.5 The %IF-%THEN-%ELSE-%END %IF Directive
The %IF-%THEN-%ELSE-%END %IF directive lets you conditionally do the
following :
©

	

Compile source text
©

	

Execute another compiler directive
This directive differs from all others in that it can appear anywhere in a
program where a space is allowed, except within a quoted string .
You must include %END %IF. Otherwise, the rest of the source program
becomes part of the %THEN or %ELSE clause . You must also include a lexical
expression and some BASIC-PLUS-2 source code .
The truth or falsity of the lexical expression determines whether
BASIC-PLUS-2 compiles the source code in the %THEN clause or the %ELSE
clause. If the lexical expression is true, BASIC-PLUS-2 neither compiles nor
checks the syntax of source code in the %ELSE clause. If the lexical expression
is false, BASIC-PLUS-2 neither compiles nor checks the syntax of source code
in the %THEN clause .
The following example also uses the %VARIANT directive, which returns the
value set by the SET VARIANT command :
Example
1 0

	

%IF (%VARIANT = 2%)
%THEN DECLARE LONG int array(100)
%ELSE DECLARE WORD int array(100)

%END %IF

Because %IF can appear within a program line, you can express the same
directive this way:
10

	

DECLARE %IF (%VARIANT=2%) %THEN LONG %ELSE WORD %END %IF int array(100)

14-10 Compiler Directives

A %THEN or %ELSE clause can also contain other compiler directives . For
example, the following program creates the lexical constant %my_constant
and assigns it a value of eight . The %IF directive evaluates the conditional
expression ((%my_constant + %VARIANT) >= 10%) . If this expression is true,
BASIC-PLUS-2 executes the %THEN clause, aborting the compilation and
issuing an error message. If the expression is false, the next conditional
expression ((%my_constant + %VARIANT) < 10%) is evaluated . If this
expression is true, BASIC-PLUS-2 then executes the %THEN clause, printing
the specified message . If the expression is false, BASIC-PLUS-2 continues to
compile your program without aborting the compilation .

Example
10

	

%LET omy_constant = 8%
%IF ((%my_constant + %VARIANT) >= 10%)%THEN

%ABORT "Cannot compile with VARIANT >= 2"
%ELSE %PRINT "Successful Compilation"

%END %IF

The compilation listing shows you which clause was actually compiled .

Compiler Directives 14-11

The process of detecting and correcting errors that occur during program
execution is called error handling . This chapter describes BASIC-PLUS-2
default error handling and how to handle run-time errors with your own error
handlers .

15 .1 Error Handlers
An error .handler is a block of code that receives program control in the event
of an error or unexpected event. If you do not supply a user-written error
handler, the BASIC-PLUS-2 error handler usually receives program control
when an error occurs (there are some types of errors that are handled only by
the operating system) .
The severity of an error determines whether the program aborts when the
error occurs . There are four severity levels of errors :

©

	

Information
©

	

Warning
©

	

Error (also called trappable)
©

	

Fatal
Warning and information errors allow the program to continue executing ; fatal
errors always terminate program execution. Trappable errors can have either
result, depending on the error handler in effect. If the default BASIC-PLUS-2
error handler is in effect, trappable errors cause the program to abort .
In a BASIC-PLUS-2 program, there are many possible levels of error
handling. The following software components and program modules can each
have an error handler :
©

	

Mainline code
©

	

User-written subprograms or external functions
©

	

User-defined functions (DEF functions)

15
Error Handling

Error Handling 15-1

© The BASIC-PLUS-2 system
You can supply your own error handler for each of the first three components .
The BASIC-PLUS-2 error handler is the default if you do not supply one .
When an error occurs in your program, BASIC-PLUS-2 stops executing the
program and transfers control to the BASIC-PLUS-2 error handler . If your
program includes a user-written error handler, and the error is trappable, the
BASIC-PLUS-2 error handler then transfers control to the user error handler .
However, if your program does not include a user error handler or the error
is a nontrappable or fatal error, the BASIC-PLUS-2 error handler retains
control .
The following sections describe both default and user-written error handlers .

15 .1 .1 BASIC-PLUS-2 Default Error Handling
BASIC-PLUS-2 provides default run-time error handling for all programs .
If you do not provide your own error handlers, the default error handling
procedures remain in effect throughout program execution .

When an error occurs in your program and the program does not contain a
user-written error handler, BASIC-PLUS-2 diagnoses the error and displays
a message telling you the nature and severity of the error, and the program
line and module that caused it . The severity of an error determines whether or
not the program aborts. When default error handling is in effect, fatal errors
always terminate program execution, but program execution continues when
warning and informational errors occur.

15.1 .2 User-Written Error Handlers
It is good programming practice to anticipate certain errors and provide your
own error handlers for them. User-written error handlers allow you to handle
errors for a specified block of program statements as well as complete program
units. Any program module can contain one or more error handlers. These
error handlers test the error condition and include statements to be executed if
an error occurs .
A user-written error handler can be used to do the following :

©

	

Identify the error
©

	

Indicate which program unit or statement caused the error

©

	

Take appropriate action based on the nature of the error

©

	

Clear the error condition

©

	

Continue program execution

15-2 Error Handling

In BASIC-PLUS-2, only one error can be handled at a time . If an error is
pending and a second error occurs, program execution always terminates
immediately. Therefore, one of the most important functions of a user-written
error handler is to clear the error condition so that subsequent errors can also
be handled .
To transfer control to a user-written error handler, you specify a line number or
label with the ON ERROR GOTO statement . When an error occurs, the block
of code at the line number or label is executed .
The error handler can use conditional expressions to test an error and branch
accordingly. In the following example, the error handler tests for two types
of errors : an error that occurs when a record is longer than the length of the
buffer, and an error generated by the error "End of file" (ERR=11) .

Example
50

	

ON ERROR GOTO 19000

19000

	

SELECT ERR
CASE 161

PRINT "Record too long"
RESUME 650

CASE 11
PRINT "End of file"
RESUME 32000

CASE ELSE
ON ERROR GOTO 0

END SELECT
32000

	

CLOSE #1%
32767

	

END

Customarily, the ON ERROR GOTO statement is positioned before any other
executable statement, and an error handler usually starts at line 19000 .
The ON ERROR GOTO statement remains in effect after your program
successfully handles an error. Therefore, if another error occurs in your
program, control once again transfers to the specified line . If an error occurs
within an error handler itself, control passes to the BASIC-PLUS-2 default
error handler and program execution ends, usually with the initial error only
partially processed. To avoid the possibility of your error handler causing an
error, your error handler should be as simple as possible .
Two other common errors you can trap with error handlers are "Division by 0"
and "Data format error." For instance, if your program is reading data from a
file when one of these errors occurs, you can have it print an error message and
skip to the next item ; if the program is reading data that the user enters, you

Error Handling 15-3

can display a "Try again" message and reexecute the program lines requesting
input .
Normally, you cannot trap fatal errors in an error handler, nor can you
trap errors occurring in non-BASIC modules . However, in BASIC-PLUS-2
you can trap certain errors (for example, Ctrl/C interrupts) occurring in
a MACRO-11 subprogram . See Chapter 11 for more information about
MACRO-11 subprograms .

15 .2 Identifying Errors
BASIC-PLUS-2 provides several built-in functions that return information
about errors . You can use these functions inside your error handlers to
get information about an error and then handle the error based on that
information . These functions are as follows :

©

	

ERR
©

	

ERL
©

	

ERN$
© ERT$
The following sections describe these functions .

15.2.1 Determining the Error Number (ERR)
The ERR function returns the number of the last error that occurred . If an
error does not occur, ERR is undefined .
The error handler in the following example transfers control to line 420 when
the program generates the error "Record already exists ." Line 19000 prints the
value returned by the ERR function each time BASIC-PLUS-2 traps an error .

Example
19000
19010

PRINT "ERROR NUMBER " ;ERR
SELECT ERR
!Record already exists
CASE 153

PRINT "Choose
RESUME 420

CASE ELSE
ON ERROR GO BACK

END SELECT

new record"

ERR remains defined as the number of the last error after control leaves
the error handler. However, it is poor programming practice to refer to this
variable outside the scope of an error handler because it can be changed at any
time by an asynchronous error.

15-4 Error Handling

See B for a list of run-time errors and their numbers .

15.2 .2 Determining the Error Line Number (ERL)
After your program generates an error, the ERL function returns the line
number of the signaled error. The results of ERL are undefined if an error does
not occur or if an error occurs in a subprogram not written in BASIC-PLUS-2 .
The ERL function, like the ERR function, allows you set up branching to one of
several paths in the code .
The following error handler continues execution at different points in the
program, depending on the value of ERL .
Example
80

	

ON ERROR GOTO 19000
DECLARE INTEGER CONSTANT TRUE

19000

	

SELECT TRUE
CASE (ERR = 11) AND (ERL = 790)
!Is error end-of file at line 790?

PRINT "Completed"
RESUME 32000

CASE (ERR = 149) AND (ERL = 80)
!Is error not-at-end-of-file on line 80?

PRINT "CHECK ACCESS MODE"
RESUME 32000

CASE ELSE
!Let BASIC--PLUS--2 handle any other errors

ON ERROR GOTO 0
END SELECT

32000

	

CLOSE #5
32767

	

END

In this example, if the error is "End of file" (ERR=11), the handler closes the
file and exits . If the error is "Not at end of file" (ERR=149), the handler returns
control to line 80 . If any other error occurs, the error handler passes control to
the BASIC-PLUS-2 default error handler .

ERL remains defined as the line number of the last occurring error after
control leaves the error handler. However, it is poor programming practice to
refer to this variable outside the scope of an error handler.

Note that if your program references the ERL function and you compile it with
the /NOLINE qualifier, BASIC-PLUS-2 signals the message "ERL overrides
/NOLINE" and the program is compiled with the /LINE qualifier .
If an error occurs in a subprogram, the value returned by ERL is the
subprogram line number where the error was detected .

Error Handling 15-5

If you specify an ON ERROR GO BACK statement in a subprogram, control is
transferred to the error handler of the calling program when an error occurs .
For execution to continue, the RESUME statement in the calling program must
reference the line number of the CALL statement that calls the subprogram .
This is because you cannot specify a line number outside the current program
module with a RESUME statement .

15 .2 .3 Determining Where the Error Occurred (ERN$)
The ERN$ function returns the name of the main program, SUB or
FUNCTION subprogram or DEF function in which the error was detected .
The results of ERN$ are undefined until the program generates an error.

In the following example, control passes to the main program for error
handling if the error occurs in the module SUBARC. If the error is "Record
already exists," execution resumes at line 32000 . If any other error occurs,
control passes to BASIC-PLUS-2 error handler .
Example
19000

	

IF ERN$ = "SUBARC"
THEN PRINT "Error is " ;ERR

END IF

PRINT "Returning to main program for error handling"
ON ERROR GO BACK

19010

	

PRINT "Program module generating error is " ;ERN$

19020

	

IF ERR = 153%
THEN RESUME 32000

ELSE ON ERROR GO TO 0
END IF

32000

	

CLOSE #2%
32767

	

END

15.2.4 Determining the Error Message Text (ERT$)
The ERT$ function returns the message text associated with a specified error
number. The ERT$ function is not limited to the scope of the error handler ;
you can access the ERT$ function at any time .
The following example tests whether an error occurred in the DEF module
TSLFE and, if it has, prints the text of the signaled error and resumes
execution .

15-6 Error Handling

Example
19000

	

IF ERN$ = "TSLFE"
THEN PRINT ERT$(ERR)

END IF
RESUME

Note that if an error occurs in a DEF declaration, RESUME without a line
number causes execution to resume at the statement that invoked the function .

15.2.5 Ctrl/C Trapping
Error handling procedures are commonly used to trap user Ctrl/C responses .
With Ctrl/C trapping enabled, control is transferred to an error handler if a
user presses Ctrl/C during program execution . You enable Ctrl/C trapping in
your program by invoking the built-in CTRLC function . For example :
Y% = CTRLC

Once the Ctrl/C is trapped, you can include routines to interact with the
program, as shown in the following example :

Example
50

	

ON ERROR GOTO 19000
100

	

Y% = CTRLC

460

	

OPEN 'FIL .DAT' FOR INPUT AS FILE #1%
470

	

INPUT "How many records" ; REC .READ%
480

	

FOR I% = 1% TO REC .READ%
490

	

GET #1%
500

	

PRINT NA .ME$, ADDRE .SS$, EMP .CODE%
PRINT

510

	

NEXT 1%

19000

	

IF (ERR = 28%)
THEN Y% = CTRLC

	

!Re-enable Ctrl/C trapping
PRINT "Current record is " ; 1%

ELSE ON ERROR GOTO 0
END IF

Error Handling 15-7

19010

	

INPUT "Do you wish to end processing?" ; ANSWER$
19020

	

IF ANSWER$ = "Yes"
THEN RESUME 32000

ELSE RESUME
END IF

32000

	

CLOSE #1%
32766

	

PRINT "End of processing"
32767

	

END

Output
SMITH, DEXTER 231 COLUMBUS ST

	

09341

TRAVIS, JOHN PO BOX 80

	

64119

AC

The current record is 3

Do you wish to end processing? Yes

An error condition is pending until the error handler executes a RESUME
statement. Therefore, if a second Ctrl/C is entered while the error handler
is executing, control returns to the BASIC-PLUS-2 error handler, which
terminates the program .
With Ctrl/C trapping enabled, a RESUME statement with no line number
returns control to the line where the error occurred. Your program can then
re-execute statements interrupted by the Ctrl/C .
To disable Ctrl/C trapping, use the RCTRLC function . For more information on
the CTRLC and RCTRLC functions, see the BASIC-PLUS-2 Reference Manual .

15 .3 Handling Errors in Multiple-Unit Programs
When an error occurs in a subprogram or function definition, control always
passes to the error handler contained within that subprogram or function
definition . If a subprogram or function definition does not contain an error
handler, all error handlers for any outer program blocks are processed before
the program reverts to BASIC-PLUS-2 default error handling .
The following rules apply to error handling in function definitions :
©

	

To trap an error while a DEF function is active, include an error handler
inside the DEF function. When you include an error handler inside a
DEF function, the associated handler remains in effect until your program
leaves the DEF function .

15-8 Error Handling

© An error handler in a DEF function does not permanently override an error
handler in the main program . BASIC-PLUS-2 saves the error handler in
the main program when you invoke a DEF function, and restores it when
you return .

If an ON ERROR GO BACK statement is specified in a subprogram or function
definition, it transfers control to the error handler of the calling program . If
ON ERROR GO BACK is specified in a main program module, it transfers
control to the BASIC-PLUS-2 default error handler.

Example
100

	

ON ERROR GOTO 19000

1000

	

A% = Fnin_put%("Prompt")

15000

	

DEF Fnin_put%(P%)
ON ERROR GOTO 15090

15010

	

PRINT P$
INPUT LINE_IN$

15020

	

Fnin_put% = Val%(Line_in$)
FNEXIT

15090

	

IF ERL = 15010
THEN

PRINT "Retry"
RESUME 15010

ELSE
ON ERROR GO BACK

END IF

16000

	

END DEF

19000

	

PRINT "Error" ; ERT$(ERR) ;

Error Handling 15-9

19010

	

IF ERN$ = "Fnin_put"
THEN

PRINT "In function"
RESUME 1200

ELSE
PRINT "In main"
RESUME 1000

END IF

32767

	

END

15.4 Returning to BASIC-PLUS-2 Error Handling
The ON ERROR GOTO 0 statement disables program error trapping and
returns control to BASIC-PLUS-2 error handling . The BASIC-PLUS-2 error
handler displays error messages, stops program execution, and prints a fatal
error message .
If an error is pending, execution of the ON ERROR GOTO 0 statement
returns control to BASIC-PLUS-2 error handling immediately . If no error is
pending, an ON ERROR GOTO 0 statement disables your error handler . The
BASIC-PLUS-2 error handler handles all subsequent errors until another ON
ERROR statement is executed .
In the following example, when an error occurs, control is transferred to
line 19000. If the error is "End-of-file" (ERR=11), the error handler passes
control to line 32000, which closes the file . If any other error occurs, the ELSE
clause transfers control to the BASIC-PLUS-2 error handler, which prints
information about the error .
Example

15-10 Error Handling

10 ON ERROR GOTO 19000
20 OPEN 'FILE .LIS' FOR INPUT AS FILE #2%
30 LINPUT #2%, A$
40 PRINT A$
50 GOTO 30
19000 IF (ERR = 11%) AND (ERL = 30%)

THEN
RESUME 32000

ELSE
ON ERROR GOTO 0

32000
END IF
CLOSE #2%

32767 END

You can use the ON ERROR GOTO and ON ERROR GOTO 0 statements
throughout your program to turn an error handler on and off . In this way, your
program can handle certain errors, and BASIC-PLUS-2 can handle the rest .

15.5 Leaving an Error Handler
The RESUME statement clears the error condition and passes control to a
line number or to the program block in which the error occurred . An error
handler must end with either a RESUME statement, an ON ERROR GOTO
0 statement, or an ON ERROR GO BACK statement . If it does not, the
BASIC-PLUS-2 error handler aborts your program with the fatal error "Error
trap needs RESUME" once BASIC-PLUS-2 encounters an END, END SUB,
END DEF, END PROGRAM or END FUNCTION statement . You can resume
to any line number in the same module as the RESUME statement unless that
line number is inside a DEF function .
The RESUME statement in the following error handler resumes program
execution at line 32767 when one of the specified errors occur .

Example
19000

	

IF (ERR = 11%) AND (ERL = 30%)
THEN

CLOSE #2%
RESUME 32767

ELSE
ON ERROR GOTO 0

END IF
32000

	

CLOSE #2%
32767

	

END

If you do not specify a line number with the RESUME statement, control is
passed to the beginning of the program block where the error occurred . A
program block can begin with either a line number or a label .

©

	

If you resume execution at a multi-statement line, execution begins at
the first statement after the line number or label-not necessarily at the
statement that generated the error .

©

	

If an entire FOR, WHILE, UNTIL, or SELECT loop block is associated
with a single line number or label and an error occurs within that loop
block, RESUME without a line number transfers control to the statement
immediately following the FOR, WHILE, UNTIL or SELECT statement,
not to the line number or label .

If general, if you specify a RESUME statement without a line number, be sure
to supply a separate line number for every statement that may generate an
error.

Error Handling 15-11

When resuming to a FOR, WHILE, UNTIL, or SELECT loop, the starting,
ending, and STEP values of the loop are not reinitialized .
Even though the line at which you want to resume program execution may
directly follow an error handler, you cannot "fall through" an error handler to a
END SUB, END DEF, END PROGRAM, END FUNCTION, or END statement .
You must either resume to a line number or return to system error handling .
Use a RESUME, ON ERROR GO BACK, or ON ERROR GOTO 0 statement
instead of a GOTO statement to exit from an error handler . If you specify
a GOTO statement inside an error handler, it will leave the error condition
pending and the next error will abort the program .
An error handler should correct the condition that caused the error . If it
does not, the program will continue to generate the error without handling it
successfully.
In the following example, when a record name is not found, the error handler
corrects the error by prompting for a new record name .
Example
5

	

ON ERROR GOTO 19000

330

	

INPUT "What record do you want" ; Target .name$
340

	

FIND #12%, KEY #3% EQ Target .name$

19000

	

IF (ERR = 153%)
THEN PRINT "Name invalid"

END IF
19010

	

RESUME 330

32767

	

END

For more information on the RESUME statement, see the BASIC-PLUS-2
Reference Manual .

15-12 Error Handling

16
Instruction and Data Space

This chapter describes how to use Instruction and Data Space (I- and D-Space)
to improve system performance while running large BASIC-PLUS-2 tasks .

16.1 Introduction
Some PDP-11 computers include one set of active page registers (APRs) for
instructions and one set for data . Normally, only one set of registers is used
for both instructions and data ; this is called overmapping. Instruction and
Data Space (I- and D-Space) allows you to use both the instruction and the
data registers for task execution. As a result, 32K words are made available
for instruction addresses and another 32K words are made available for data
addresses. This increased memory allows you to execute large tasks more
efficiently. Note that you cannot use the BASIC-PLUS-2 resident library to
link programs that use I- and D-Space support .

16.2 Building Tasks in Instruction and Data Space
You can build tasks in I- and D-Space by adding the /IDS qualifier to the
BUILD or SET commands in the BASIC environment . For example :
BUILD /IDS MYPROG

The /IDS qualifier remains in effect until you override it with another build
operation. When you specify the /IDS qualifier with the BUILD command, it
removes all references to the BASIC-PLUS-2 memory-resident library from
the Task Builder Command (CMD) file . It is recommended that you do not use
the BASIC-PLUS-2 memory-resident library for tasks built in I- and D-space .

Note

You must recompile programs that were compiled prior to Version 2 .3
of BASIC-PLUS-2 if you want to task build in I- and D-Space .

Instruction and Data Space 16-1

When you build a task with I- and D-Space support, you are building a task
with two address windows : one in I-Space and one in D-Space . You can see the
effects of I- and D-Space by adding the /MAP qualifier to the BUILD command .
For example, the following is a map file generated by the following BUILD
command :
BUILD /IDS /MAP MAINPROG

In this example, the task size is reported as 5728 words for I-Space and 1888
words for D-Space . Assuming that all 32,768 words are available for the task,
the task can therefore be extended 27,040 words in I-Space and 30,880 words
in D-Space .

16-2 Instruction and Data Space

Example 16-1 Map File Illustrating Instruction and Data Space
MAINPROG .TSK Memory allocation map TKB M43 .00

	

Page 1
20-APR-91

	

09 :03

Partition name : GEN
Identification : 000220
Task PPN

	

: [254,240]
Stack

	

limits : 001000
PRG xfr address : 025600
Task attributes : ID
Total address windows :

00512 .001777 001000

2 .
Task

	

extension

	

:
Task image size :

Total task size :

Task Address limits :

512 . words
5728 . words,
1376 . words,
5728 . words,
1888 . words,
000000 026277

I-Space
D-Space
I-Space
D-Space
I-Space

000000 005253 D-Space
R-W disk blk limits : 000002 000036 000035 00029 .

Root segment : MAINPROG

R/W mem limits : 000000 027275 027276 11966 . I-Space
000000 005251 005252 02730 . D-Space

Disk blk limits : 000002 000030 000027 00023 . I-Space
000031 000036 000006 00006 . D-Space

The following sections describe some areas where you want to exercise care
when using I- and D-Space .

16.2.1 MACRO Subprograms
If you program with MACRO subprograms and you want to use I- and D-Space
support, your MACRO subprograms should reflect the I- and D-Space attribute
of the PSECTs. This means that you may have to rewrite the MACRO routines .

The following is an example of a MACRO subprogram that is not built with
I- and D-Space :
.PSECT CODE1

MOV

	

#3, DEST

DEST : WORD 0

The following is the same MACRO subprogram, rewritten with I-PSECTs and
D-PSECTs :
.PSECT CODE1,I

MOV #3,DEST

.PSECT CODE2,D

DEST : WORD 0

Instruction and Data Space 16-3

16 .2 .2 Overlaid Tasks
If you are building a complex overlaid task, you may want to refrain from
using I- and D-Space, as problems can result. One such problem is that even
though you save virtual memory when you use I- and D-Space, you double
the number of program segments in your program . Therefore, if you had n
number of segments in your program before invoking I- and D-Space, you have
n number of segments in I-Space, plus n number of segments in D-Space after
invoking I- and D-Space .
This increase in the number of program segments can causes the Task Builder
to signal the error "No virtual memory storage available" when the task is
task-built. You can avoid this problem by using the slow Task Builder . See
the RSTSIE Task Builder Reference Manual or the RSX-11M/MPLUS Task
Builder Reference Manual for more information .
Figure 16-1 illustrates how tasks are overlaid in memory with and without I-
and D-Space enabled .

Figure 16-1 Task Layout

32K words

Overlaid Task
not Using I- and D-Space

Also, note that because the size of the task is extended when you use I- and
D-Space, you may have to re-overlay your program in order to simplify your
ODL file .

16-4 Instruction and Data Space

16K
words

32K words

Overlaid Task
in I-Space

8K
words

32K words

8K
words

Overlaid Task
in D-Space

NU-2186A-RA

This chapter describes some of the more advanced I/O features available
in BASIC-PLUS-2 . For more information on I/O to RMS disk files, see
Chapter 12 .

17.1 Introduction
This chapter discusses the following topics :

©

	

RMS I/O to ANSI magnetic tapes
©

	

Device-specific I/O to magnetic tapes (including TK50 devices)
©

	

Devce-specific I/O to disks and unit record devices

©

	

Network I/O
When you do not specify a file name in the OPEN statement, the I/O you
perform is said to be device-specific . This means that read and write operations
(GET and PUT statements) are performed directly to or from the device . For
example :
OPEN "MMO :" FOR OUTPUT AS FILE #1
OPEN "MMI :PARTS .DAT" FOR INPUT AS FILE #2, SEQUENTIAL

Because the file specification in the first line does not contain a file name, the
OPEN statement opens the tape drive for device-specific I/O . The second line
opens an ANSI-format tape file using RMS because a file name is part of the
file specification .
The following sections describe both I/O to ANSI-format magnetic tapes and
device-specific I/O to magnetic tape, unit record, and disks devices .

17
Advanced Input-Output

Advanced Input-Output 17- 1

17.2 RMS I/O to Magnetic Tape
BASIC-PLUS-2 supports I/O to ANSI-formatted magnetic tapes . When
performing I/O to ANSI-formatted magnetic tapes, you can read or write only
one file to a magnetic tape at a time, and the files are not available to other
users. ANSI tape files are RMS sequential files .

17.2 .1 Allocating a Tape
You should allocate the tape unit to your process before starting file operations .
You can allocate a device only when it is not allocated by someone else . The
DCL command ALLOCATE reserves a device for your use. The following is an
example of the ALLOCATE command . This command assigns tape drive MMO :
to your process .
$ ALLOCATE MMO :

Once you allocate the tape unit, you can physically mount the tape on the tape
drive. See the operation manual for your tape drive for instructions on how to
physically mount the tape .
See the RSX-11M-PLUS Command Language Manual or the RSTSIE System
User's Guide for more information on the ALLOCATE command .

17.2.2 Initializing a Tape on RSX-11 M Systems
If you want to use RMS-11 and you are using a tape for the first time or you
want to reuse a scratch tape, you must initialize it . Initializing a tape writes
an ANSI-standard volume label and a dummy file that deletes all existing files
on the tape. Therefore, you want to initialize only new tapes or scratch tapes
and not tapes containing data you want to use .
In multiuser protection systems, you can initialize a tape only on tape drives
allocated to you. You must have privileges to initialize a tape on RSX-11M
systems that do not have multiuser protection .

To initialize a tape on RSX-11M systems, you specify the DCL command
INITIALIZE. The following is an example of the INITIALIZE command :
$ INITIALIZE MYTAPE : PRG

This command initializes the tape assigned to the logical name MYTAPE : and
specifies PRG as the volume label .

See the RSX-11M-PLUS Command Language Manual for more information on
the INITIALIZE command .

17-2 Advanced Input-Output

17.2 .3 Initializing a Tape on RSX-11 M-PLUS Systems
If you want to use RMS-11 and you are using a tape for the first time or you
want to reuse a scratch tape, you must initialize it . Initializing a tape writes
an ANSI-standard volume label and a dummy file that deletes all existing files
on the tape. Therefore, you want to initialize only new tapes or scratch tapes
and not tapes containing data you want to use .
To initialize a tape on RSX-11M-PLUS systems, you specify the following
sequence of DCL commands :

©

	

The MOUNT command with the /FOREIGN qualifier

©

	

The INITIALIZE command

©

	

The DISMOUNT command

©

	

The MOUNT command
These commands are described in the following sections .

17.2.3.1 The MOUNT Command
The DCL command MOUNT lets the system know that the tape is online and
available for use . The MOUNT command also does the following :

©

	

Verifies that the tape drive is not allocated to another user
© Allocates the tape drive to you if the tape drive is available
©

	

Verifies that the tape is placed and loaded on the device you specify

©

	

Checks that the tape has been initialized, if you use a tape that has already
been initialized

©

	

Specifies the tape's density and format
©

	

Verifies that the volume label on the tape matches the volume label you
specify

To initialize a tape on RSX-11M-PLUS systems, you specify the /FOREIGN
qualifier to the MOUNT command . The /FOREIGN qualifier tells the system
that the tape being mounted is not in files-11 format.

See the RSX-11M-PLUS Command Language Manual for more information on
the MOUNT command .

Advanced Input-Output 17- 3

17.2.3.2 The INITIALIZE Command
Once you specify the MOUNT command, you then initialize the tape with the
DCL command INITIALIZE . If you specified a volume label with the MOUNT
command, specify the same volume label with the INITIALIZE command .
Nonprivileged users must specify a volume label . Note that this label is not
the same as an ANSI-format volume label .

See the RSX-11M-PLUS Command Language Manual for more information on
the INITIALIZE command .

17.2 .3.3 The DISMOUNT Command
If you are initializing a tape, or after you finish performing file handling
operations, you dismount the tape using the DCL command DISMOUNT . The
DISMOUNT command does the following :
©

	

Closes all open files
©

	

Tells the system that the tape drive is logically offline
©

	

Breaks the connection between the system's file system and the device
Dismounting a tape prevents a program from opening new files on that tape .
See the RSX-11M-PLUS Command Language Manual for more information on
the DISMOUNT command .

17.2.3.4 Example of Initializing a Tape on RSX-11M-PLUS
The series of commands in the following example initialize the tape MYTAPE :
on RSX-11M-PLUS :
$ ALLOCATE MYTAPE :
$ MOUNT /FOREIGN MYTAPE :
$ INITIALIZE MYTAPE : PRG
S DISMOUNT MYTAPE : PRG
$ MOUNT MYTAPE :

In this example :
1 . The ALLOCATE command allocates the tape drive assigned to logical name

MYTAPE: .
2 . The first MOUNT command specifies a foreign file structure .

3 . The INITIALIZE command initializes the tape, writes an ANSI-format
volume label, and uses PRG as the volume label to identify the tape .

4 . The DISMOUNT command dismounts the tape .

5 . The second MOUNT command allows the system to read the file structure
and verifies the volume label .

17-4 Advanced Input-Output

To use a tape that has already been initialized, you need only issue the
ALLOCATE and MOUNT commands . For example :
$ ALLOCATE MYTAPE :
$ MOUNT MYTAPE : PRG

In this example, the ALLOCATE command allocates the tape drive assigned to
logical name MYTAPE : and tells the system that the tape on that tape drive is
online and available for use, and verifies the volume label .

17.2 .4 Initializing a Tape on RSTS/E Systems
If you want to use RMS-11 and you are using a tape for the first time or you
want to reuse a scratch tape, you must initialize it . Initializing a tape writes
an ANSI-standard volume label and a dummy file that deletes all existing files
on the tape. Therefore, you want to initialize only new tapes or scratch tapes
and not tapes containing data you want to use .

To initialize a tape on RSTS/E systems, you specify the following sequence of
DCL commands :
©

	

The INITIALIZE command with the /FORMAT=ANSI qualifier

©

	

The MOUNT command
These commands are described in the following sections .

17.2.4.1 The INITIALIZE Command
The DCL command INITIALIZE with the /FORMAT=ANSI qualifier initializes
a tape for use with RMS-11 files . Any tape that is not initialized with
the INITIALIZE command is a foreign tape and requires you to add the
/FORMAT=FOREIGN qualifier to the MOUNT command . In multiuser
protection systems, you can initialize a tape only on tape drives allocated
to you. You must have privileges to initialize a tape on RSTS/E systems that
do not have multiuser protection .

See the RSTS /E System User's Guide for more information on the INITIALIZE
command .

17.2 .4.2 The MOUNT Command
The DCL command MOUNT lets the system know that the tape is online and
available for use . The MOUNT command also does the following :

©

	

Verifies that the tape drive is not allocated to another user
© Allocates the tape drive to you if the tape drive is available
©

	

Verifies that the tape is placed and loaded on the device you specify

Advanced Input-Output 17- 5

© Checks that the tape has been initialized, if you use a tape that has already
been initialized

©

	

Specifies the tape's density and format
©

	

Verifies that the volume label on the tape (for ANSI-format tapes) matches
the volume label you specify

If you are using an ANSI-formatted tape, you should specify the
/FORMAT=ANSI qualifier with the MOUNT command ; however, if you specify
a volume label, this qualifier is the default . If you are not using an ANSI-
formatted tape, you must specify the /FORMAT=FOREIGN qualifier with
the MOUNT command. The /FORMAT=FOREIGN qualifier tells the systems
that the tape does not have an ANSI format label . If you do not specify the
MOUNT command, access to your tape is unrestricted . If you mount a tape
/FORMAT=FOREIGN, no one else can access it .

See the RSTS /E System User's Guide for more information on the MOUNT
command .

17.2.4.3 Example of Initializing a Tape on RSTS/E
The series of commands in the following example initialize the tape MYTAPE :
on RSTS/E :
$ ALLOCATE MYTAPE :
$ INITIALIZE/FORMAT=ANSI MYTAPE : PRG
$ MOUNT MYTAPE : PRG

In this example :
1. The ALLOCATE command allocates the tape drive assigned to logical name

MYTAPE : .
2 . The INITIALIZE command initializes the tape, writes an ANSI-format

volume label, and uses PRG as the volume label to identify the tape .

3. The MOUNT command specifies an ANSI file structure and PRG as the
volume label .

To use a tape that has already been initialized, you only need to specify the
ALLOCATE and MOUNT commands . For example :
$ ALLOCATE MYTAPE :
$ MOUNT/FORMAT=ANSI MYTAPE : PRG

In this example, the ALLOCATE command allocates the tape drive assigned to
logical name MYTAPE : and tells the system that the tape on that tape drive is
online and available for use, and verifies the volume label .

17-6 Advanced Input-Output

17.2.5 Opening a File on Tape
When you use a tape to handle and store records, you must open a file on it .
To open a file on tape, you must use this format of the OPEN statement :

OPEN 'file-spec' L FOR OUTPUT J [AS FILE] [#]chnl-exp,
FOR INPUT

ORGANIZATION SEQUENTIAL [(,clause), . . .]

file-spec
Specifies the physical or logical name and number of the drive on which your
tape is physically mounted and the file name and type of the file . Specifying a
file name automatically accesses RMS-11 .

FOR OUTPUT
Opens a new file .

FOR INPUT
Opens an existing file .

#chnl-exp
Is the number of the channel on which the file is open .

ORGANIZATION SEQUENTIAL
Specifies sequential file organization . You can also add the FIXED or
VARIABLE keyword to the ORGANIZATION SEQUENTIAL clause, to indicate
either a fixed-length or variable-length record, respectively .

clause
Can be any of the following clauses :

ACCESS
BLOCKSIZE int-exp
MAP mapname
NOREWIND
RECORDSIZE int-exp

The following sections describe the OPEN statement clauses . See Chapter 12
and the BASIC-PLUS-2 Reference Manual for more information on these
clauses .

Advanced Input-Output 17-7

17.2.5.1 ACCESS Clause
The ACCESS clause determines how the program can use the file .
© ACCESS READ allows only FIND, GET, or other input statements on the

file. The OPEN statement cannot create a file if the ACCESS READ clause
is specified .

©

	

ACCESS WRITE allows only PUT, UPDATE, or other output statements on
the file .

©

	

ACCESS MODIFY allows any I/O statement except SCRATCH on the file .
ACCESS MODIFY is the default .

©

	

ACCESS SCRATCH allows any I/O statement valid for a sequential or
terminal-format file .

©

	

ACCESS APPEND is the same as ACCESS WRITE for sequential files,
except that BASIC-PLUS-2 positions the file pointer after the last record
when it opens the file .

17.2.5.2 BLOCKSIZE Clause
The BLOCKSIZE clause specifies the physical size of a block on tape . The
BLOCKSIZE value is the number of records in a physical block . The default is
one record per block. You must specify the BLOCKSIZE value as an integer .

The size of the record buffer, in bytes, is the product of the values you
specify in the RECORDSIZE and BLOCKSIZE clauses . For example, if your
RECORDSIZE clause is 128 bytes and your BLOCKSIZE clause is 4, your
record buffer size is 512 bytes . The total record buffer must be divisible by 4
and cannot exceed 8192 bytes . When you omit the BLOCKSIZE clause, the
size of the record buffer is the value you specify in the RECORDSIZE clause .

17.2.5.3 MAP Clause
The MAP clause specifies the data type of the variables you list and allocates
storage for them in the record buffer . The amount of storage allocated in
a record buffer cannot exceed 8192 bytes . The MAP statement allocates
permanent storage for your data, whereas the RECORDSIZE clause allocates
dynamic storage and requires MOVE statements to move data in and out
of a record buffer. If you use a MAP statement, you do not have to use a
RECORDSIZE clause and vice versa .

17-8 Advanced Input-Output

17.2.5 .4 RECORDSIZE Clause
The RECORDSIZE clause determines the record lengths for either all
fixed-length records or the largest variable-length record . The maximum
record length on a tape is 8192 bytes . The default length is 512 bytes .
BASIC-PLUS-2 changes any RECORDSIZE value less than 18 to 18 .

17.2.5.5 NOREWIND Clause
The NOREWIND clause controls the position of your tape . If you do not specify
NOREWIND, the OPEN statement positions the tape at its beginning of tape
(BOT), then searches for the file you specify until it reaches the logical end of
tape. The logical end of tape is the position after the last record in the last file
on tape. For example :
10

	

OPEN 'MMO :MYFILE .DAT' FOR OUTPUT AS FILE #4%, &
ORGANIZATION SEQUENTIAL

This statement positions the tape at the beginning of the tape and opens the
file, MYFILE.DAT, overwriting any files that may already exist on the tape .
If you specify NOREWIND, the OPEN FOR OUTPUT statement positions the
tape at the logical end of tape . For example :
10 OPEN 'MMO :MYFILE .DAT' FOR OUTPUT AS FILE #4%, &

ORGANIZATION SEQUENTIAL, &
NOREWIND

This statement opens the file MYFILE .DAT at the logical end of tape .
If you specify NOREWIND, the OPEN FOR INPUT statement searches for the
file you specify without rewinding the tape to its beginning . If the file is not
found, BASIC-PLUS-2 rewinds the tape to its beginning, then searches for the
file again . For example :
10

	

OPEN 'MMO :MYFILE .DAT' FOR INPUT AS FILE #4%,

	

&
ORGANIZATION SEQUENTIAL

20

	

FOR CT% = 1% TO 50%
30

	

INPUT REC
40

	

MOVE TO #4%, REC
50

	

PUT #4%
60

	

NEXT CT%
70

	

CLOSE #4%

1000 OPEN 'MMO :MYFILE .DAT' FOR INPUT AS FILE #4%, NOREWIND

Advanced Input-Output 17- 9

1 . Line 10 rewinds the tape, then searches for MYFILE .DAT.
2 . Lines 20 through 60 perform 50 PUT operations .
3. The tape is positioned after the fiftieth record. Line 1000 does not rewind

the tape before searching for MYFILE .DAT but starts searching at its
current position to the logical end of tape . Because the file cannot be found
from its current position (behind MYFILE .DAT), RMS rewinds the tape to
the beginning of the tape and searches for MYFILE .DAT again .

By default, opening an RMS-11 file rewinds the tape . In summary, if you
want to create a new file, use the NOREWIND clause with the OPEN FOR
OUTPUT statement . If you think a file you want to access is located after the
current tape position, use the NOREWIND clause with the OPEN FOR INPUT
statement to search for your file and save time .

17.2.6 Writing Records to Tape
Each record is temporarily stored in a record buffer before being written to
tape. If you use a MAP statement, this buffer or space is allocated at compile
time and is permanent. If you use a RECORDSIZE clause, this buffer or space
is allocated at run time and is dynamic .
Regardless of the method you use to determine the size of your record buffer,
you must allocate a large enough buffer to accommodate the size of your
records. If your buffer is too small and you try to write a record longer than
the buffer, BASIC-PLUS-2 signals the error message "Magtape record length
error." If your buffer is too large, you waste unused space . You can use the
COUNT clause with the PUT statement to specify record lengths that are
smaller than the buffer size you specify.
After a file is open, you use the PUT statement to write records to tape . The
format of the PUT statement is as follows :
PUT #chnl-exp [,COUNT int-exp]

chnl-exp
Is the channel number of the open file .

COUNT int-exp
Specifies the record's size . The record size value must be an integer . If you use
the FIXED clause, the COUNT clause serves no purpose .

17-1 0 Advanced Input-Output

For example :
100 OPEN 'TAPE :PARTS .DAT' FOR OUTPUT AS FILE #2%, &

ORGANIZATION SEQUENTIAL VARIABLE, &
RECORDSIZE 128, &
BLOCKSIZE 4

DECLARE DOUBLE PART CODE,

	

&
STRING PART-NAME

ASK : INPUT 'Part code' ;PART CODE
INPUT 'Part name' ;PART NAME
MOVE TO #2%, PART CODE, PART NAME
PUT #2%
INPUT 'Write another record <YES OR NO>' ;ANS$
IF ANS$ = 'YES'
THEN GOTO ASK
ELSE CLOSE #2%

END IF
32767

	

END

In this example :

1. The OPEN statement opens the file PARTS .DAT for output on the tape
drive assigned to the logical name TAPE : .
The maximum record size is 128 bytes and there are 4 of these records to
a block. The total size of the record buffer is 512 bytes . Every fourth PUT
causes a physical write, moving 512 bytes of data to tape .

2 . The MOVE statement moves the record to the record buffer .

3 . The PUT statement moves the record from the record buffer and writes it
to tape .

17.2 .7 Adding New Records to Tape
You can add records to a tape only after the last record in the last file on a tape
(logical end of tape) . For example, if you open FILEI .DAT and write 50 records
to it, and it is the only file written to the tape, when you close the file, RMS-11
writes an end of tape mark after the last record .
If you want to add records to the file, you must position the current record
pointer to the end of a file by adding the ACCESS APPEND clause to the
OPEN statement. If you do not use ACCESS APPEND, the current record
pointer points to the first record in the file and the first PUT operation
overwrites the first record. Successive PUT operations overwrite successive
records .

Advanced Input-Output 17- 1 1

100 MAP (EX) DOUBLE PART CODE, &
STRING PART NAME, &
WORD FILL(52)

OPEN 'MMI :PARTS .DAT' AS FILE #2%, &
ORGANIZATION SEQUENTIAL VARIABLE, &
ACCESS APPEND, &
MAP EX

ASK : INPUT 'Part code' ;PART CODE
INPUT 'Part name' ;PART NAME
PUT #2%
INPUT 'Write another record <YES OR NO>' ;ANS$
IF ANS$ = 'YES'

THEN GOTO ASK
ELSE CLOSE #2%

END IF
32767

	

END

In this example :
1 . The MAP statement allocates permanent storage for a DOUBLE floating-

point variable (8 bytes) and a STRING variable (16 bytes) . The FILL
statement pads the unused buffer space (52 WORDs or 104 bytes) .

2 . The OPEN statement opens the existing file PARTS .DAT stored on the
tape that is physically mounted on tape drive MM1 : . ACCESS APPEND
positions the current record pointer at the logical end of the file . The MAP
clause references the MAP statement in line 100 .

3 . The INPUT statements prompt you to enter a record and assign your
responses to the variables PART CODE and PART NAME .

4 . The PUT statement writes the record to tape .

5 . The next INPUT statement asks you if you want to add another record .
The IF statement evaluates your response. If you answer YES, control
branches to label ASK. If you do not answer YES, the file is closed .

17.2.8 Reading Records on Tape
You can use the GET statement to retrieve records you wrote to a tape . The
format of the GET statement is as follows :
GET #chnl-exp

#chnl-exp
Is the channel number of the open file .

17- 1 2 Advanced Input-Output

The following program opens an existing file and reads the number of records
you specify :
1

	

ON ERROR GOTO 19000
MAP (PARTS) DOUBLE PART NUM, &

STRING PART NAM, &
BYTE FILL(104)

100 OPEN 'MYTAPE :PARTS .DAT' FOR INPUT AS FILE #3%, &
ORGANIZATION SEQUENTIAL VARIABLE, &
ACCESS READ, &
NOREWIND, &
MAP PARTS

ASK : INPUT 'How many records do you want to read' ;RET NUM%
LOOP : FOR MYLOOP% = 1% TO RET_NUM%

GET #3%
PRINT 'The product name is', PART NAM
PRINT 'The part number is', PART NUM

NEXT MYLOOP%
GOTO 32766

19000

	

IF (ERR = 11%)
THEN

PRINT 'You have reached the end of the file .'
RESUME 32766

ELSE
ON ERROR GOTO 0

END IF
32766

	

CLOSE #3%
32767

	

END

In this example :
1 . Line 1 transfers control to an error handler starting on line 19000 if an

error occurs .
2. The MAP statement declares the storage for the variables listed .
3. The OPEN statement opens the file PARTS .DAT for input on the tape drive

assigned to the logical name MYTAPE : .
4 . LOOP: labels a loop to read the number of records you want, assigns them

to the variables declared in the MAP statement, and prints the values of
the variables .

5 . If the error is "End of file on device" (ERR=11), the error handler at line
19000 displays the message, "You have reached the end of the file" . If
another error is signaled, error handling returns to BASIC-PLUS-2 .

Advanced Input-Output 17- 1 3

17.2.9 Locating Records on Tape
If you are familiar with the contents of your file, you can locate and read the
record you want with FIND and GET statements . The FIND statement sets
the current record pointer, and if you use a GET statement, you can then read
the record at the current record pointer . The format of the FIND statement is
as follows :
FIND #chnl-exp

#chnl-exp
Is the channel number of the open file. It must be preceded by a number sign
(#) .
FIND operations perform faster than GET operations because no data is
transferred. For example :
1

	

ON ERROR GOTO 19000
MAP (PARTS) DOUBLE PART CODE, &

STRING PART NAME, &
BYTE FILL(104)

OPEN 'MMI :PARTS .DAT' FOR INPUT AS FILE #4%, &
ORGANIZATION SEQUENTIAL VARIABLE, &
ACCESS READ, &
NOREWIND, &
MAP PARTS

LOOP : FIND #4% FOR MYLOOP% = 1% TO 50%
GET #4%

10 ASK : PRINT 'This is the current record : ' ; PART NAME, PART CODE
PRINT 'Do you want to move the Current Record Pointer'
INPUT 'another fifty records' ;ANS$
CONV$ = EDIT$(ANS$,32%)
IF CONV$ = 'YES'

THEN GOTO LOOP
ELSE GOTO 32766

END IF
19000

	

IF (ERR = 11%)
THEN PRINT 'You have reached the end of the file .'
RESUME 10

END IF
32766

	

CLOSE #3%
32767

	

END

In this example :
1 . Line 1 transfers control to line 19000 if an error occurs .
2 . The MAP statement declares the storage for three string variables .

17-1 4 Advanced Input-Output

3 . The OPEN statement opens a file on the tape drive MM1 :. The
NOREWIND clause tells RMS not to rewind the tape to its beginning
(BOT) before searching for PARTS .DAT.

4 . The FIND statement sets the current record pointer 50 records away from
its current position .

5. The GET statement retrieves that record and assigns it to the variables
declared in the MAP statement .

6 . The PRINT statement displays the contents of the record .

7 . The INPUT statement asks you if you want to move the current record
pointer another 50 records away from its current position . If you answer
YES, control passes to label LOOP :, which moves the current record pointer
another 50 records .

8 . If BASIC-PLUS-2 signals the error "End of file on device" (ERR=11),
control branches to label ASK :. If another error occurs, control branches to
the CLOSE statement at line 32766 .

17.2.10 Truncating Files on Tape
You can truncate the records in a file by using the ACCESS SCRATCH clause
in the OPEN statement . This clause lets you delete all the records from the
current record to the end of the file, including the record at the current record
pointer. For example :
10

	

ON ERROR GOTO 19000

DECLARE WORD CT

MAP (MYMAP) WORD A
i
OPEN 'XX :PARTS .DAT' FOR OUTPUT AS

ORGANIZATION SEQUENTIAL,
MAP MYMAP,
BLOCKSIZE 10%

Loop to write 10 records

FOR CT = 1% TO 10%
A = CT
PUT #3%

NEXT CT

CLOSE #3%

FILE #3%,

	

&

Advanced Input-Output 17- 15

! Open the file with ACCESS SCRATCH for truncating records
i
OPEN 'XX :PARTS .DAT' FOR INPUT AS FILE #3%,

	

&
ORGANIZATION SEQUENTIAL,
MAP MYMAP,

	

&
BLOCKSIZE 10%,

	

&
ACCESS SCRATCH

Loop to read five records

FOR CT = 1% TO 5%
GET #3%

NEXT CT

Delete records six through ten

SCRATCH #3%
1

Write 10 records

FOR CT = 11% TO 20%
A =CT
PUT 43%

NEXT CT

OPEN 'XX :PARTS .DAT' FOR INPUT AS FILE #3%, &
ORGANIZATION SEQUENTIAL, &
MAP MYMAP, &
BLOCKSIZE 10%

Loop to read 15 records

FOR CT = 1% TO 15%
GET #3%
PRINT A

NEXT CT

GOTO 32766

19000

	

! Error Handler

17- 1 6 Advanced Input-Output

PRINT 'Unexpected error : ' ;ERT$(ERR)
RESUME 32766

32766

	

CLOSE #3%
32767

	

END

In this example :

1 . The first OPEN statement creates a new file to write records .

2 . The first FOR. . . NEXT loop writes 10 records .
3 . The second OPEN statement opens the file with the ACCESS SCRATCH

clause .
4. The second FOR . . . NEXT loop reads five records. The current record

position is at the beginning of the sixth record .
5. The SCRATCH statement truncates all records from the current record to

the end of the file .
6 . The current record pointer is positioned after the fifth record . The third

FOR. .. NEXT loop writes 10 new records .
7. The third OPEN statement opens the file to read records .
8. The fourth FOR . . . NEXT loop retrieves and displays the remaining 15

records .

17.2.11 Dismounting a Tape
To dismount a tape, you must do the following :

©

	

If you specified the MOUNT command, specify the DCL command
DISMOUNT

©

	

Specify the DCL command DEALLOCATE
©

	

Physically dismount the tape
For example :
$ DISMOUNT MYTAPE :
$ DEALLOCATE MYTAPE :

You must specify the DISMOUNT command before you do any of the following :

©

	

Issue the DEALLOCATE command
©

	

Set the tape drive offline
©

	

Rewind, unload, or take the tape off the drive
The DEALLOCATE command releases the tape drive you allocated and allows
other users to access that device . This command applies only to systems that
have multiuser protection . If you are a nonprivileged user, you can deallocate
only the tape drive you allocated . When you log out, the system automatically
deallocates all tape drives allocated to you .
After you deallocate the tape drive, press the UNLOAD button on the tape
drive to unload and rewind your tape .

Advanced Input-Output 17-17

17.2.12 Closing a File on Tape
You should explicitly close every file you open . The CLOSE statement ends I/O
operations to an open file . The format of the CLOSE statement is as follows :
CLOSE [#]chnl-exp, . . .

chnl-exp
Is the number of the channel on which the file is open . It can be preceded by
an optional number sign (#) .
If the file is open FOR INPUT, CLOSE closes the open file . If the file is open
FOR OUTPUT, BASIC-PLUS-2 performs the following operations :
©

	

Writes a file trailer label (one end-of-file mark) following the last record
©

	

Backspaces over the last end-of-file mark
©

	

Releases the space allocated for the record buffer
The CLOSE statement does not rewind a tape . You must press the rewind
button on your tape drive to rewind it .

17 .3 Device-Specific I/O
Device-specific I/O lets you perform I/O directly to a device .
The advantages of device-specific I/O are as follows :
©

	

Your program collects data faster than using RMS-11 .

©

	

Your program does not need to link to RMS-11 libraries ; therefore, you
save at least 8K words of virtual address space for your task .

Note

When doing device-specific I/O, all device names must be specified in
uppercase letters .

The following sections describe device-specific I/O to unit record devices, tapes,
and disks .

17-18 Advanced Input-Output

17.3.1 Device-Specific I/O to Unit Record Devices
You perform device-specific I/O to unit record devices by using only the device
name in the OPEN statement file specification. You should allocate the device
at DCL command level before reading or writing to the device . For example,
this command allocates a card reader :
$ ALLOCATE CR1 :

Once the device is allocated, you can read records from it .
Example
MAP (DNG) A% = 80%
OPEN "CR1 :" FOR INPUT AS FILE #1%, MAP DNG
GET #1%

BASIC-PLUS-2 treats the device as a file, and data is read from the card
reader as a series of fixed-length records .

17.3 .2 Device-Specific I/O to Magnetic Tape Devices
When performing device-specific I/O to a tape drive, you open the physical
device and transfer data between the tape and your program. GET and
PUT statements perform read and write operations . UPDATE and DELETE
statements are invalid when you perform device-specific I/O .
BASIC language elements allow you to do the following :
©

	

Identify the physical attributes of the tape, including:
- Recording density
- 7-track or 9-track
- Parity

©

	

Control the physical movement of the tape, including :

- Writing end-of-file marks to tape
- Physically moving the tape to access blocks and records
- Rewinding the tape

©

	

Define the I/O buffer size, record size, and block size

©

	

Define the size of each record in a file
If you do not use RMS-11, the Task Builder does not need to link to RMS-11
libraries. Therefore, add the /NOSEQUENTIAL qualifier to the BUILD
command to generate Task Builder command and overlay descriptor language
files that do not access RMS-11 libraries . By specifying the /NOSEQUENTIAL

Advanced Input-Output 17- 1 9

qualifier with the BUILD command, you free 8K words of virtual address space
and substantially decrease the time it takes to link your program .

17.3.2.1 Allocating and Mounting a Tape
You must allocate the tape unit to your process before starting file operations .
For example, the following command line assigns tape drive MM1 : to your
process .
$ ALLOCATE MM1 :

On RSX systems, specify the DCL command MOUNT with the /FOREIGN
qualifier to mount the tape . For example :
$ MOUNT/FOREIGN MMI :

On RSTS/E systems, specify the DCL command MOUNT with the
/FORMAT=FOREIGN qualifier to mount the tape . For example :
$ MOUNT/FORMAT=FOREIGN MM1 :

You must specify these qualifiers with the MOUNT command because
otherwise the file structure is unknown to the operating system. Without
these qualifiers, the operating system attempts to read and interpret a file
format label that does not exist.
Once you prepare a tape, you can use the following BASIC-PLUS-2 statements
to handle file operations :

©

	

OPEN
©

	

PUT
©

	

GET
©

	

MAP
©

	

MOVE
©

	

MAP DYNAMIC
©

	

REMAP
©

	

CLOSE

17.3.2.2 Opening a File on Tape
To open a channel to a tape, you must use the following format of the OPEN
statement :

OPEN dev : f FOR OUTPUT AS FILE [#]chnI-exp [,clause, . . .]
L FOR INPUT

17-20 Advanced Input-Output

dev :
Is the physical or logical name of the tape drive on which your tape is
physically mounted .

FOR OUTPUT
Opens a tape file for writing records only.

FOR INPUT
Opens a tape file .

chnl-exp
Is the number of the channel on which the tape is open. You can precede the
chnl-exp with an optional number sign (#) .

[,clause]
Specifies any of the following clauses to the OPEN statement . These are the
only clauses valid for device-specific I/O .

MAP mapname
RECORDSIZE int-exp
MODE int-exp

For device-specific I/O, the default record size is 512 . If you specify a record
size less than 512, BASIC-PLUS-2 opens the device with a record size of 512
and does not signal an error. If you allocate a static buffer with a MAP clause
that is less than 512, BASIC-PLUS-2 signals the error "Bad RECORDSIZE
value on OPEN" (ERR=148) .

The MODE clause sets the density and parity of your tape . You determine the
value of MODE with the following formula :

MODE = E + P

E

	

Is the recording density. Its value can be 256, which sets the recording density
to 1600 bits per inch (BPI) with phase encoding, or 1, which sets the recording
density to the system default .

P

	

Is the parity check to be performed . Its value can be 0 to check for odd parity or
1 to check for even parity.

Table 17-1 lists the MODE values and describes the functions those values
perform .

Advanced Input-Output 17-21

Table 17-1 MODE Values

Meaning

Sets the recording density to the default, enables phase
encoding, and checks for odd parity .
Sets the recording density to the default, enables phase
encoding, and checks for even parity .
Sets the recording density to 1600 bits per inch (BPI) and
checks for odd parity.
Sets the recording density to 1600 BPI and checks for even
parity.

Parity checking is the process of verifying whether or not a bit has been
dropped. BASIC-PLUS-2 does this by counting the total number of bits set for
a byte. If you choose a value of 0 (for odd parity), BASIC-PLUS-2 checks if
the total number of bits set for each byte is odd . If the total number is even,
BASIC-PLUS-2 displays an error message .

The most important consideration is the tape drive's default for the recording
density. You cannot specify 1600 BPI if your tape drive is only equipped to
record at 800 BPI .

In the following example, line 10 sets the recording density to 1600 BPI with
odd parity checking :
10 OPEN 'MMO :' FOR OUTPUT AS FILE #9, MODE 256

17.3.2.3 Opening a Tape File for Output
The following statement opens the tape drive MT1 : for writing :
OPEN "MT1 :" FOR OUTPUT AS FILE #1%

17.3.2.4 Opening a Tape File for Input
The following statement opens the tape unit MT2: for input :
OPEN "MT2 :" AS FILE #2%

Depending on how you access records, there are two ways to open a foreign
magnetic tape. If your program uses dynamic buffering and MOVE statements,
open the file with no RECORDSIZE clause .

When processing records, each GET operation will read one physical record
whose size is returned in RECOUNT. If you are using a map only, the first n
bytes (where n is the value returned in RECOUNT) are valid .

17-22 Advanced Input-Output

E P
MODE
Value

1 0 1

1 1 2

256 0 256

256 1 257

17.3.2.5 Closing a File on Tape
The CLOSE statement ends I/O to the tape . For example, the following
statement ends input and output to the tape open on channel #12 .
CLOSE #12%

The CLOSE statement releases the allocated record buffer space and closes the
file .
BASIC-PLUS-2 does not write any end-of-file marks for device-specific I/O
to magnetic tape . Use the MAGTAPE function to explicitly write end-of-file
marks for magnetic tape .
The CLOSE statement does not rewind your tape unless you specify the
RESTORE statement in your program .

17.3.2.6 Using the MAGTAPE Function
You can include the MAGTAPE function in your program to perform the
following operations :
©

	

Rewind the tape and set the tape drive off-line

©

	

Rewind the tape without setting the tape drive off-line

©

	

Write an end-of-file mark at the current position of the tape

©

	

Skip records
©

	

Backspace records
©

	

Set the density and parity of a tape
©

	

Monitor the status of I/O to a tape
The format of the MAGTAPE function is as follows :
int-varl = MAGTAPE(func-code, int-var2, chnl-exp)

int-varl
Is a value returned by function codes 4, 5, and 7 . See Table 17-2 for the values
of int-varl .

func-code
Is an integer from 1 through 7 that specifies the code for the MAGTAPE
function you want to perform . See Table 17-2 for a list of the function codes
and what they do .

int-var2
Is an integer parameter for function codes 4, 5, and 6 . See Table 17-2 for
values of int-var2 .

Advanced Input-Output 17- 23

chni-exp
Is the channel number the tape is opened on .

Explanation

Rewinds the tape open on the channel number
you specify and sets the tape drive on which it is
physically mounted off-line. For example :

200 1% = MAGTAPE(1%,0%,2%)
This example rewinds the tape open on channel 2
and sets it off-line .
Writes one end-of-file mark at the current
position of the tape . Use this function twice
after the last record to indicate the end of tape .
For example :

200 1% = MAGTAPE(2%,O%,2%) !write out two
end-of-file's

200 1% = MAGTAPE(2%,O%,2%)
This example writes an end-of-file to the record at
the current position of the tape open on channel
2 .

3

	

Unused

	

0

	

Rewinds the tape open on the channel you specify
to its BOT. For example :

200 I% = MAGTAPE(3%,0%,2%)
This example rewinds the tape open on channel
2, but does not take the tape off-line .

(continued on next page)

17-24 Advanced Input-Output

Table 17-2 MAGTAPE Function Codes

Function Value
Code Parameter Returned

1 Unused 0

2 Unused 0

Table 17-2 (Cont.) MAGTAPE Function Codes

Function

	

Value
Code

	

Parameter

	

Returned

	

Explanation

4

	

Number of

	

0, or number

	

Advances the tape until either the number of
records to

	

of records not

	

records you specify is skipped, or the tape reaches
skip (1 to

	

skipped

	

the end of the file . If the tape reaches the end of
32767)

	

file, the value returned (I%) equals the number
you specified (P%) minus the number of records
actually skipped before reaching the end of the
file. For example :
200 1% = MAGTAPE(4%,50%,2%)

This example skips 50 records on the tape open
on channel #2 . If the search does not reach the
end of the file, the value of 1% is 0 . If the end of
the file is reached after skipping 30 records, the
value of I% is 20 .

5

	

Number of

	

0, or number

	

Backspaces the length of a record for the number
records to

	

or records not

	

of records you specify until the number of records
backspace (1 backspaced

	

you specify to backspace is reached, or until a
to 32767)

	

BOT or end-of-file is reached . For example :
200 1% = MAGTAPE(5%,1%,2%)

This example backspaces the length of one record
on the tape that is open on channel 2 . If the tape
is not at the BOT, the value of 1% is 0% . If the
tape is at the BOT, the value of 1% is 1% .

6

	

E+D*4+P

	

0

	

Sets the density and parity of your tape . E is
the recording density. Its value can be 256, which
sets the recording density to 1600 BPI or 0 . If the
value is 0, the recording density defaults to one
of the values for D . D is a value that indicates
the recording density and type of track . You can
choose one of these values :

Value

	

Meaning

0 200 BPI (7-track only)
1 556 BPI (7-track only)
2 800 BPI (7-track only)
3

	

800 BPI (9-track only)

(continued on next page)

Advanced Input-Output 17- 25

Table 17-2 (Cont .) MAGTAPE Function Codes

Function

	

Value
Code

	

Parameter

	

Returned

	

Explanation

P is the parity check to be performed . Its value
can be 0 for odd parity checking or 1 for even
parity checking.
For example :
10 OPEN "MMO :" AS FILE 2%
20 1% = MAGTAPE(6%, 00+2%*4%+1%, 2%)

In this example, reading the MAGTAPE function
from left to right, 6% is the number of the
channel this tape is open on . 0% is the value
of E, which defaults to one of the values of D . 2%
is the value of D, which sets the BPI to 800 and
specifies the tape to be 7-track . 4% is a numeric
constant . 1% is the value of P, which checks for
even parity. 2% is the number of the channel
that this tape is open on .

7

	

Unused

	

Status word

	

Returns a WORD integer representing the status
of the 1/O operations your programs perform to
tape. Each I/O operation sets bits in a certain
sequence. This MAGTAPE function code returns
a value depending on how these bits are set . To
find out what the value of a particular bit is, you
must include a test in your program . The value
returned as a result of the test corresponds to an
I/O operation . See Table 17-3 for a description of
the bits set, the logical test you must include to
evaluate the returned value, and what the logical
test value means .

8t

	

Unused

	

Characteristic Returns a WORD integer representing the file
word

	

characteristics of the specified magnetic tape .

9t

	

Unused

	

0

	

Rewinds the tape once the file is closed .

tRSTS/E systems only .

If the specified function code is 7, int-varl is a 16-bit integer that reflects the
status of the specified magnetic tape . Table 17-3 provides information on the
bit values and their meanings .

17-26 Advanced Input-Output

Table 17-3 Tape Status Word

Bit Set

6
5
4

3
2-0

17.3.2 .7 Writing Records to Tape
The PUT statement writes records to a tape, and successive PUT operations
write successive records . If you do not use MAP statements, you must use the
RECORDSIZE clause to define the size of your record buffer and you must
use MOVE statements to transfer records in and out of the record buffer . For
example :
10

	

OPEN 'MMO :' FOR OUTPUT AS FILE #9%, RECORDSIZE 512%
1% = MAGTAPE(3%,0%,9%)
I% = MAGTAPE(7%,O%,9%)

Advanced Input-Output 17- 27

Status Word Logical Test Explanation

-32768 1% < 0% Last command caused an error .

24376 (1% AND 24576%)/8192 = 0 Recording density is 200 BPI .
(I% AND 24576%)/81925 = 1 Recording density is 556 BPI .
(1% AND 24576%)/81925 = 2 Recording density is 800 BPI and

the tape is 7-track .
(I% AND 24576%)/81925 = 3 Recording density is 800 BPI and

the tape is 9-track .
4096 (1% AND 4096%) = 0% Tape is 9-track.

(I% AND 4096%)<>0% Tape is 7-track .
2048 (1% AND 2048%) = 0% Odd parity checking .

(1% AND 2048%)<>0% Even parity checking .
1024 (1% AND 1024%)<>0%a Tape is physically write-locked .
512 (1% AND 512%)<>0% Tape is past the EOT marker .

256 (1% AND 256%)<>0% Tape is at the BOT .
128

None .

(1% AND 128%)<>0%

None .

Last command detected an end-of-
file .
Reserved .

32 (1% AND 32%)<>0% Tape drive is off-line .
16 (1% AND 16%)<>0% Tape drive is one of the following :

TU16, TE16, TU45, or TU77 .

8
None .

(1% AND 8%)<>0%
None .

BPI is 1600 and phase-encoded .
Reserved .

IF ((I% AND 256%) <> 0%)
THEN

PRINT 'The tape is at its BOT .'
INPUT 'What is the temperature in Celsius' ; CEL TEMP
MOVE TO #9%, CEL TEMP
PUT #9%
I% = MAGTAPE (2%,0%,9%)
I% = MAGTAPE (2%,0%,9%)
I% = MAGTAPE (3%,0%,9%)

ELSE
PRINT 'The tape is not at its BOT .'

END IF
CLOSE #9%

32767 END

In this example :
1 . The OPEN statement opens a tape physically mounted on the tape drive

MMO: for output, and specifies a maximum record size of 512 bytes .
2. The first MAGTAPE function rewinds the tape open on channel 9 to its

BOT.
3. The second MAGTAPE function returns a status variable and the IF

statement performs a logical test to find out if the tape has been rewound
to its BOT (see Table 17-3 for the logical test) .

4. The INPUT statement prompts you for the value of the variable
CEL TEMP.

5. The MOVE statement moves the value of CEL_TEMP into the record
buffer.

6. The PUT statement moves the data from the record buffer and writes it to
tape .

7. The next two MAGTAPE functions write end-of-file marks, indicating the
end of the tape .

8. The last MAGTAPE function rewinds the tape .

17-28 Advanced Input-Output

17.3.2 .8 Adding New Records to Tape
To add records to an existing file on tape, you must position the tape to the end
of the file . You cannot use the ACCESS APPEND clause to do this because you
are not using RMS-11 . If you do not position your tape to its end-of-file, any
new records you write overwrite existing records . Therefore, you must use the
MAGTAPE function to skip enough records to position the tape at the end of
the file. For example :
10

	

OPEN 'MMI :' AS FILE #2%, RECORDSIZE 512
START : INPUT 'Number of records to skip' ;SKIP%

I% = MAGTAPE(4%,SKIP%,2%)
PRINT 'You have skipped' ;I% ;' records .'
1% = MAGTAPE(7%,0%,2%)
IF (I% AND 128%) <> 0%
THEN

PRINT 'The last statement detected an end of file mark .'
INPUT 'Record' ;RECORD$
MOVE TO #2%, RECORD$
PUT #2%

ELSE
PRINT 'You are not at the end of the file .'
GOTO START

END IF
I% = MAGTAPE(2%,0%,2%)

32766

	

CLOSE #2%
32767

	

END

In this example :
1. The OPEN statement opens a channel to the tape physically mounted on

MM1: .
2 . The INPUT statement prompts you to enter the number of records to skip .

3. The first MAGTAPE function skips the number of records you specify, and
the PRINT statement displays the number of records the operation was
able to skip .

4 . The IF statement tests to see if the status value returned by the second
MAGTAPE function indicates that the current tape position is at the end of
the file . If the test is true, a message displays, you are prompted to input
a record, the MOVE statement transfers the record to the record buffer,
then the PUT statement writes the record to tape . If the test is not true, a
message displays that you are not at the end of the file, and control passes
to the label START .

5. The last MAGTAPE function writes a new end-of-file mark at the end of
the record just added .

Advanced Input-Output 17- 29

17.3 .2 .9 Reading Records on Tape
The GET statement reads records from an open tape and successive GETs read
successive records . When you open an existing file FOR INPUT, you must use
the same record size you used to write the record. For instance, this example
gives you an error :
10

	

OPEN 'MY :' FOR OUTPUT AS FILE #5%, RECORDSIZE 512%
20

	

INPUT REC
30

	

MOVE TO #5%, REC
40

	

PUT #5%
50

	

CLOSE #5%

500

	

OPEN 'MY :' FOR INPUT AS FILE #4%, RECORDSIZE 128%

The RECORDSIZE clause in the OPEN statement at line 10 defines a record
size of 512 bytes . When the program tries to open the same file at line 500,
the stated record size is 128 bytes, so BASIC-PLUS-2 will return an error
message .
1

	

ON ERROR GOTO 19000
OPEN 'MM1 :' FOR INPUT AS FILE #1%, RECORDSIZE 512

LOOP : FOR MYCOUNT% = 1% TO 128%
GET #1%
MOVE FROM #1%, REC
PRINT REC

NEXT MYCOUNT%
I% = MAGTAPE(3%,0%,1%)
GOTO 32766

19000

	

IF (ERR = 11%)
THEN PRINT 'You have reached the end of the file .'
ELSE PRINT ERT$(ERR)

END IF
RESUME 32766

32766

	

CLOSE #1%
32767

	

END

In this example :
1 . Line 1 transfers control to line 19000 if an error occurs .
2 . The OPEN statement opens a tape on channel #1% for input and declares

the record buffer size to be 512 bytes .
3 . Label LOOP : starts a loop to retrieve 128 records and print them .

4 . The MAGTAPE function will rewind the tape after line 32766 executes .

17-30 Advanced Input-Output

5 . The error handler at line 19000 prints a message if the end of the file is
reached . If another error occurs, the message associated with the error
displays .

17.3 .2.10 Locating Records on Tape
To locate records, you must know the contents of the tape . Then you use the
MAGTAPE function to skip or backspace the number of records to find the one
you want. For example :

OPEN 'XX :' FOR INPUT AS FILE #3%, MAP FUN

Rewind tape to its BOT
i

I% = MAGTAPE(3%,0%,3%)

Choice : PRINT 'Do you want to : 1 = move forward,
i

INPUT '2 = move backward, or 3 = read records' ;ANS%

SELECT ANS%
CASE = 1%

INPUT 'Records to skip' ;ANS1%

! Skip records

I% = MAGTAPE(4%,ANS1%,3%)
PRINT 'Skipping' ;ANSI% ;' records .'
GOTO Choice

CASE = 2%
INPUT 'Records to backspace' ;ANS2%

Backspace records

1% = MAGTAPE(5%,ANS2%,3%)
PRINT 'Back tracking' ;ANS2% ;' records .'
COTO Choice

Advanced Input-Output 17-31

10 ON ERROR GOTO 19000

DECLARE WORD CT
i
MAP (FUN) STRING RECORDI = 128%, &

STRING RECORD2 = 128%, &
STRING RECORD3 = 128%, &
STRING RECORD4 = 128%

19000

END SELECT

GOTO 32766

Error Handler

PRINT 'Unexpected error : ' ;ERT$(ERR)
RESUME 32766

32766

	

CLOSE #3%
32767

	

END

In this example :
1 . The MAP statement allocates storage for four variables .
2 . The OPEN statement opens the tape for input on channel 3 .
3 . The first MAGTAPE function rewinds the tape to its BOT.
4 . The INPUT statement asks you to choose whether you want to skip,

backtrack, or read records .
5 . If you answer 1, all the statements in the first CASE statement execute .

The INPUT statement asks you for the number of records to skip. Your
response is assigned to a variable that is used as the parameter in the
MAGTAPE function.

17-32 Advanced Input-Output

CASE

	

3%
INPUT 'Records to read' ;ANS3%

FOR CT = 1% TO ANS3%
GET #3%
PRINT RECORDI, RECORD2, RECORD3, RECORD4

NEXT CT

Check for the end-of-file mark

I% = MAGTAPE(7%,0%,3%)
PRINT 'Checking for end of file .'

Test for the end-of-file mark

IF (I% AND 128%) <> 0
THEN

PRINT 'Tape is at the end of the file .'
END IF

CASE ELSE
PRINT 'Invalid number . Try again .'
GOTO Choice

6 . If you answer 2, all the statements in the second CASE statement execute .
The INPUT statement asks you for the number of records to backspace .
Your response is assigned to a variable that is used as the parameter in the
MAGTAPE function.

7 . If you answer 3, all the statements in the third CASE statement execute .
The INPUT statement asks you for the number of records to read . Your
response is assigned to a variable that is used in a loop to retrieve and
display records .

8 . If you choose an invalid selection number, a message is displayed and
control transfers to the label Choice .

9 . The last MAGTAPE function compares the values of the MAGTAPE
function and the tape status word to check for the end of the file .

17.3.2.11 Deleting Records on Tape
You can truncate the remaining records in a file using the MAGTAPE function
to write an end-of-file mark to the record at the current position of the tape .
For example :
10

	

MAP (BUF) INTEGER LONG QKIT NUM, LONG FILL(127)
OPEN 'MM2 :' FOR INPUT AS FILE #4%, MAP BUF
I% = MAGTAPE(4%,27%,4%)
GET #4%
PRINT QKIT NUM
INPUT 'Do you want to delete the remaining records <YES/NO>' ;ANS$
IF ANS$ = 'NO'

THEN I% = MAGTAPE(3%,0%,4%)
ELSE I% = MAGTAPE(2%,0%,4%)

END IF
32766 CLOSE #4%
32767 END

In this example :
1 . The MAP statement specifies a record buffer of 512 bytes .
2. The OPEN statement opens a tape for input on channel 4 .
3 . The first MAGTAPE function tells the tape to skip the length of 27 records,

which positions the tape at the beginning of the 28th record .
4 . The GET statement gets the record at the current position of the tape .

5 . The PRINT statement displays the record .

Advanced Input-Output 17- 33

6 . The IF statement asks you if you want to truncate the remaining records .
If you do not want to truncate the remaining records, the next MAGTAPE
function will rewind the tape . If you do want to truncate the remaining
records, the last MAGTAPE function writes an end-of-file mark to the
current tape position .

17.3.2.12 Dismounting a Tape
After you finish using a tape, you must do the following :
©

	

Specify the DCL command DISMOUNT
©

	

Specify the DCL command DEALLOCATE
©

	

Physically dismount the tape
For example :
$ DISMOUNT MYTAPE :
$ DEALLOCATE MYTAPE :

You must specify the DISMOUNT command before you do any of the following :

©

	

Issue the DEALLOCATE command
©

	

Set the tape drive off line
©

	

Rewind, unload, or take the tape off the drive
The DEALLOCATE command releases the tape drive you allocated and allows
other users to access that device . This command applies only to systems that
have multiuser protection . If you are a nonprivileged user, you can deallocate
only the tape drive you allocated . When you log out, the system automatically
deallocates all tape drives allocated to you .
After you deallocate the tape drive, press the UNLOAD button on the tape
drive to unload and rewind your tape .

17.3.3 Device-Specific I/O to Disk Devices

When performing device-specific I/O to disks, you write and read data with
PUT and GET statements. Note that, when accessing disks with device-specific
I/O operations, you are performing logical I/O . Because of this, you should be
careful not to overwrite block number zero, which is often the disk's boot block .

When you write records to disk, you can store as many records as can fit in a
512-byte disk block . The maximum number of blocks on a disk depends on the
type of disk you use . You specify the location and format of the records in each
block by blocking and deblocking records with MAP, MAP DYNAMIC, REMAP,
and MOVE statements .

17-34 Advanced Input-Output

When you do not use RMS, the Task Builder does not need to link to RMS-11
libraries. Therefore, add the /NOVIRTUAL qualifier to the BUILD command
to generate Task Builder CMD and ODL files that do not access RMS-11
libraries . By specifying the /NOVIRTUAL qualifier, you free 8K words of
virtual address space and substantially decrease the time it takes to link your
program .
You can use the following statements to handle file operations on disk :
©

	

OPEN
©

	

PUT
©

	

GET
©

	

CLOSE
The following sections describe device-specific I/O to disks .

17.3.3 .1 Allocating and Mounting a Disk
You must allocate a disk unit to your process before starting operations . For
example, the following command line assigns disk DU2 : to your process .
$ ALLOCATE DU2 :

On RSX systems, when you perform I/O directly to a disk, you must mount the
disk with the MOUNT command and the /FOREIGN qualifier before accessing
it. For example :
$ MOUNT/FOREIGN DU2 :

You can then open the disk for input or output .

17.3.3.2 Opening a File on Disk
You open a channel to a disk using the OPEN statement with the
ORGANIZATION VIRTUAL clause . The format of the OPEN statement is as
follows :
OPEN 'dev:' AS FILE [#]chnl-exp ORGANIZATION VIRTUAL [, clause, . . .]

dev :
Is the physical name and number or logical name of the drive on which your
disk is placed. Note that you do not include a file name .

chnl-exp
Is the number of the channel on which the disk is open . It can be preceded by
an optional number sign (#) .

clause
Is the RECORDSIZE or MAP clause .

Advanced Input-Output 17-35

Once you finish file operations, you should explicitly close all open files with
the CLOSE statement . When BASIC-PLUS-2 executes the CLOSE statement,
it releases any allocated record buffer space .
The following example opens the disk DU2 : for output :
OPEN "DU2 :" FOR OUTPUT AS FILE #2%, ORGANIZATION VIRTUAL &

RECORDSIZE 512

You can then write data to the disk .
The record size determined by the MAP or RECORDSIZE clause must be an
integer multiple of 512 bytes .

17.3 .3.3 Writing Records to Disk
You use the PUT statement to write records to a disk. Each PUT operation
writes an integral number of 512-byte blocks . You can write records either
randomly by block number or sequentially by omitting the RECORD clause to
the PUT statement .
The format of the PUT statement is as follows :
PUT [#]chnl-exp RECORD int-exp

chnl-exp
Is the number of the channel on which the disk is open . It can be preceded by
an optional number sign (#) .

RECORD int-exp
Is the number of the block where you want to write the record . Since disks
are direct access devices, there is no next record concept . Therefore, you must
always specify the RECORD clause with the PUT statement .
If your record size is not 512 bytes, you waste space . Pad the unused space
with FILL statements to make sure that no unexpected data is written to disk .

You also can write records that are longer than a block in length. For example,
if your record is five blocks long (a total of 2560 bytes) and you use a RECORD
1% clause, this record is written to the first through fifth disk blocks . If you
use a RECORD 2% clause to write a second record of the same size, the record
is physically written to the sixth through tenth disk blocks .

17-36 Advanced Input-Output

10

	

ON ERROR GOTO 19000

DECLARE WORD CT

MAP (GAME) LONG REC, STRING FILL = 508%

OPEN 'DKO :' AS FILE #9%, ORGANIZATION VIRTUAL, MAP CAME

Use the counter index to specify RECORD value

FOR CT = 1% TO 15%
INPUT REC
MOVE TO #9%, REC
PUT #9%, RECORD CT

NEXT CT

GOTO 32766

19000 f Error Handler
!
PRINT 'Unexpected error : ' ;ERT$(ERR)
RESUME 32766

32766 CLOSE #9%
32767 END

In this example :

1 . The OPEN statement opens a channel to the disk on DKO : . There is no
RECORDSIZE clause, so the record size defaults to 512 bytes .

2 . The FOR . . . NEXT loop writes 15 records to disk .

3 . The RECORD clause uses the value of each iteration of the loop to specify
which block the record is written to . Therefore, during the first loop the
PUT statement writes the first record to the first block, during the second
loop the PUT statement writes the second record to the second block, and
so on up to block 15 .

17.3.3.4 Adding New Records to Disk
To add new records to a disk, simply write them to an available block using the
PUT statement with the RECORD clause . You must know which disk blocks
are available to prevent writing over existing records . Note that BASIC does
not warn you if you write over an existing record .
If you wrote four 128-byte records (a total of 512 bytes) to each of 30 blocks,
you should be able to add records to the thirty-first block :
PUT #4%, RECORD 31%

Advanced Input-Output 17-37

17.3.3 .5 Reading Records on Disk
You can read records from disk using the GET statement . Each GET operation
retrieves an integral number of 512-byte blocks . The format of the GET
statement is as follows :
GET [#]chnl-exp RECORD int-exp

chnl-exp
Is the number of the channel on which the disk is open . It can be preceded by
an optional number sign (#) .

RECORD int-exp
Is the number of the block where the record is stored. Since disks are direct
access devices, there is no next record concept . Therefore, you must always
specify the RECORD clause with the PUT statement .
If you define the size of each record to be 128 bytes, you can store four records
in each disk block . One GET operation makes four records available for
processing . For example :
10

	

ON ERROR GOTO 19000

MAP (VIR) STRING A = 128,

	

&
B = 128,

	

&
C = 100,

	

&
FILL = 28,

	

&
D = 128

OPEN 'DKO :' AS FILE #4%, ORGANIZATION VIRTUAL, MAP VIR

GET #4%, RECORD 6%
PRINT A, B, C, D

GOTO 32766

19000

	

! Error Handler

PRINT 'Unexpected error : ' ;ERT$(ERR)
RESUME 32766

CLOSE #4%
END

32766
32767

In this example, the GET statement retrieves the first 512 bytes located in the
sixth block. Note that the FILL statement in the MAP declaration pads 28
bytes of unused space in the third record .

17-38 Advanced Input-Output

Because each GET operation transfers an integral number of 512-byte disk
blocks, your program must perform record blocking and deblocking . Use
the MAP, MAP DYNAMIC, REMAP, or MOVE statements to perform record
blocking and deblocking .
MAP statements allocate static memory . REMAP statements can redefine the
memory allocated with MAP statements . For example :
10

	

MAP (VIR) STRING TOTAL RECORD = 512%

OPEN 'DKO :' AS FILE #1%, ORGANIZATION VIRTUAL, MAP VIR

MAP DYNAMIC (VIR) STRING CURRENT RECORD
i
FOR I% = 0% TO 3%
REMAP (VIR) STRING FILL = I% * 128%, CURRENT RECORD
PRINT CURRENT-RECORD
NEXT 1%

In this example :
1 . Line 10 declares the storage and data type for 512 bytes .

2. The OPEN statement opens the disk on channel 1 and references the MAP
declared in line 10 .

3 . The MAP DYNAMIC statement declares the data type and name of
CURRENT RECORD. At each loop iteration, the position of this variable
in the buffer is redefined with the REMAP statement .

The following example uses MOVE statements to block and deblock records :

Advanced Input-Output 17-39

10

19000

ON ERROR GOTO 19000

OPEN 'DKO :' AS FILE #3%, ORGANIZATION VIRTUAL, RECORDSIZE 512%

DECLARE WORD CT, STRING REC

FOR CT = 1% TO 15%
GET #3%, RECORD CT
MOVE FROM #3%, RED
PRINT EEC

NEXT CT

GOTO 32766

Error Handler

PRINT 'Unexpected error : ' ;ERT$(ERR)
RESUME 32766

32766 CLOSE #3%
32767 END

In this example :
1 . The OPEN statement opens the disk on channel #3 . The record size and

record buffer size is 512 bytes .
2 . The FOR. . .NEXT loop retrieves one 512-byte record from blocks 1 through

15 .
3 . The MOVE statement moves each record from the record buffer and assigns

it to the string variable RECORD.
4 . The PRINT statement displays the value of RECORD.

17.3.3.6 Locating Records on Disk
There is no statement you can use to find a record on disk . To locate records,
you must know the contents of each block and then read the records in the
block you specify with the RECORD clause added to the GET statement .

17.3.3.7 Deleting Records on Disk
There is no BASIC statement you can use to delete or truncate records on disk .
To delete a record, you must write over it .

17-40 Advanced Input-Output

17.3.3.8 Dismounting a Disk
After you finish using a disk, you must follow these steps :

©

	

If you used the MOUNT command, specify the DISMOUNT command .

©

	

Specify the DCL command DEALLOCATE .

©

	

Spin down and remove your disk.

Specify the physical or logical name of the disk drive you use in the
DISMOUNT and DEALLOCATE commands . Consult your system manager
to learn how to spin down and remove your disk .

Note

Do not remove a disk until the message "Dismount complete" is
displayed on your terminal . If you do not wait for this message before
removing the disk, you may corrupt data on the disk .

17.4 Network I/O
If your system supports DECnet facilities, and your computer is one of the
nodes in a DECnet network, you can communicate with other nodes in the
network with BASIC-PLUS-2 program statements . BASIC-PLUS-2 lets you
do the following :

©

	

Read and write files on a remote node as you do files on your own system
(remote file access)

©

	

Exchange data with a process executing at a remote location (task-to-task
communication)

To write or read files at a remote site, include the node name as part of the file
specification. For example :
OPEN "WESTON : :DU1 :[HOLT]TEST .DAT" FOR INPUT AS FILE #2%

You can also assign a logical name to the file specification, and use that logical
name in all file I/O .
If the account at the remote site requires a username and password, include
this access string in the file specification . You do this by enclosing the access
string in quotation marks and placing it between the node name and the
double colon . For example, the following file specification accesses the account
[HOLT] on node WESTON by giving the username HOLT and the password
PASWRD. After accessing the file, your BASIC-PLUS-2 program can read and
write records as if the file were in your account .

Advanced Input-Output 17-41

OPEN 'WESTON"HOLT PASWRD" : :DUO :[HOLT]INDEXU .DAT' &
FOR INPUT AS FILE #1%, INDEXED, PRIMARY TEXT$

BASIC-PLUS-2 also supports task-to-task communication . See the DECnet-
RSX Programmer's Reference Manual or DECnet/E Network Programming in
BASIC-PLUS and BASIC-PLUS-2 for more information on network I/O and
task-to-task communication .

17-42 Advanced Input-Output

Libraries

This chapter describes how to use BASIC-PLUS-2 libraries, user-created
libraries, and RMS-11 libraries to optimize program development .

18.1 Introduction
Libraries are files that can contain object modules, text modules, and
executable code . If you have routines that are used in many programs,
placing the routines in a library lets you access them without including the
routines in the source code, thus shortening task build time and conserving
disk space . After you select a library, specify the BASIC-PLUS-2 BUILD
command so that the Task Builder will use the new library to task build your
program .
There are three different types of libraries : libraries supplied by
BASIC-PLUS-2, user-created libraries, and RMS-11 libraries . These libraries
are described in the following sections .

18.2 BASIC-PLUS-2 Libraries
BASIC-PLUS-2 supplies two types of libraries : memory-resident and object
module . When your program is linked, the Task Builder automatically links
your program to a memory-resident library, if one is available . If a memory-
resident library is not available, the Task Builder links your program to an
object module library. The following sections describe the BASIC-PLUS-2
memory-resident and object module libraries .

18.2.1 BASIC-PLUS-2 Memory-Resident Libraries
A memory-resident library resides in memory and contains executable code ;
that is, code in which all symbols are already resolved . If you use resident
libraries, the Task Builder only needs to supply an address pointing to the
executable code for that routine within the resident library. Furthermore, any
program using the same routine can share its executable code .

18

Libraries 18-1

18-2 Libraries

Using memory-resident libraries instead of object module libraries does not
significantly affect the execution speed of a single BASIC-PLUS-2 program,
but it does provide the following advantages :
©

	

Your programs link faster because there are fewer accesses to the object
module library on disk .

©

	

Even though resident libraries require a large amount of physical memory,
there is less total physical memory used for systems running many
BASIC-PLUS-2 tasks .

If you do not use resident libraries, the Task Builder resolves the symbols for a
given routine in the object module library.
BASIC-PLUS-2 supplies the following memory-resident libraries :

©

	

BP2RES
©

	

BP2SML
BP2RES contains most of the BASIC-PLUS-2 Object Time System (OTS)
routines . It uses 18K words of physical memory and 8K words of virtual
address space . BP2SML contains a subset of the most commonly used
BASIC-PLUS-2 routines. It uses 8K words of physical memory and 8K
words of virtual address space . Your system manager selects one of these
libraries as the default memory-resident library during the BASIC-PLUS-2
installation .

Note
The BASIC-PLUS-2 memory-resident libraries are an installation
option. You can determine if the memory-resident libraries are
installed on your system by using the DCL command SHOW LIBRARY
on RSTS/E systems or the DCL command SHOW COMMON on RSX
systems .

Your program is linked to the default memory-resident library unless you
select an alternative memory-resident library by using either the LIBRARY or
BRLRES command in the BASIC-PLUS-2 environment . See Section 18.3.2 for
more information on selecting a memory-resident library .
Before selecting a memory-resident library, you should first consider the
memory restrictions of your system and the speed with which you want your
programs to compile and link. For example, your program links faster if
you use BP2RES rather than BP2SML . BP2RES contains almost all of the
BASIC-PLUS-2 OTS routines, which means the Task Builder does not need to

access the BASIC-PLUS-2 object module library on disk as often . Note that
you also have the option of selecting a user-created memory resident library .
User-created memory-resident libraries are described in Section 18 .3 .

18.2 .2 BASIC-PLUS-2 Object Module Libraries
An object module library resides on disk and contains object code. The object
code for each routine is resolved when the program is linked and the resulting
executable code is incorporated in the task image . Thus, a task image created
by linking to an object module library is larger than the same program linked
with a resident library .
The advantages of using an object module library are as follows :

©

	

There is less total physical memory used for systems running few
BASIC-PLUS-2 tasks.

©

	

On small systems, using object module libraries is the only means of using
BASIC-PLUS-2 and RMS-11 at the same time .

BASIC-PLUS-2 provides you with one object module library, BP2OTS .OLB .
BP2OTS.OLB contains all of the BASIC-PLUS-2 OTS routines . If your system
does not have memory-resident libraries, the Task Builder extracts all the
BASIC-PLUS-2 routines it needs from BP2OTS .OLB . The BASIC-PLUS-2
memory-resident libraries contain most, but not all of the BASIC-PLUS-2 OTS
routines . Therefore, the BASIC-PLUS-2 object module library, BP2OTS .OLB,
must always be available to link BASIC-PLUS-2 programs . See the
BASIC-PLUS-2 Reference Manual for a list of the BASIC-PLUS-2 OTS
routines .

18.3 User-Created Libraries
Creating your own library can be a convenient and efficient way to access
the code your program needs . You can create a memory-resident or an object
module library for your program . The type of library you choose to create
depends on the following :
©

	

What library routines your programs need
©

	

How often your programs use the code you place in a library
©

	

The amount of virtual address space available for your tasks
You can identify the library routines a program requires by generating a map
file when you build or link the program . To generate a map file, specify the
/MAP qualifier with either the BASIC-PLUS-2 BUILD command or the DCL
command LINK .

Libraries 18-3

Once you identify those routines you use frequently, you can create your own
library to contain those routines . Because user-created libraries are smaller,
programs that use them link faster .

Note
DIGITAL does not support user-created libraries .

The following sections describe how to create memory-resident and object
module libraries .

18.3 .1 Creating a Memory-Resident Library
You can create your own memory-resident library by modifying an existing
memory-resident library and then installing it . First, determine which routines
your programs use most frequently . Then, modify an existing memory-resident
library to contain only those routines .
Once you create a memory-resident library, you can link your program to that
library. The following section tells you how to select a memory-resident library .
See the RSTSIE Task Builder Reference Manual or the RSX-11M/MPLUS
Task Builder Reference Manual for more information on creating memory-
resident libraries .

18.3 .2 Selecting a Memory-Resident Library
The BRLRES command allows you to specify a memory-resident library to be
used when you task-build a program. When you use the BUILD command,
BASIC-PLUS-2 includes the specified library in the Task Builder command
file .
The format of the BRLRES command is as follows :
BRLRES [lib-param]

lib-param
Is either the file specification of a memory-resident library or the keyword
NONE . The memory-resident library can be supplied by BASIC-PLUS-2 or
user-created . The keyword NONE tells the Task Builder not to link your task
to the default memory-resident library ; therefore, the Task Builder links your
task to the BASIC-PLUS-2 object module library, BP2OTS .OLB . If you do not
supply a lib-param, BASIC-PLUS-2 prompts you for one .
The following is an example of the BRLRES command :
BRLRES LB :[1,1]BASIC2

18-4 Libraries

You can also select a memory-resident library by adding the /BRLRES qualifier
to the BUILD command . The library you specify remains in effect for only one
BUILD operation .
See the BASIC-PLUS-2 Reference Manual for more information on the
BRLRES command .

18.3.3 Creating an Object Module Library
You can decrease the time it takes to link your program by condensing the
routines in the BASIC-PLUS-2 default object module library or by placing
frequently used program code into an object module library instead of a
subprogram .
After you determine what program code to place in a object module library,
compile the code to produce object module files . Then, use the DCL command
LIBRARY with the /CREATE qualifier to create the library and place the object
files in the library. For example :
$ LIBRARY/CREATE MYLIB SUBI,SUB2,SUB3

This LIBRARY command creates the object module library MYLIB .OLB, and
places the object modules SUBI .OBJ, SUB2.OBJ, and SUB3 .OBJ, in that
library.
The following section describes how to select an object module library to link to
your program .
See the RSTS/E System User's Guide or the RSX-11M-PLUS Command
Language Manual for more information on the LIBRARY command and
creating object module libraries .

18.3 .4 Selecting an Object Module Library
You have the following options when selecting an object module library for your
program :
©

	

You can use the default BASIC-PLUS-2 object module library .
©

	

You can use both the BASIC-PLUS-2 object module library and your own
object module library to link the program .

©

	

You can use a customized version of the BASIC-PLUS-2 object module
library or a library you create yourself .

You cannot use your object module library to replace the BASIC-PLUS-2
object module library unless your object module library includes all of the
BASIC-PLUS-2 OTS routines.

Libraries 18-5

18.3.4 .1 Selecting Both the Default and a User-Created Object Module Library
If you want to use both the default BASIC-PLUS-2 object module library and
your own object module library to link the program, you must edit the ODL
file for your program to include references to your library ; otherwise, the Task
Builder can only link your program to the default object module library .
The following example is an ODL file before modification :

.ROOT BASIC2-RMSROT-USER,RMSALL
USER :

	

FCTR SY :T-LIBR
LIBR :

	

FCTR LB :[1,1]BP20TS/LB
@LB :[1,1]BASIC2
@LB :[1,1]RMS11X

.END

The following example is the previous ODL file which has been modified
to include references to the user-created library, MYLIB .OLB . MYLIB.OLB
tells the Task Builder to link to three object module libraries : BP2OTS.OLB,
SUBLIB .OLB, and RMSLIB .OLB .

.ROOT BASIC2-RMSROT-USER,RMSALL
USER :

	

FCTR SY :T-LIBR-MYLIB
LIBR :

	

FCTR LB :[1,1]BP20TS/LB
MYLIB :

	

FCTR SY :[30,3]SUBLIB/LB
@LB :[1,1]BASIC2
@LB :[1,1]RMS1IX

.END

18.3.4.2 Selecting a User-Created Object Module Library
The DSKLIB command lets you select a user-created object module library
to link to your program. The object module library you specify is included in
the Task Builder command (CMD) file . The Task Builder searches this library
when it links your program . Note that you must use the DSKLIB command
before you use the BUILD command to generate CMD and ODL files .

The format of the DSKLIB command is as follows :

DSKLIB [file-spec]

file-spec
Is the file specification of a disk-resident object module library . The
specified library can either be the default BASIC-PLUS-2 library or a user-
created library. If you specify the DSKLIB command without a file-spec,
BASIC-PLUS-2 prompts for one and displays the name of the current default
disk-resident library. If you press the RETURN key without specifying a
library file specification, the current default disk-resident library is used .

18-6 Libraries

The following is an example of the DSKLIB command :
DSKLIB LB :[1,1]MYLIB

You can also select an object module library by adding the /DSKLIB qualifier
to the BUILD command . The library you specify remains in effect for only one
BUILD operation .
For more information on the DSKLIB command, see the BASIC-PLUS-2
Reference Manual .

18.4 RMS-11 Libraries
An RMS-11 library supplies RMS-11 code for file and record operations .
BASIC-PLUS-2 uses RMS-11 if you specify a file organization in an
OPEN statement, or if you specify a BUILD command with the /VIRTUAL,
/SEQUENTIAL, /INDEXED, or /RELATIVE qualifiers . RMS-11 supplies one
object module library and two memory-resident libraries . These libraries are
described in the following sections .

18.4.1 The RMS-11 Memory-Resident Libraries
RMS-11 supplies the following memory-resident libraries :
©

	

RMSRES
©

	

DAPRES
RMSRES contains most of the routines in the RMS-11 OTS and supports
sequential, relative, and indexed file organizations. DAPRES contains routines
that support remote file access to other DECnet nodes . However, DAPRES
cannot be used by itself. It must be used with RMSRES .
RMSRES uses 23K words of memory and 8K words of virtual address space .
Like BASIC-PLUS-2, even if the RMS-11 resident library is available on
your system, the RMS-11 object module library must be available to link
BASIC-PLUS-2 programs that use RMS-11 .

Note

The RMS-11 memory-resident libraries are an installation option .
Your system manager selects the default RMS-11 resident library
when installing BASIC-PLUS-2 . You can determine if the RMS-11
memory-resident libraries are installed on your system by using the
DCL command SHOW LIBRARY on RSTS/E systems or the DCL
command SHOW COMMON on RSX systems .

Libraries 18-7

18-8 Libraries

If an RMS-11 memory-resident library is available, you also have the option
of selecting an RMS-11 ODL file to describe how the memory-resident library
will be overlaid in memory. The ODL files supplied by RMS-11 are described
in Section 18.4 .4 .
The following section describes how to select an RMS-11 memory-resident
library to link to your program .

18.4 .2 Selecting an RMS-11 Memory-Resident Library
Before you select an RMS-11 memory-resident library, you should first consider
the memory restrictions of your system and the type of file organization you
want to use . Once you decide which RMS-11 memory-resident library you
want to use, you can specify the BASIC-PLUS-2 RMSRES command . The
RMSRES command determines which RMS-11 memory-resident library the
Task Builder links to your program .
The format of the RMSRES command is as follows :

RMSRES lib-param

lib-param
Is either the file specification of an RMS-11 memory-resident library or the
keyword NONE . The memory-resident library can either be supplied by
RMS-11 or user-created . NONE tells the Task Builder not to link your task
to the default RMS-11 resident library ; therefore, the Task Builder links your
task to the RMS-11 object module library, RMSLIB .OLB. If you do not supply
a lib-param, BASIC-PLUS-2 prompts for one and displays the name of the
current default RMS-11 library.
The following is an example of the RMSRES command :
RMSRES LB :[1,1]RMSRES

To override the default RMS-11 resident library, use the RMSRES command
before you use the BUILD command . The RMS-11 resident library you specify
in the RMSRES command remains in effect until you either specify a new
RMSRES command or exit from the BASIC-PLUS-2 environment . Once you
exit from the BASIC-PLUS-2 environment, the default RMS-11 resident
library is used .
You can also select an RMS-11 memory-resident library by using the /RMSRES
qualifier with the BUILD command. The library you specify remains in effect
for only one BUILD operation .

18.4.3 The RMS-11 Object Module Library
RMS-11 provides you with one object module library, RMSLIB .OLB .
RMSLIB .OLB contains all RMS-11 Object Time System (OTS) routines .
Even if both RMS-11 memory-resident libraries are available, the RMS-11
object module library must always be available, since some routines only exist
in this library.

To determine if RMSLIB .OLB is available on your system, enter the ODL file
for your program on your terminal . You should see a line that looks like the
following :

@ LB:[1,1]name

Here, name represents the file name of an ODL file that accesses the RMS-11
object module library, RMSLIB .OLB. You can use one of the ODL files RMS-11
supplies to access the RMS-11 object module library. The RMS-11 ODL files
are described in the following section.

18.4.4 RMS-11 ODL Files
RMS-11 Overlay Description Language (ODL) files tell the Task Builder how
to overlay segments of the RMS-11 object module library and memory-resident
libraries . Your system manager selects the default RMS-11 ODL file during
installation. You can determine the default RMS-11 ODL file on your system
by using the SHOW command in the BASIC-PLUS-2 environment .

RMS-11 supplies you with seven different ODL files : two ODL files for the
RMS-11 memory-resident libraries and five ODL files for the RMS-11 object
module library. The RMS-11 ODL files are described in Table 18-1 .

Table 18-1 ODL Files Supplied by RMS-11
ODL File

	

Description

ODL Files for the RMS-11 Memory-Resident Libraries

RMSRLX

	

Requires 8K words of virtual address space and includes support for the
RMSRES memory-resident library.

DAPRLX Requires 8K words of virtual address space, clusters the DAPRES and
RMSRES memory-resident libraries, and allows you to use DECnet to
access remote nodes .

(continued on next page)

Libraries 18-9

18-10 Libraries

Table 18-1 (Cont.) ODL Files Supplied by RMS-11

ODL File

	

Description

ODL Files for the RMS-11 Object Module Library

RMS11S

	

Requires 7K bytes of virtual address space, overlays RMSLIB .OLB in
11 segments, and supports sequential and relative file organizations .

RMS12S

	

Requires 9K bytes of virtual address space, overlays RMSLIB .OLB in 5
segments, and supports sequential and relative file organizations .

RMS11X Requires 10K bytes of virtual address space, overlays RMSLIB .OLB
in 35 segments, and supports sequential, relative, and indexed file
organizations .

RMS12X Requires 12K bytes of virtual address space, overlays RMSLIB .OLB
in 13 segments, and supports sequential, relative, and indexed file
organizations .

DAP11X Requires 14K bytes of virtual address space, overlays RMSLIB .OLB
in 16 segments, and supports sequential, relative, and indexed file
organizations . It also supports file access to other computer systems
through the use of DECnet, if DECnet is installed on your system .

Note

ODL file names may change with new versions of RMS . Therefore,
refer to the RMS-11 distribution kit for current ODL file names .

The following section tells you how to select an RMS-11 ODL file .

18 .4 .5 Selecting an RMS-11 ODL File
Before selecting an ODL file, you should consider the following :

©

	

The type of file organization you want to use

©

	

The amount of available virtual address space

©

	

The time in which you want your program to execute
If you want to use an indexed file organization, for example, but have limited
address space, you would choose RMS11X.ODL to describe the overlay
structure of RMSLIB .OLB. Because RMS11X.ODL overlays RMSLIB .OLB
in 35 segments, your task takes longer to execute than if you were to use
RMSI2X.ODL, which overlays RMSLIB .OLB in 13 segments.

To select an ODL file, use the BASIC-PLUS-2 ODLRMS command . The
format of the ODLRMS command is as follows :
ODLRMS odl-param

odi-param
Is either the file specification of an RMS-11 ODL file or the keyword NONE .
The ODL file can either be supplied by RMS-11 or user-created . NONE
specifies no ODL file .
The following is an example of the ODLRMS command :
ODLRMS LB :[1,1]RMSRLX .ODL

Specify the ODLRMS command before you use the BUILD command . The Task
Builder includes the ODL file you specify in the Task Builder command (CMD)
file until you either specify a new ODL file the ODLRMS command or exit from
the BASIC-PLUS-2 environment. Once you exit from the BASIC-PLUS-2
environment, the default ODL file is used .
You can also select an RMS-11 ODL file by using the the /ODLRMS qualifier
with the BUILD command. The ODL file you specify remains in effect for only
one BUILD operation .
See the RSTS/E RMS-11 User's Guide or the RSX-11M/MPLUS RMS-11
User's Guide for information on creating ODL files .

18.5 Clustering Memory-Resident Libraries
When you link your task to two or more memory-resident libraries, the
libraries use additional virtual memory space . Therefore, the more memory-
resident libraries you use, the less space is available for your task . You can
avoid this problem by clustering your memory-resident libraries . When you
cluster memory-resident libraries, the libraries share Active Page Registers
(APRs) which reduces the amount of virtual memory space required and
consequently increases the space available for your task .

To cluster memory-resident libraries, use the /CLUSTER qualifier with the
BASIC-PLUS-2 BUILD or SET commands . For example :
BUILD /CLUSTER=DAPRES

When you specify the /CLUSTER qualifier, BASIC-PLUS-2 adds a line to
the Task Builder CMD file telling the Task Builder to cluster the following
libraries :
©

	

The default BASIC-PLUS-2 memory-resident library ; you must link a
BASIC-PLUS-2 memory-resident library to your task for the /CLUSTER
qualifier to have any effect

Libraries 18-11

© The default RMS-11 memory-resident library (if required for your program)
© The library you specify with the /CLUSTER qualifier ; for example, if you

have DECnet installed on your system, you may want to include support
for file access to other computer nodes by specifying the DAPRES RMS-11
resident library

In addition to the default BASIC-PLUS-2 resident library, there must be at
least one other resident library you are linking to your task for the /CLUSTER
qualifier to have an effect .

18.6 Remote File Access
If DECnet is provided on your system, your BASIC-PLUS-2 programs can
access files on other computer systems . To open a file on another computer
node, you include the node name in the file specification . For example :
OPEN 'boston : :dbl :[30,42]file .dat' AS FILE #1, SEQUENTIAL

This OPEN statement specifies the device DB1 : and the account [30,42] .
When this statement executes, RMS-11 searches for the file FILE.DAT, on a
computer system called BOSTON . You must specify a device and account name
or RMS-11 searches for the file in the default DECnet account on a remote
node .
There are two ways to include remote file access support for your
BASIC-PLUS-2 programs :

©

	

With the object module library, use the RMS-11 ODL file DAP11X to
include DECnet support in the RMSLIB object module library .

©

	

With memory-resident libraries, cluster the RMSRES and DAPRES
memory-resident libraries with the BASIC-PLUS-2 memory-resident
library.

To cluster the RMS-11 memory-resident libraries RMSRES and DAPRES
with a BASIC-PLUS-2 memory-resident library, you specify RMSRES as the
RMS-11 memory-resident library and DAPRES as the CLUSTER library . For
example :
RMSRES RMSRES

BASIC2

SET /CLUSTER : DAPRES

BASIC2

18-12 Libraries

When you use the RMS-11 memory-resident library RMSRES with another
memory-resident library, you must use RMSRLX as the RMS-11 ODL file .
However, RMSRES and DAPRES are both RMS-11 libraries and must both
be overlaid. Therefore, if you cluster RMSRES and DAPRES, you must use a
special RMS-11 ODL file, DAPRLX. To specify DAPRLX, use the /ODLRMS
qualifier or ODLRMS command . For example :
ODLRMS LB :DAPRLX

BASIC2

See Chapter 12 and Chapter 17 for more information on accessing files on
remote nodes .

Libraries 18-13

19
Utilities

This chapter describes three BASIC-PLUS-2 utilities : the Optimizer Utility,
the Dump Analyzer Utility, and the Resequencer Utility.

19 .1 The Optimizer Utility
The BASIC-PLUS-2 Optimizer Utility reduces the size of an object module
by replacing duplicate calls to the BASIC-PLUS-2 Object Time System (OTS)
with a subroutine .
The Optimizer Utility is primarily useful for executing large tasks or when the
amount of available memory is low . When using the Optimizer Utility, follow
these guidelines for maximum performance :

©

	

Use your fastest disk. The Optimizer utility creates a large workfile in
your default directory and uses it extensively . Fast access to this workfile
is a major factor in its performance .

©

	

Submit your optimization job as a batch job, when system load is minimal .

©

	

Specify the largest segment size possible .

©

	

Generate a listing file only when you want to determine the proper segment
size .

19 .1 .1 Invoking the Optimizer Utility
You can either use the OPT command or the DCL command RUN $BP2OPT to
invoke the Optimizer Utility. These commands are described in the following
sections. The Optimizer Utility is an installation option . See your system
manager if you have trouble invoking the Optimizer Utility.

Utilities 19-1

19.1 .1 .1 The OPT Command
The OPT command must be installed as a CCL or MCR command on your
system for you to use it to invoke the Optimizer Utility .
The format of the OPT command is as follows :
OPT [/qualifier . . .] file-spec [/qualifier . . .]

/qualifier
Is the name of a qualifier that indicates a specific action to be performed by the
Optimizer Utility on the specified file .

file-spec
Is the file specification of the object module to be optimized . If you do not
supply a file type, the Optimizer Utility searches for a file with a file type of
OBJ by default .

Qualifier

	

Default

/[NO]LIST [file-spec]

	

/NOLIST
/[NO]OUTPUT = file-spec

	

/NOOUTPUT
/SEGMENT SIZE = int-const

	

/SEGMENT SIZE=3

Command Qualifiers
/[NO]LIST [=file-spec]
The /LIST qualifier causes the Optimizer to generate a listing file . The listing
file contains a MACRO representation of the code being optimized and also
contains optimization statistics . The optimization statistics can help you
determine the correct segment size to specify for optimizing your task . If you
do not specify a file specification with the /LIST qualifier, the name of the
listing file is the same as the name of the input file with a file type of LST. The
default is /NOLIST .

/[NO]OUTPUT = file-spec
The /OUTPUT qualifier allows you to specify a file specification for the
generated object module . If you do not specify a file-spec, or specify
/NOOUTPUT, the default file specification for the object file is the file name of
the program and a file type of OBJ .

/SEGMENT-SIZE = int-const
The /SEGMENT SIZE qualifier specifies the minimum word size of the
program segments to be optimized . Int-const can be an integer value from
3 through 32767 . The default is /SEGMENT SIZE = 3. See Section 19 .1.2 for
more information on choosing a segment size .

19-2 Utilities

The following is an example of the OPT command :
$ OPT BIGTSK .OBJ/SEGMENT_SIZE=25/LIST=OPTLST .LIS

This command optimizes all program segments containing more than 25
words in the object module BIGTSK, and generates the Optimizer listing file,
OPTLIST.LIS .

19.1 .1 .2 The RUN $BP2OPT Command
The DCL RUN $BP2OPT command invokes the Optimizer Utility interactively
and causes it to prompt you for information about your task . The format of the
RUN $BP2OPT command is as follows :
RUN $BP2OPT
When you invoke the Optimizer Utility with the RUN $BP2OPT command, the
Optimizer Utility displays a line identifying itself and then prompts you for the
following information :
©

	

The name of the input file
©

	

The name of the output file
©

	

The name of the listing file you want to generate, if any
©

	

The segment size you want optimized
The following is an example of the RUN $BP2OPT command and the Optimizer
Utility dialogue :
$ RUN $BP20PT
BASIC-PLUS-2 Optimizer V1 .0
Input File ? TEST .OBJ
Output File ? TEST .OBJ
Listing File? TEST .LST
Minimum Segment Size? 18

The following defaults apply:
©

	

You must supply the name of an input file ; there is no default .
©

	

The default ouput file is the same file name and file type as the input file .
©

	

If you press Return in response to the Listing file? prompt, no listing file is
created .

©

	

The segment size determines the size of the program segments to be
optimized. The segment size can be an integer value from 3 through 32767 .
The default segment size is 3 .

The following section describes how to select the segment size that is right for
optimizing your program .

Utilities 19-3

19.1 .2 Choosing a Segment Size
The segment size you specify determines the word size of the program
segments that will be optimized . You specify a segment size with either
the /SEGMENT-SIZE qualifier to the OPT command, or as a response to the
Optimizer dialogue when you invoke the Optimizer interactively . You can
specify a segment size of 3 through 32767 . A segment size of 3 (the default)
causes the Optimizer to replace all duplicate program segments of more than
three words with a subroutine .
The best way to choose a segment size for your program is to experiment with
choosing several different segment size values and determining which value
provides the most optimization . You can determine how much optimization is
caused by a particular segment size by generating an Optimizer listing file .
The Optimizer listing file provides the following information :

©

	

A MACRO representation of the initial code
©

	

A MACRO representation of the code after optimization
©

	

An Optimizer Statistics section . This section provides the following
information :
- The name of the input file
- The name of the output file
- The specified segment size
- The initial size of the object module
- The final size of the object module after using the Optimizer

The percentage of memory saved by using the Optimizer
If you do not request a listing file, the Optimizer Statistics section of the listing
is displayed on your terminal by default when the Optimizer finishes executing .
After generating an Optimizer listing, you can determine whether the segment
size you specified was adequate for the object module, by looking at the size of
the object module after optimization and the percentage of memory saved .
In general, a larger segment size provides the least optimization . A small
segment size provides the most optimization because it optimizes small
segments as well as large, but it also slows execution time because it
increases the amount of branching in the program to and from the generated
subroutines . Therefore, if task execution time is of primary importance, it is
better to specify a large segment size rather than a small one .

19-4 Utilities

Example 19-1 is an example of an Optimizer listing file for the following
program :
10

	

FIND <pound-sign>Chnl, KEY #Key_one EQ "Jones"
20

	

GET #Chnl, KEY #Key_one GT "Smith"

This listing was generated from the following command line :
$ OPT/LIST TESTOPT .OBJ

Example 19-1 Example of an Optimizer Listing File
BASIC-PLUS-2 Threaded Code Optimizer V1 .0

DOriginal Code
$CODE PSECT of BASIC-PLUS-2

Main Program 'TESTOPT'**************

(continued on next page)

Utilities 19-5

0 L9 Label operand
i TKB supplied Program limits
2 0 Constant operand
3 $$BP2 + 0 PSECT+offset operand
4 $FLAGR + 0 PSECT+offset operand
5 Expression Complex Relocation
6 0 Constant operand
7 $ICIO1 + 0 PSECT+offset operand
8 0 Constant operand
9 L9 : L22 Label operand

10 $PDATA + 0 PSECT+offset operand
11 $PDATA + 0 PSECT+offset operand
12 $IDATA + 0 PSECT+offset operand
13 4 Constant operand
14 $STRNG + 0 PSECT+offset operand
15 0 Constant operand
16 $TDATA + 0 PSECT+offset operand
17 $ARRAY + 0 PSECT+offset operand
18 0 Constant operand
19 20559 Constant operand
20 13140 Constant operand
21 8224 Constant operand
22 L22 : LIN$ Labeled, Branch, Thread
23 10 Constant operand

0 48

	

END$

19-6 Utilities

Thread
End of $CODE PSECT **************

(continued on next page)

Example 19-1 (Cont .) Example of an Optimizer Listing File
Thread• 24 MOF$MS

25 $IDATA + 4 PSECT+offset operand
26 CIF$ Thread
27 MOF$MS Thread
28 $IDATA + 0

	

; PSECT+offset operand
29 CIF$ Thread
30 RLI$M Thread
31 $PDATA + 10

	

; PSECT+offset operand
32 LFK$ Thread
33 0 Constant operand
34 LIN$ Branch, Thread
35 20 Constant operand

• 36 MOF$MS Thread
37 $IDATA + 4 PSECT+offset operand
38 CIF$ Thread
39 MOF$MS Thread
40 $IDATA + 0 PSECT+offset operand
41 CIF$ Thread
42 RLI$M Thread
43 $PDATA + 0 PSECT+offset operand
44 LGK$ Thread
45 2 Constant operand
46 FLN$ Branch, Thread
47 20 Constant operand

Example 19-1 (Cont.) Example of an Optimizer Listing File

(continued on next page)

Utilities 19-7

************** •Results of Optimization

************** $CODE PSECT of BASIC-PLUS-2 Main Program 'TESTOPT'**************

0 L9

	

Label operand
1 TKB supplied

	

Program limits
2 0

	

; Constant operand
3 $$BP2 + 0

	

; PSECT+offset operand
4 $FLAGR + 0

	

PSECT+offset operand
5 Expression

	

; Complex Relocation
6 0

	

; Constant operand
$ICIOl + 0

	

PSECT+offset operand
8 0

	

Constant operand
9 L9 : L22

	

Label operand
10 $PDATA + 0

	

; PSECT+offset operand
11 $PDATA + 0

	

PSECT+offset operand
12 $IDATA + 0

	

PSECT+offset operand
13 4

	

Constant operand
14 $STRNG + 0

	

; PSECT+offset operand
15 0

	

Constant operand
16 $TDATA + 0

	

PSECT+offset operand
1 7 $ARRAY + 0

	

PSECT+offset operand
18 0

	

; Constant operand
19 20559

	

Constant operand
20 13140

	

Constant operand
21 8224

	

Constant operand
22 L22 : LIN$ Labeled, Branch, Thread

23 10

	

Constant operand
0 24 GSU$ Thread

25 L41

	

Label operand
26 RLI$M Thread
27 $PDATA + 10

	

PSECT+offset operand
28 LFK$ Thread
29 0

	

Constant operand
30 LIN$ Branch, Thread
31 20

	

Constant operand

Example 19-1 (Cont .)o 32

	

GSU$

19-8 Utilities

Example of an Optimizer Listing File
Thread

End of Listing **************

©

	

This is the Original Code section. It contains the MACRO representation
of the object module before optimization .

©

	

Line 24 through line 29 is the first segment of duplicate code . Its size is 6
words .

©

	

Line 36 through line 41 is the second segment of duplicate code .

©

	

Line 48 is the END$ thread . It marks the end of a main program . If this
was a subprogram, the thread SBE$ would appear here instead of END$.

©

	

This is the Results of Optimization section. It contains the MACRO
representation of the object module after optimization .

©

	

Line 24 is the GSU$ thread . It replaces lines 24 through 29 in the original
code and causes execution to branch to line 41 .

©

	

Line 32 is the second GSU$ thread . It replaces lines 36 through 41 in the
original code and causes execution to branch to line 41 .

©

	

Listing line 40 is the END$ thread that marks the end of the module .

33 L41

	

; Label operand
34 RLI$M Thread
35 $PDATA + 0 PSECT+offset operand
36 LGK$ Thread
37 2 Constant operand
38 FLN$ Branch, Thread
39 20 Constant operand
040 END$ Thread
041 L41 : MOF$MS Labeled, Thread
42 $IDATA + 4 PSECT+offset operand
43 CIF$ Thread
44 MOF$MS Thread
45 $IDATA + 0 PSECT+offset operand
46 CIF$ Thread
47 REG$ Branch, Thread

************** End of $CODE PSECT **************

************** **************Optimizer Statistics
Input File : TESTOPT
List File : TESTOPT
Minimum segment size : 3
$CODE words initial : 49
$CODE words final

	

: 48
$CODE percent saved : 2 .04082

Q Entry point L41 is the start of the GSU$ subroutine created by the
Optimizer. Subroutines created by the Optimizer always start after an
END$ or SBE$ thread .

m This is the Optimization Statistics section . It provides the following
information :
- TESTOPT is the name of the input file .
- TESTOPT is the name of the output file .
- The specified segment size is 3 .
- The size of the object module before optimization was 49 words .
- The size of the object module after optimization was 48 words .
- The Optimizer saved 1 word of threaded code which is 2 .0% of the

space the threaded code used to occupy .
Note that the final object module size does not reflect the amount of
memory that program data (such as strings and and variables) will require .

If the specified segment size was 6 for this program, the optimization labeled
L41 would not be made because it is only 6 words in length . Thus, the segment
size limits the number of optimization made, and in so doing, minimizes the
run-time effect of using the Optimizer Utility .
It is recommended that you only generate a listing file when determining a
segment size, as it slows optimization time .

19.1 .3 Optimizer Error Messages
The following is an alphabetical list of the Optimizer Utility error messages
and the user action required to correct them .

Corrupted or Non-BP2 object module
Explanation : The input file cannot be optimized because it is either not a
BASIC-PLUS-2 generated object module, or it is corrupt . You cannot use
non-BASIC object modules with the Optimizer Utility.
User Action : If the input file is a BASIC-PLUS-2 generated object
module, try recompiling the program . If this does not correct the error,
submit an SPR.

Utilities 19-9

19-10 Utilities

Duplicate qualifier, value superseded
Explanation: You specified duplicate qualifiers on the same command
line. The value of the qualifier was superseded by the rightmost
occurrence .
User Action : None .

Error opening listing file : <name>
Explanation: The listing file could not be opened .
User Action : Take action based on second line of the error message .

Error opening input file: <name>
Explanation: The Optimizer Utility could not open the input file .
User Action: Take action based on the second line of the error message .

Error opening output file : <name>
Explanation: The Optimizer Utility could not open the output file .
User Action: Take action based on the second line of the error message .

Error opening work file : <name>
Explanation: The work file could not be opened .
User Action : Take action based on the second line of the error message .

Error renaming output to : <namel>, output left in file: <name2>
Explanation: The Optimizer Utility optimized the input file but could not
generate an output file with the name you specified . The optimized object
module is left in the file <name2> .
User Action : Use the DCL command RENAME to rename the object
module .

Extraneous input ignored
Explanation: Extra characters were encountered at the end of the
command line. The Optimizer ignored the extraneous characters .
User Action: None .

File name expected
Explanation: You neglected to specify a file specification when you
invoked the Optimizer Utility .
User Action : Re-invoke the Optimizer Utility and specify a file
specfication .

Internal error
Explanation: This error should never occur .
User Action : Submit an SPR .

Illegal qualifier
Explanation : You specified an invalid Optimizer qualifier .
User Action: Either specify a valid qualifier or remove the qualifier .

Illegal segment size, using default value (3)
Explanation : You specified an illegal segment size . The segment size
must be in the range from 3 through 32767 . The Optimizer ignores the
specified segment size and optimizes your program with a segment size of
3 .
User Action : None .

NO not valid for /SEGMENT SIZE
Explanation: /NOSEGMENT SIZE is an illegal qualifier .
User Action : Remove the qualifier.

Program contains too many <item> to be optimized
Explanation: The program contained too many of <item> to be optimized .
User Action : Divide the module into several SUB or FUNCTION
subprograms and reinvoke the Optimizer Utility.

Qualifier expected
Explanation : You specified a backslash (\) without specifying a qualifier
to the OPT command .
User Action: Either remove the backslash or specify a valid qualifier .

Qualifier value expected
Explanation : You specified a qualifier which requires an argument
without specifying the argument.
User Action : Either specify an argument or remove the qualifier.

Unexpected Error in module <name>
Explanation : An unexpected error occurred during processing .
User Action : Take action based on second line of the error message .

Utilities 19-11

19.2 The Dump Analyzer Utility
The BASIC-PLUS-2 Dump Analyzer Utility is only available on RSTS/E
systems. Use the RSX-11M/M-PLUS Crash Dump Analyzer for similar
functionality on RSX systems .
The Dump Analyzer Utility examines the binary dump generated by a program
that aborts due to a FATAL error . It returns information about string space,
I/O buffers, and available memory.
To invoke the Dump Analyzer, enter the following command at DCL level :
$ RUN $BP2DA

Note
If the BP2DA command has been installed as a CCL command on
RSTS/E systems, or as an MCR command on RSX systems, you can
simply enter BP2DA at the DCL prompt to invoke the Dump Analyzer .
The Dump Analyzer Utility is an installation option. See your system
manager if you are having trouble invoking the Dump Analyzer.

19-12 Utilities

When you invoke the Dump Analyzer, it prompts you for the following
information :
©

	

The name of the file you want analyzed
©

	

The name of the output file that you want the dump analysis information
placed in

©

	

Whether you want information about string space allocations included in
the analysis

©

	

Whether you want information about I/O buffer space allocations in the
analysis

©

	

Whether you want an analysis done of the whole program

© Whether you want information about low core memory in the analysis ;
if you enter Yes in response to this prompt, the output file includes the
contents of the registers, stack status, and I/O buffers

For example :
Input File Name <SY :PMDnnn .PMD> : ?
Output File Name <SY :PMDnnn .DPA>
String space <Yes> ?
I/0 Buffers <Yes> ?
Entire Program <Yes> ?
Low Core <No> ?

In the Dump Analyzer prompts, all defaults are displayed in angle brackets
(<>) . The BP2DA program automatically assigns a file name in the format
PMDnnn.PMD for the input file, where nnn is the current job number . If you
do not supply the name of an output file, the dump analysis information is
written to a file with the same name as the input file and a file type of DPA .

If the dump file is too large for available memory, the Analyzer returns the
error "?Maximum memory exceeded." You must then either re-run the program
and select fewer options for analysis, or use the PMDUMP program . See the
RSTS/E System User's Guidefor more information on the PMDUMP program .

19.3 The Resequencer Utility
The BASIC-PLUS-2 Resequencer Utility renumbers program lines (and
references to those lines) throughout a specified program . With the
Resequencer, you can divide a program into a maximum of 10 segments and
specify a different resequencing scheme for each segment . The Resequencer
can only be used on programs containing a maximum of 2500 line numbers .
Enter the following RUN command to invoke the Resequencer Utility from
DCL:
$ RUN $B2RESQ

Note	
If the B2R command has been installed as a CCL command on RSTS/E
systems or as an MCR command on RSX systems, you can simply
enter B2R at the DCL prompt to invoke the Resequencer Utility . The
Resequencer Utility is an installation option . See your system manager
if you are having trouble invoking the Resequencer .

When you invoke the Resequencer, it prompts you for the following
information :
©

	

The name of the input file
©

	

The name of the output file

Utilities 19-13

19-14 Utilities

©

	

The number of subprograms in the input file to be resequenced

©

	

The beginning line number of the first subprogram to be resequenced

©

	

The last line number of the subprogram to be resequenced

©

	

The new line number for the first line in the subprogram
©

	

The increment at which you want each line resequenced
For example :
Enter BASIC-PLUS-2 program to resequence? MAINPROG .B2S
Enter output file? RESEQ MAINPROG .B2S
Number of program segments to be resequenced? 2
Segment n old beginning line number? 300
Old end line number? 900
New beginning line number? 1100
New increment this segment? 15

The following defaults apply :
©

	

If no file type is specified for the input or output files, the Resequencer
assumes a file type of B2S .

© If you do not specify the number of program segments to be resequenced,
the Resequencer resequences the entire program starting at line 10 and
incrementing by 10 .

©

	

If you do not specify a line number in the original program where you want
resequencing to begin, resequencing begins at the first line number in the
program .

©

	

If you do not specify a line number in the original program where you want
resequencing to end, resequencing ends at line number 32767 or the last
line in the input program .

©

	

If you do not specify a new line number for the first line of the resequenced
segment, line number 10 is assigned to the first resequenced line .

©

	

If you do not specify a resequencing increment, all line numbers are
resequenced at an increment of 10 .

After the last prompt, the Resequence Utility renumbers the program according
to the segment definitions . It then updates line number references in control
statements (for example, GOTO and THEN) to reflect the new sequential order .
If you specified more than one subprogram to be resequenced, the Resequencer
then displays the last four prompts again, until all specified subprograms are
resequenced.

19.3.1 Creating a Resequencer Command File
Instead of responding to the Resequencer prompts interactively, you can
include your answers in an indirect command file by using a text editor . Then,
you invoke the Resequencer, and supply the name of the indirect command
file at the prompt "Number of program segments to be resequenced?" . For
example :
Name of input file? MAINPROG .B2S
Name of output file? RESEQ MAINPROG .B2S
Number of program segments to be resequenced? @RESEQ .CMD

Here, RESEQ.CMD is the name of an indirect command file containing
Resequencer commands . The Resequencer Utility then renumbers the
program MAINPROG.B2S according to the commands contained in the indirect
command file .

Note that if you do not supply a file type for the indirect command file, the
Resequencer assumes a file type of CMD by default .

The following section describes how to format Resequencer commands in an
indirect command file .

19.3 .2 Formatting Commands in a Resequencer Command File
The format for Resequencer commands in an indirect command file is as
follows :

command : [,command[: . . . command]]

command

	

Is one of three resequence commands summarized in Table 19-1 . You
can continue commands on the next line with the ampersand (&)
continuation character.

colon (:)

	

Is a command separator. You end each command except the last with a
colon .

comma (,)

	

Is a segment separator . A segment is a unique group of program lines .

Table Table 19-1 lists and describes the Resequencer commands .

Table 19-1 Resequencer Commands

Command Meaning

O m-n

	

Resequence the segment defined as line numbers m through n. The
default for m is 1 ; the default for n is 32767 .

N m

	

Begin resequencing the segment at line m . The default for m is line 10 .
I d

	

Increment line numbers by a value of d . The default is 10 .

Utilities 19-15

19.3.3 Resequencer Utility Error Messages
The Resequence Utility prints an error message when it detects a resequencing
error. The following is a list of the Resequencer Utility error messages and an
explanation of each error.

?Input file not found
Explanation: The Resequence Utility cannot find your input file .

?Input line numbers <line numbers> are out of strictly ascending order
Explanation: The line numbers in the file are not in ascending order. You
can reorder program lines by doing the following :

©

	

Invoking the BASIC-PLUS-2 compiler
©

	

Bringing the program into memory with the OLD command

©

	

Issuing the REPLACE command to save the program
The compiler reorders the line numbers and returns the corrected program
to your directory. You can then resequence the corrected program .

?Invalid segment parameters
Explanation: You specified an end line number lower than the starting
line number.

%Line # not found, resequencing continuing
Explanation: A program line does not have the required line number .

19-16 Utilities

The following is an example of Resequencer commands in an indirect command
file :
01-100 :N10 :I1,0150-200 :N50,

	

&
01000-10000 :N1000 :150

These commands cause the following resequencing changes to occur :

Command

	

Change

01-100 :N10 :I1

	

Resequences old line numbers 1 through 100 (01-100 :),
starting at line 10 (N10:) and incrementing by 1 (II) .

0150-200:N50 Resequences old line numbers 150 through 200 (0150-
200:), starting at line 50 (N50) . Because the command
line specified no increment value, the default is 10 .

01000-10000 :N1000:150 Resequences old line numbers 1000 through 10000
(01000-10000:), starting at line 1000 (N :1000) and
incrementing by 50 (150) .

?Maximum of ten segments allowed
Explanation: The Resequencer command line specifies more than 10
segments .

?Output name must be different from file name
Explanation: The output and input file names must be different .

?Proposed resequencing out of integer bounds
Explanation : The line numbers of a segment will exceed 32767 when
resequenced .

?Proposed resequencing overlaps
Explanation : The new program segments will overlap each other when
resequenced .

?Resequenced segment encompasses unresequenced line
Explanation: A segment being resequenced will overlap a line you did not
specify for resequencing .

?Segment descriptors overlap
Explanation: You entered a line number in more than one segment .

?Specification file error - expecting more command data
Explanation: Your command file is not correctly formatted .

?Specification file not found
Explanation : The Resequence Utility cannot find your indirect command
file .

?Syntax error, number too large for integer
Explanation: The command line contained an integer outside the valid
range (1%-32767%) .

?Syntax error
Explanation: The command line input contained an error .

?Two segments have identical new beginning value
Explanation: Two program segments cannot start with the same line
number .

Utilities 19-17

This chapter is for the experienced programmer. It provides you with
information that can help you write transportable programs and describes
techniques that you can use to improve task execution time .

20 .1 Writing Transportable Programs
This section describes some programming practices that can help you write
BASIC programs that are transportable between PDP-11 operating systems
and VMS systems . Transportable code should be modular and carefully
designed to isolate incompatibilities between different operating systems .
Incompatibilities are usually the result of using a feature that is available on
only one operating system .
Isolate references to system-specific features by placing them in subprograms
or external functions, or by conditionally executing them using the %IF-
%THEN-%ELSE-%END-%IF directive . This helps to minimize changes to
your program and prevents the entire program logic from being tied to these
features .
You can also place code that calls system specific features in object module
libraries . See Chapter 18 for information on creating object module libraries .

Use the statements and functions in Table 20-1 to avoid using system-specific
features that perform the same function .

Table 20-1 BASIC-PLUS-2 Substitutes for System Services
Statement or
Function

	

Effect

20
Optimization Techniques

CTRLC function

	

Passes control to an error handler when a Ctrl/C is typed
RCTRLC function

	

Disables the effect of CTRLC
(continued on next page)

Optimization Techniques 20-1

Table 20-1 (Cont .) BASIC-PLUS-2 Substitutes for System Services

Statement or
Function

RCTRLO function
ECHO function
NOECHO function
ONECHR function
NAME. . . AS statement
KILL statement
SLEEP statement

Effect

Cancels the effect of Ctrl/O and resumes display
Displays a character entered on the terminal
Does not display characters as entered
Allows single-character input
Changes a file name
Deletes a file from disk
Suspends program execution

Do not use the FSS$ function. This function evaluates file specifications that
differ from system to system and therefore are not transportable . If you must
use the FSS$ function to evaluate a file specification, place it in a subprogram .
Avoid chaining when possible. Instead of chaining to the code you want, place
that code in subprograms . Data can be shared between program modules by
opening files and by using COMMON and MAP statements .

20.2 Optimizing Your Program
Optimizing your program means improving the performance of your program,
decreasing the time it takes to link it, and increasing the amount of virtual
address space for your task. To optimize a program, identify the routines that
take the longest to execute and that you use the most often . You can then use
the techniques described in the following sections to optimize those routines .

20.2 .1 I/O Operations
If your program performs file I/O with sequential or block file organization, use
MAP statements instead of MOVE statements to decrease the time it takes to
execute your program .
MAP statements use static storage, execute faster, and give you direct access
to named variables . You can also use multiple MAP statements to access that
storage in different ways .
MOVE statements use dynamic storage . The record size is determined at run
time, and each MOVE statement physically moves data . Although MOVE
statements offer flexibility, programs that contain them execute slower than
programs using MAP statements .

20-2 Optimization Techniques

Dynamic mapping (MAP, MAP DYNAMIC, and REMAP statements) is by
far the best way to handle dynamic data . Dynamic mapping provides
the performance of MAP statements, the flexibility of FIELD and MOVE
statements, and supports all data types .
Also, use LINPUT statements instead of INPUT LINE statements . The INPUT
LINE statement includes all line terminators whereas the LINPUT statement
truncates them .

20.2.2 Assigning Variables
When assigning variables, use the MACRO routine described in Chapter 11 to
initialize variables in COMMON and MAP statements instead of using READ
and DATA statements . COMMON and MAP statements use no virtual address
space and do not affect run time .

20.2.3 Choosing Compiler Options
Use the /NOLINE qualifier to the COMPILE or SET commands to generate
smaller object modules and faster execution times . The /LINE qualifier to the
COMPILE command keeps track of which program line is executing . When
you use the /NOLINE qualifier, BASIC-PLUS-2 does not have to update the
line your program is executing . If you use the /NOLINE qualifier, you cannot
use the ERL function or the RESUME statement without a target to handle
errors .

20.2 .4 Selecting Data Types
Use the following guidelines when choosing data types for program variables :

© The BASIC-PLUS-2 Object Time System (OTS) routines can process
operations using integer numbers faster than floating-point numbers ;
therefore, use integers whenever possible .

© If you are given a choice, use WORD integers instead of BYTE integers
because WORD integers can be processed faster and offer a larger range
of values. Use BYTE integers instead of LONG integers because the OTS
routines require separate arithmetic routines to process LONG integers .

©

	

Use integer numbers for the following program variables :

Loops
Channel expressions
Counters
Flags
Array indexes

Optimization Techniques 20-3

© If you do not have a Floating-Point Processor (FPU) and you are performing
arithmetic operations, use LONG integers instead of floating-point numbers
or strings. BASIC-PLUS-2 run-time code requires approximatley 250
instructions to emulate floating-point arithmetic, whereas LONG integers
require fewer instructions .

©

	

The OTS takes longer to process arithmetic operations using DOUBLE
floating-point numbers ; therefore, use SINGLE floating-point numbers .

©

	

Avoid data conversions such as mixing integers and floating-point numbers
in expressions . Data conversion requires additional code that slows
program execution. For example, if you want a faster program execution
time, you would use the program code shown in example 1 rather than the
program code in example 2 .
Example 1
X% = Y% * 2%

Example 2
X% = Y% * 2

20.2.5 Arithmetic Operations
Use the following guidelines when performing arithmetic operations :

©

	

Avoid using string arithmetic operations . String arithmetic requires much
more OTS code to be brought into your task, which slows execution .

© If you must do string arithmetic, avoid division . Division takes longer to
process than any other type of arithmetic operation . Use multiplication
instead. For example, the code in the first example executes faster than
the code in the second .
Example 1
A$ = PROD$ (B$,

	

.5", X%)

Example 2
A$ = QUO$ (B$, "2", X%)

20.2.6 Using Control Structures
Use the following guidelines for optimizing your use of control structures :
©

	

IF statements generate less code than logical expressions and,
consequently, execute faster. The code shown in example 1, for instance,
executes faster than the code in example 2 :
Example 1
A% = 1% IF Y% = 2 IF X% > 5%

20-4 Optimization Techniques

Example 2
IF (X% > 5%) AND (Y% = 2%) THEN A% = 1%

©

	

ON GOTO and ON GOSUB statements generate less code and execute
faster than IF and SELECT statements . However, IF and SELECT
statements improve the readability and, consequently, the maintainability
of programs .
SELECT statements offer the added advantage of conditionally executing
several blocks of code, each dependent upon a separate conditional
expression. IF statements, on the other hand, choose between only two
blocks of code. To conditionally execute more than two blocks of code
with IF statements, you must nest them . For example, use the program
construct shown in example 1 rather than the program constructs in
examples 2 and 3 .
Example 1
10

	

ON PART CODE% GOTO Enter, Update, Delete

Enter :

GOTO Choice
Update :

GOTO Choice
Delete :

GOTO Choice

Example 2
10

	

IF ITEM% = 1%
THEN . . .
ELSE IF ITEM% = 2%

THEN . . .
ELSE IF ITEM = 3%

THEN . . .
ELSE . . .

Optimization Techniques 20-5

© Using GOSUB statements instead of DEF statements generates smaller
tasks and faster task execution ; however, there is no local error handling
for GOSUB routines . Use the program construct in example 1 rather than
the one shown in example 2 .
Example 1
10

	

B=X
C = Y
GOSUB 2000
PRINT A

2000

	

A=B+C
RETURN

Example 2
10

	

DEF INTEGER ADD(B,C) = B + C
20

	

PRINT ADD(X,Y)

©

	

Using DEF statements instead of SUB and FUNCTION subprograms
generates less code ; therefore, your program executes faster. However,
DEF statements cannot overlay virtual address space . To optimize your
task execution time, use the program code shown in example 1 rather than
the code shown in examples 2 and 3 .
Example 1
10

	

DEF REAL ADD(X,Y)
ADD =X+Y

END DEF

PRINT 'The sum is

	

; DEF ADD(A,B)

20-6 Optimization Techniques

Example 3
10

	

SELECT ITEM%
CASE = 1%

CASE = 2%

CASE = 3%

Example 2
10

	

EXTERNAL SUB ADD (REAL,REAL,REAL)
CALL ADD(A,B,C)
PRINT 'The sum is ' ; C

300

	

SUB ADD(REAL A,REAL B,REAL RESULT)
RESULT = A + B
END SUB

Example 3
10

	

EXTERNAL REAL FUNCTION ADD(REAL,REAL)

PRINT 'The sum is ' ;ADD(A,B)

300

	

FUNCTION REAL ADD(REAL A,REAL B)
ADD = A + B

END FUNCTION

20 .2 .7 Selecting Libraries
Use memory-resident libraries to improve task-build time and memory
usage when you run more than two executable images at the same time .
The Task Builder can resolve program code much faster using a resident
library than using an object module library. Using the large RMS resident
library (RMSRES), in particular, substantially improves the Task Builder's
performance ; however, the task you link to RMSRES may not execute as
quickly as it would normally .
You can also limit the diversity of BASIC-PLUS-2 code you use in your
programs, and then customize your resident libraries to include only those
routines your programs need . Note that Digital does not support customized
libraries . See Chapter 18 for information on libraries .

20.2.8 RMS-11 Operations
Use the following guidelines for optimizing RMS-11 operations :

©

	

When possible, use a SEQUENTIAL file organization instead of an
INDEXED file organization. The code to support indexed files requires
more virtual address space and consequently executes slower.

©

	

If your programs do not require RMS-11, use the /NOSEQ, /NOREL,
/NOVIR qualifiers to the BUILD command or use NONE as the argument
to the RMSRES and ODLRMS commands to prevent the Task Builder from
linking to unnecessary code .

Optimization Techniques 20-7

© If possible, close files in the reverse order that you open them . For
example, if you have three files and you know that there is one file that
needs to be open only for a short time, open that file last. If you open and
close files in this sequence, it frees I/O space for future use .

©

	

Use a larger bucketsize value to bring in more records at once, reducing
the number of accesses to the file on disk .

See the RSX-11M/M-PLUS RMS-11 User's Guide or the RSTS/E RMS-11
User's Guide for information on RMS-11 optimization techniques .

20.2 .9 Static and Dynamic Storage
BASIC-PLUS-2 dynamic memory is made up of string, free, and I/O space .
String space is used for all dynamic strings, I/O space is used for all file
handling, and free space shrinks and expands as string and I/O space is used .

Statically allocating memory with MAP and COMMON statements generally
speeds program execution but wastes space if the allocation is not entirely
used. Although dynamically allocating memory generally slows program
execution, it does not waste space and offers greater flexibility than statically
allocating memory.
Figure 20-1 compares the size of a task without static storage to the size of
a task with static storage . This figure demonstrates that a task with static
storage increases the amount of available memory .

20-8 Optimization Techniques

Figure 20-1 Comparison of Static Storage to Dynamic Storage

String space

Free space

I/O space

Static space

Task with Dynamic Storage

Task
Size

String space

Free space
I/O space

Static space:

Static string

I/O buffers

Task with Static Storage
NU-2187A-RA

20.2.10 Extending Memory
Although BASIC-PLUS-2 automatically pre-extends memory when a task
is loaded, this extension may not be sufficient . Generally, dynamic string
handling and file I/O require more dynamic space, whereas record buffering
requires more static space .
If you think your task needs more memory, it is more efficient to pre-extend
memory allocation with the EXTTSK option added to the Task Builder
command file . The maximum extension is limited by the size of your task . See
the RSX-11M/M-PLUS Task Builder Reference Manual or the RSTSIE Task
Builder Reference Manual for more information .

Optimization Techniques 20-9

Compile-Time and Environment Error
Messages

This appendix lists the BASIC-PLUS-2 compile-time and environment errors,
their causes, and the user action required to correct them .

A.1 Diagnosing Compile-Time and Environment Errors
BASIC-PLUS-2 signals a compile-time error if an error occurs during
compilation. BASIC-PLUS-2 signals an environment error if you enter an
illegal command or attempt an illegal operation while in the BASIC-PLUS-2
environment. For compile-time errors, BASIC-PLUS-2 also does the following :

©

	

Indicates the program line that generated the error or errors

©

	

Displays the program line
©

	

Shows you the location of the error or errors and assigns a number to each
location for future reference

©

	

Displays the statement number within the line, the location number as
previously displayed, and the error message text ; this is repeated for each
error in the line

BASIC-PLUS-2 repeats this procedure for each error diagnosed during
compilation .
There are four different levels of compile-time and environment errors :
information, warning, error, and fatal . These errors are described as follows :

©

	

Information Level Errors
Information errors do not cause the compilation to abort, they simply
provide information .

©

	

Warning Level Errors
Warning level errors do not cause the compilation to abort; however, they
do indicate that some unusual or uncommon events have occured .

A

Compile-Time and Environment Error Messages A-1

© Error Level Errors
Error level errors do not cause the compilation to abort . When an error
level error occurs, the remainder of the program is checked for additional
errors; however, no object module file is generated when an error level
error occurs .

©

	

Fatal Level Errors
Fatal level errors cause the compilation to abort . The remainder of
the program is not checked for additional errors . No object module is
generated .

A.2 Error Message Format
The format for compile-time and environment error messages is as follows :

? S <n>, <n>: <message>

S <n>

	

Is the nth statement within the displayed line (the statement containing
the error)

<n> :

	

Is the nth error within the line's "picture"
<message>

	

Is the text of the error message
For example :
Error on line 10

10 DECLARE REAL BYTE A, A
	 1	2

? S 1, 1 :

	

conflicting data type specifications
? S 1, 2 :

	

illegal multiple definition of name A

A.3 Alphabetical List of Error Messages
This section contains a list of all BASIC-PLUS-2 compile-time and
environment error messages . Most of these error messages are alphabetized
by the first word in the error message as it appears on your terminal screen ;
however, error messages that begin with a number or name unique to the
current operation are alphabetized according to the next word in the error
message .

A-2 Compile-Time and Environment Error Messages

$ only allowed with STRING keyword
Explanation : ERROR-The dollar sign ($) suffix is only allowed on
STRING variables .
User Action : Remove the dollar sign ($) from the variable name or
change the data type of the variable .

% only allowed with BYTE, WORD, LONG, or INTEGER keywords
Explanation : ERROR-The percent sign (%) suffix is only allowed on
INTEGER variables .
User Action : Remove the percent sign (%) suffix or change the data type
of the variable to INTEGER.

actual argument must be specified
Explanation: ERROR-A DEF function reference contains a null
argument, for example, FNA(1„ 2) .
User Action : Specify all arguments when referencing a DEF function .

an internal coding error has been detected. Submit an SPR
Explanation : ERROR-An internal error occurred during the compilation .
User Action: Submit an SPR and include all relevant information .

array not allowed in DEF declaration
Explanation : ERROR-The parameter list for a DEF function definition
contained an entire array .
User Action : Remove the array specification ; you cannot pass an entire
array as a parameter to a DEF function .

array <name> too large
Explanation: ERROR-The program contains a MAP or COMMON area
of storage longer than 32767 bytes .
User Action : Reduce the length of the COMMON or MAP storage .

attempt to sequence over existing statement
Explanation: WARNING-A SEQUENCE command specifies a starting
line number that already exists in the BASIC-PLUS-2 source program in
memory.
User Action: Specify a starting line number higher than any existing line
or delete the old statement before using the SEQUENCE command .

Compile-Time and Environment Error Messages A-3

attributes of overlaid variable <name> don't match
Explanation : WARNING-A variable name appears in more than one
overlaid MAP; however, the attributes specified for the variable are
inconsistent .
User Action : If the same variable name appears in multiple overlaid
MAPs, the attributes (for example, data type) must be identical .

attributes of prior reference to <name> don't match
Explanation : WARNING-A variable or array is referenced before the
MAP that declares it . The attributes of the referenced variable do not
match those of the declaration .
User Action : Make sure that the variable or array has the same
attributes in both the reference and the declaration .

bad line number pair
Explanation : ERROR-A compiler command specifies nonexistent line
numbers or a pair of line numbers out of sequence, for example, LIST
100-2 .
User Action : Specify only existing line numbers and specify the numbers
in correct numeric order when specifying a range .

BASIC-' @' must be at beginning of filename
Explanation : ERROR-An at sign (@) was not the first character in the
file specification of an indirect command file .
User Action : Precede the file specification with an at sign .

BASIC-ambiguous qualifier, supply additional characters
Explanation: ERROR-You abbreviated a qualifier, but did not specify
enough characters .
User Action : Add more characters to the qualifier .

BASIC-argument contradicts previous setting
Explanation : ERROR-You specified an argument to a qualifier that
conflicts with another argument on the command line .
User Action : Remove the argument .

A-4 Compile-Time and Environment Error Messages

BASIC-argument expected
Explanation: ERROR-You followed a qualifier with the equals sign (_)
or colon (:) separator, but did not specify an argument .
User Action : Either specify an argument or delete the separator
character.

BASIC-argument must be numeric
Explanation : ERROR-You specified a non-numeric argument with a
qualifier that only accepts numeric arguments .
User Action : Specify a numeric argument to the qualifier .

BASIC-argument not allowed
Explanation : ERROR-You specified an argument with a qualifier that
does not accept arguments .
User Action : Remove the argument .

BASIC-argument not in range <number> to <number>
Explanation: ERROR-You specified a numeric argument that is not in
the allowed range .
User Action : Specify a number within the allowed range .

BASIC-argument required
Explanation : ERROR-You failed to specify an argument with a qualifier
that requires an argument .
User Action: Specify an argument .

BASIC-/BUILD not valid in this context
Explanation : WARNING-The BUILD qualifier is not valid with the
command you specified . You may only use the /BUILD qualifier when
compiling a program at DCL level with the DCL command BASIC .
User Action : Remove the /BUILD qualifier.

BASIC-invalid qualifier
Explanation : ERROR-You specified an illegal qualifier with the BASIC
command .
User Action : Remove the qualifier.

BASIC-invalid argument
Explanation: ERROR-You specified an illegal argument with a qualifier .
User Action : Specify a legal argument .

Compile-Time and Environment Error Messages A-5

BASIC-list file specification not allowed in this context
Explanation: WARNING-You can only specify a file specification with
the /LIST qualifier when compiling a program at DCL level with the DCL
command BASIC .
User Action : Remove the file specification .

BASIC-macro file specification not allowed in this context
Explanation : WARNING-You can only specify a file specification with
the /MACRO qualifier when compiling a program at DCL level with the
DCL command BASIC .
User Action : Remove the file specification .

BASIC-NO prefix not allowed
Explanation : ERROR-You specified a NO prefix with an argument to
the qualifier. A NO prefix is not allowed with the argument .
User Action : Remove the NO prefix.

BASIC-object file specification not allowed in this context
Explanation: WARNING-You can only specify a file specification with
the /OBJECT qualifier when compiling a program at DCL level with the
DCL command BASIC .
User Action : Remove the file specification .

BASIC-qualifier expected
Explanation: ERROR-You specified a backslash (\) without the name
of a qualifier .
User Action : Append the name of a qualifier to the backslash or remove
the backslash .

BASIC-qualifier contradicts previous qualifier
Explanation : ERROR-You specified a qualifier that conflicts with
another qualifier on the command line .
User Action : Remove the qualifier .

BASIC-wildcards not permitted - <filename>
Explanation : ERROR-You specified a wildcard in place of a file name .
Using wildcards for file names is not allowed .
User Action: Specify the file name of an existing file .

A-6 Compile-Time and Environment Error Messages

bound cannot be specified for array
Explanation: ERROR-An EXTERNAL statement declaring a SUB or
FUNCTION subprogram specifies bounds in an array parameter . For
example :
EXTERNAL SUB XYZ (LONG DIM(1,2,3))

User Action: Remove the array parameter's bound specifications . When
declaring an external subprogram you can specify only the number of
dimensions for an array parameter . For example :
EXTERNAL SUB XYZ (LONG DIM(,,))

bounds must be specified for array
Explanation : ERROR-The program contains an array declaration that
does not specify the bounds (maximum subscript value) . For example :
DECLARE LONG A(,)

User Action : Supply bounds for the declared array. For example :
DECLARE LONG A(50,50(

BUFFER inconsistent with MODE
Explanation : ERROR-The BUFFER and MODE clauses cannot be
contained in the same OPEN statement .
User Action: Remove either the BUFFER or MODE clause .

built in function not supported
Explanation : ERROR-The program contains a reference to a built-in
function not supported by this version of BASIC-PLUS-2 .
User Action : Remove the function reference .

built in function requires numeric expression
Explanation : ERROR-The program specifies a string expression for a
built-in function that requires a numeric argument .
User Action : Supply a numeric expression for the built-in function .

cannot change /DEBUG after LOAD command
Explanation: ERROR-An attempt was made to change the /[NO]DEBUG
qualifier after an object module was loaded .
User Action: Use the SCRATCH command to clear memory ; change the
/[NO]DEBUG qualifier to the desired default and then recompile and
reload the object module so that the loaded object module corresponds with
the present environment defaults for /DEBUG .

Compile-Time and Environment Error Messages A-7

can't continue
Explanation: ERROR-A CONTINUE command was typed after changes
had been made to the source code .
User Action: After changes have been made to the source code, you can
only run the program ; you cannot continue it .

can't find psect <name>
Explanation: FATAL-An internal error occurred when the
BASIC-PLUS-2 LOAD or RUN command was executed, indicating
that the compiler could not find a MAP or compiler PSECT .
User Action: Submit an SPR including all relevant information .

CHAIN does not support line-number clause
Explanation: ERROR-A CHAIN statement contains a LINE keyword
and a line-number argument .
User Action: Remove the LINE keyword and the line-number argument .

CHANGE statement is ambiguous
Explanation : ERROR-A string variable and a numeric array have the
same name in a CHANGE statement .
User Action : Change the name of the string variable or the numeric
array.

CHANGES not allowed on primary key
Explanation: ERROR-The PRIMARY KEY clause in an OPEN
statement specifies CHANGES .
User Action: Remove the CHANGES keyword ; you cannot change the
value of a primary key .

CHANGES requires DUPLICATES
Explanation: WARNING-RMS-11 does not support indexed files with
the CHANGES and NODUPLICATES for ALTERNATE KEYs .
User Action: Add DUPLICATES to the ALTERNATE KEY clause of the
OPEN statement .

channel expression must be numeric
Explanation: ERROR-The program contains a non-numeric channel
expression, for example, PUT #A$.
User Action: Change the channel expression to be numeric .

A-8 Compile-Time and Environment Error Messages

COMMON/MAP <name> is too large
Explanation: ERROR-The program contains a MAP or COMMON area
of storage longer than 32767 bytes .
User Action: Reduce the length of the COMMON or MAP storage .

conflicting data type specifications
Explanation : ERROR-The program contains a declarative statement
containing two or more consecutive and contradictory data type keywords,
for example, DECLARE REAL BYTE .
User Action : Remove one of the data type keywords or make sure that
the keywords refer to the same generic data type, for example, DECLARE
REAL SINGLE is valid .

constant <name> not allowed in assignment context
Explanation: ERROR-The program tries to assign a value to a user-
defined constant .
User Action: Remove the assignment statement; once you have assigned
a value to a declared constant, you cannot change it .

constant expression required
Explanation : ERROR-A statement specifies a variable, built-in function
reference or exponentiation where a constant is required .
User Action : Supply an expression containing only literals or declared
constants, or remove the exponentiation operation .

constant is inconsistent with the type of <name>
Explanation: ERROR-A DECLARE CONSTANT statement specifies a
value that is inconsistent with the data type of the constant, for example, a
BYTE value specified for a REAL constant .
User Action: Change the declaration so that the data type of the value
matches that of the constant .

current scale factor is <number>
Explanation : WARNING-A SCALE command did not specify a scale
factor. The SCALE command is ignored and the present scale factor
displayed .
User Action: None .

Compile-Time and Environment Error Messages A-9

data type keyword not allowed in SUB statement
Explanation : ERROR-A SUB statement contains a data type keyword
between the subprogram name and the parameter list .
User Action: Remove the data type keyword. In a SUB statement, data
type keywords can appear only within the parameter list .

data type required for variable <vbl-name> with /EXPLICIT
Explanation : ERROR-A program compiled with the /TYPE:EXPLICIT
qualifier declares a variable without specifying a data type .
User Action: Supply a data type keyword for the variable or compile the
program without the /TYPE :EXPLICIT qualifier .

data type required in EXTERNAL CONSTANT declaration
Explanation : ERROR-An EXTERNAL CONSTANT statement has no
data-type keyword .
User Action : Supply a data-type keyword to specify the data type of the
external constant .

DEF <name> mode not as declared
Explanation : ERROR-The specified data type in a function declaration
disagrees with the data type specified in the function definition .
User Action: Make the data type specifications match in both the function
declaration and the function definition .

DEF <name> not defined
Explanation : ERROR-The program contains a reference to a non-
existent user-defined function .
User Action: Define the function in a DEF statement .

DEF invocation not allowed in assignment context
Explanation : ERROR-A DEF function invocation (including a parameter
list) appears on the left side of an assignment statement .
User Action : Remove the assignment statement. You cannot assign
values to a function invocation .

A-10 Compile-Time and Environment Error Messages

DEF* formal <formal-name> inconsistent with usage outside DEF*
Explanation: ERROR-A DEF* formal parameter has the same name as
a program variable but has different attributes .
User Action: You should not use the same names for DEF* parameters or
program variables . If you do, you must make sure that they have the same
data type and size .

directive must be only item on line
Explanation : ERROR-The program contains a compiler directive that is
not the only item on the line .
User Action : Place the directive on its own line .

directive not valid in immediate mode
Explanation: ERROR-A compiler directive was typed in the
BASIC-PLUS-2 environment .
User Action : None . Compiler directives are invalid in immediate mode .

division by zero
Explanation : WARNING-The value of a number divided by zero is
indeterminate .
User Action : Change the expression so that no expression is divided by
the constant zero .

DOUBLE constant required
Explanation : ERROR-The program contains a DECLARE DOUBLE
CONSTANT statement that specifies an expression for the constant value .
User Action : Remove the expression . You can specify only literal values
when declaring floating-point constants .

duplicate line number <n> encountered
Explanation: WARNING-The source program has two lines with the
same line number. The duplicate line replaces previous occurrence .
User Action: Add a unique line number to one of the lines .

duplicate OPEN clause
Explanation : ERROR-An OPEN statement contains more than one
clause of the same type .
User Action: Remove one of the clauses .

Compile-Time and Environment Error Messages A-11

DYNAMIC attribute only valid for MAP areas
Explanation : ERROR-A COMMON keyword is followed by the
DYNAMIC keyword .
User Action : Remove the DYNAMIC keyword . The DYNAMIC attribute
is valid only for MAP areas .

ELSE appears in improper context, ignored
Explanation : ERROR-The program contains an ELSE clause that either
is not preceded by an IF statement or that appears after an IF has been
terminated with a line number or END IF statement .
User Action: Remove either (1) the ELSE clause, (2) the terminating
line number, or (3) the END IF statement .

END IF appears in improper context, ignored
Explanation : ERROR-The program contains an END IF statement that
either is not preceded by an IF statement or occurs after an IF has been
terminated by a line number .
User Action : Supply an IF statement or remove the terminating line
number.

end of DEF seen while not in DEF
Explanation : ERROR-An FNEND or END DEF statement has no
preceding DEF statement.
User Action : Define the function before inserting an END DEF statement,
or delete the END DEF statement .

end of FUNCTION while not in FUNCTION
Explanation : ERROR-The program contains a FUNCTIONEND or END
FUNCTION statement without an accompanying FUNCTION statement .
User Action : Supply a function subprogram or remove the
FUNCTIONEND statement.

end of line does not terminate IFs due to active blocks
Explanation : ERROR-A THEN or ELSE clause contains a loop block,
and a line number terminates the IF-THEN-ELSE block before the end of
the loop block .
User Action : Make sure that any loop is entirely contained in the THEN
or ELSE clause .

A-12 Compile-Time and Environment Error Messages

end of SUB seen while not in SUB
Explanation : ERROR-A subprogram has a SUBEND or END SUB
statement without a preceding SUB statement .
User Action : Supply a SUB statement as the first statement in the
subprogram or delete the END SUB or SUBEND statement .

entire array may not be passed BY VALUE
Explanation : ERROR-The program specifies BY VALUE as the passing
mechanism for an entire array.
User Action : You cannot pass an entire array BY VALUE . Specify either
BY REF or BY DESC.

entire array not allowed in this context
Explanation : ERROR-The program specifies an entire array in a context
that permits only array elements, for example, specifying an entire array
in a PRINT statement .
User Action : Remove the reference to the entire array and specify
individual array elements .

entire virtual array cannot be a parameter
Explanation: ERROR-The program attempts to pass an entire virtual
array as a parameter .
User Action : None. You cannot pass an entire virtual array as a
parameter.

error deleting <file-name>
Explanation: ERROR-An error was detected in attempting to delete a
file .
User Action: Supply a valid file specification, or take corrective action
based on the associated message .

error opening compiler work files on SY :
Explanation: FATAL-The BASIC-PLUS-2 workfile could not be created .
User Action : Verify the default account is accessible and that enough disk
space is available to create the workfiles .

error opening output file <file-name>
Explanation: FATAL-The COMPILE command includes an illegal output
file specification, for example, COMPILE $BASIC .
User Action: Specify a valid file name .

Compile-Time and Environment Error Messages A-13

error opening file
Explanation: ERROR-The file specified in a %INCLUDE directive could
not be opened . This error message is followed by the specific RMS-11 error .
User Action : Take appropriate action based on the associated RMS-11
error.

executable DIMENSION illegal for static array
Explanation : ERROR-A DIMENSION statement names an array
already declared with a DECLARE, COMMON, or MAP statement, or one
that was declared statically in a previous DIMENSION statement.
User Action : Remove the executable DIMENSION statement, or
originally declare the array as executable in a DIMENSION statement .

exit from DEF while not in DEF
Explanation : ERROR-An FNEXIT or EXIT DEF statement has no
preceding DEF statement .
User Action : Define the function before inserting an FNEXIT or EXIT
DEF statement.

exit from FUNCTION while not in FUNCTION
Explanation: ERROR-An EXIT FUNCTION or FUNCTIONEXIT
statement was encountered in a module that is not a FUNCTION
subprogram .
User Action : Remove the EXIT FUNCTION or FUNCTIONEXIT
statement .

exit from PROGRAM while not in main program
Explanation : ERROR-A DEF, FUNCTION, or SUB subprogram contains
an EXIT PROGRAM statement.
User Action : Remove the EXIT PROGRAM statement .

exit from SUB seen while not in SUB
Explanation : ERROR-A program contains an EXIT SUB or SUBEXIT
statement with no preceding SUB statement .
User Action : If the program is a subprogram, supply a SUB statement ;
otherwise, remove the EXIT SUB or SUBEXIT statement .

A-14 Compile-Time and Environment Error Messages

expecting IF directive
Explanation : ERROR-The program contains a %END directive that is
not immediately followed by a %IF directive .
User Action : Supply a %IF directive immediately following the %END
directive .

expecting unary operator or legal lexical operand
Explanation : ERROR-A compiler directive contains an invalid lexical
expression, for example, %IF *3% %THEN.
User Action : Correct the lexical expression .

explicit declaration of <name> required
Explanation : ERROR-The program is compiled with the
/TYPE:EXPLICIT qualifier in effect and the program contains a variable,
constant, function, or subprogram that is not explicitly declared .
User Action: Explicitly declare the data type of the variable,
constant, function, or subprogram or compile the program without the
/TYPE :EXPLICIT qualifier .

expression not allowed in this context
Explanation : ERROR-The program contains an expression in a context
that allows only simple variables, array elements, or entire arrays .
User Action : Remove the expression .

expression too complicated
Explanation: The program contains an expression too complicated to
compile .
User Action: Rewrite the expression as two or more less complicated
expressions .

external globals not allowed-<name>
Explanation: FATAL-A program module being loaded or run with the
BASIC-PLUS-2 LOAD or RUN command references an external variable
or constant .
User Action : To reference external variables or constants you must link
your program and run it from the system monitor level .

Compile-Time and Environment Error Messages A-15

EXTERNAL name too long, truncating to <new-name>
Explanation : ERROR-An EXTERNAL statement names a symbol longer
than six characters .
User Action : Shorten the symbol name. External names must be six
characters or less .

EXTERNAL STRING variables not supported
Explanation : ERROR-The program contains an EXTERNAL statement
that specifies an external string variable .
User Action : Remove or change the EXTERNAL statement .
BASIC-PLUS-2 does not support external string variables .

extra ELSE directive found
Explanation: ERROR-The program contains a %ELSE directive that is
not matched with a %IF directive .
User Action : Make sure that each %ELSE directive is preceded by a %IF
directive and that each %IF directive contains no more than one %ELSE
clause .

extra END IF directive found
Explanation : ERROR-A program unit contains a %END %IF without a
preceding %IF directive .
User Action: Supply a %IF for the %END %IF.

extra left parenthesis in expression
Explanation : ERROR-A compiler directive contains a lexical expression
with an extra left parenthesis .
User Action : Remove the extra parenthesis .

extra right parenthesis in expression
Explanation : ERROR-A compiler directive contains a lexical expression
with an extra right parenthesis .
User Action : Remove the extra parenthesis .

A-16 Compile-Time and Environment Error Messages

failure in loading object file
Explanation : ERROR-Either an attempt was made to load a non-BASIC
object module, or the compiler could not find the object file referenced by a
CALL statement or EXTERNAL FUNCTION reference .
User Action : If the object file resides in the VAX/VMS Run-Time Library,
you must link the program at DCL level . If the object file is in a user-
supplied library, use the DCL LIBRARY command to make the missing
object module available . You can load only BASIC object modules .

FIELD valid only for dynamic string variables
Explanation : ERROR-A FIELD statement contains a numeric or
fixed-length string variable .
User Action : Remove the numeric or fixed-length string variable. Only
dynamic string variables are valid in FIELD statements .

FIELDed variable <vbl-name> cannot be a parameter
Explanation: ERROR-The parameter list in a reference to a DEF
statement or a subprogram contains a string variable or string array
element that also appears in a FIELD statement .
User Action: None. If a variable appears in a FIELD statement, the
variable cannot be passed as a parameter.

file access error for INCLUDE directive file <file-name>
Explanation : FATAL-The file named in the %INCLUDE directive was
correctly opened but could not be read for some reason . For example, the
disk drive was switched off line .
User Action : Take action based on the associated RMS-11 error messages .

FILL not allowed in DYNAMIC MAP
Explanation : ERROR-A DYNAMIC MAP statement contains a FILL
item .
User Action : Remove the FILL item .

floating point error or overflow
Explanation : WARNING-The program contains a numeric expression
whose value is outside the valid range for floating-point numbers .
User Action : Modify the expression so that its value is within the
allowable range .

Compile-Time and Environment Error Messages A-17

FORM FEED must appear at end of line
Explanation : WARNING-A form feed character is followed by other
characters on the same line .
User Action : Remove the characters following the form feed . A form feed
must be the last or only character on a line .

formal parameter must be supplied for <name>
Explanation : ERROR-The declaration of a DEF, SUB, or FUNCTION
routine contains the parentheses for a parameter list, but no parameters .
User Action: Supply a parameter list or remove the parentheses .

formal string parameters may not be FIELDed
Explanation : ERROR-A variable name appears both in a subprogram
formal parameter list and a FIELD statement in the subprogram .
User Action : Remove the variable from the FIELD statement or the
parameter list .

found <item> when expecting <item>
Explanation : ERROR-The program contains a syntax error .
BASIC-PLUS-2 displays the item at which the error was detected,
then displays one or more items that make more sense in that context .
The compilation continues so that other errors may be detected . The actual
program line remains unchanged and no object file is produced .
User Action : Examine the line carefully to discover the error. Change the
program line to correct the syntax error .

function invocation not allowed in assignment context
Explanation : ERROR-An external function invocation (including a
parameter list) appears on the left side of an assignment statement .
User Action : Remove the assignment statement . You cannot assign
values to a function invocation .

function nested too deep
Explanation : ERROR-The program contains too many levels of function
definitions within function definitions .
User Action : Reduce the number of nested functions .

A-18 Compile-Time and Environment Error Messages

<name> has a passing mechanism specified with no parameter list
Explanation : ERROR-A CALL statement, external function reference, or
EXTERNAL statement specifies a BY clause but does not specify a formal
parameter list .
User Action : Remove the BY clause or supply a parameter list .

IDENT directive may appear only once per module
Explanation : WARNING-The program contains more than one %IDENT
directive .
User Action : Remove all but one %IDENT directive .

IDENT directive name is too long
Explanation : WARNING-The quoted string in a %IDENT directive is
too long.
User Action: Reduce the length of the string . The maximum length is six
characters .

IF directive expression must be terminated by THEN
Explanation : ERROR-A %IF directive contains a %ELSE clause with no
intervening %THEN clause .
User Action : Insert a %THEN clause .

IF directive in INCLUDE directive needs END IF directive in same file
Explanation: ERROR-A %INCLUDE directive that is modified by a %IF
directive is missing a %END %IF directive .
User Action : Supply a %END %IF directive .

<n> IF statement(s) not terminated
Explanation : ERROR-The program contains an IF-THEN-ELSE
statement within a block (for example, a FOR-NEXT, SELECT CASE,
or WHILE block), and the end of the block was reached before the
IF-THEN-ELSE statement was terminated .
User Action : Check program logic to be sure IF-THEN-ELSE statements
are terminated with a line number or an END IF statement before the end
of the block is reached .

Compile-Time and Environment Error Messages A-19

illegal argument for command
Explanation: ERROR-An argument was entered for a command that
does not take an argument, or an invalid argument was entered for a
command, for example, SCALE A or LIST A .
User Action: Re-enter the command with the proper arguments .

illegal argument passing mechanism
Explanation : ERROR-The program specifies an invalid argument
passing mechanism, for example, passing strings or arrays BY VALUE, or
passing an entire virtual array.
User Action : Check all elements for proper parameter passing
mechanism .

illegal character <ASCII code>
Explanation : WARNING-The program contains illegal or incorrect
characters .
User Action: Examine the program for correct usage of the
BASIC-PLUS-2 character set; possibly delete the character.

illegal character <ASCII code> in external name
Explanation : ERROR-The external symbol in an EXTERNAL
FUNCTION or CONSTANT declaration contains an invalid character .
User Action : Remove the invalid character. External names can use only
RAD-50 characters .

illegal character <ASCII value> in IDENT directive
Explanation: ERROR-A %IDENT directive contains an illegal character
with the reported ASCII value .
User Action : Remove the illegal character.

illegal constant type
Explanation: ERROR-The program contains an invalid declaration, for
example, DECLARE RFA CONSTANT.
User Action : Remove the invalid data type . You cannot declare constants
of the RFA data type .

A-20 Compile-Time and Environment Error Messages

illegal I/O channel
Explanation : ERROR-A constant channel expression is greater than 12
or less than zero .
User Action : Change the channel expression to be within the range zero
to 12 .

illegal library name
Explanation: ERROR-A compiler command or qualifier specifies an
invalid library name, for example, DSKLIB NONE .
User Action : Specify a valid library name .

illegal line format or missing continuation at line <n>
Explanation : ERROR-A new line in the source file either does not
begin with a line number, does not start with a space or tab (specifying an
implied continuation), or does not follow a line ending with an ampersand
(&) .
User Action : Add a line number or a space or a tab to the beginning of
the line, or add an ampersand to the end of the previous line .

illegal line number
Explanation : ERROR-A line number outside the valid range was typed .
User Action : Enter only line numbers in the range 1 to 32767, inclusive .

illegal line number in CHAIN
Explanation: ERROR-A CHAIN with LINE statement specifies an
invalid line number. Either the number is outside the valid range, or a
string expression follows the LINE keyword .
User Action: Supply an integer line number between 1 and 32767,
inclusive .

illegal loop nesting, expecting NEXT <VARIABLE>
Explanation : ERROR-The program contains overlapping loops .
User Action: Examine the program logic to make sure that the FOR and
NEXT statements for the inside loop lie entirely within the outside loop .

Compile-Time and Environment Error Messages A-21

illegal matrix operation
One of the following explanations and user actions :
Explanation: ERROR-You attempted matrix division .
User Action : Remove the attempted matrix division. BASIC-PLUS-2
does not support this operation .
Explanation : ERROR-You attempted to invert a LONG or BYTE matrix .
User Action: Change the matrix to be WORD, SINGLE, or DOUBLE .
Explanation : ERROR-You attempted to invert a matrix recieved as a
parameter.
User Action: Copy the matrix to a local matrix to perform the operations .
Explanation: ERROR-You attempted to transpose a matrix to itself .
User Action: Use another matrix as the destination and assign the result
to the source .
Explanation: ERROR-You attempted to perform MAT multiplication
with the same matrix as both the source and destination .
User Action: Use an intermediary matrix to hold the result .

illegal mode mixing
Explanation : ERROR-The program contains string and numeric
operands in the same operation .
User Action: Change the expression so that it contains either string or
numeric operands, but not both .

illegal multiple definition of name <name>
Explanation : ERROR-The program uses the same name for the
following :
©

	

More than one variable
©

	

A variable and a MAP
©

	

A variable and a COMMON
©

	

A MAP and COMMON
User Action : Use unique names for variables, COMMONs, and MAPs .

A-22 Compile-Time and Environment Error Messages

illegal operation for argument
Explanation: ERROR-The program performs an operation that is
inconsistent with the data type of the arguments, for example, an
arithmetic operation on variables of the RFA data type .
User Action : Remove the operation or change the data type of the
arguments .

illegal string operator
Explanation : ERROR-The program specifies an invalid string operation,
for example, A$ = B$-C$.
User Action : Replace the invalid operator .

illegal switch usage-<text>
Explanation : ERROR-An invalid qualifier was specified with a compiler
command, for example, SET/ABC .
User Action : Specify a valid qualifier.

illegal usage of FIELDed variable
Explanation: ERROR-Either (1) a MOVE TO or MOVE FROM
statement contains a string variable or string array element that also
appears in a FIELD statement, or (2) a MAT statement operates on a
string array element that appears in a FIELD statement .
User Action : Either (1) remove the variable from the FIELD statement
or the MOVE statement, or (2) remove the array from the MAT statement .

illegal use of unary operator
Explanation : ERROR-A compiler directive contains an invalid lexical
expression, for example, %IF 1 - - 2, or %IF 1 NOT 2 .
User Action: Correct the invalid lexical expression .

illegally formed name
Explanation : ERROR-The program contains an invalid user identifier
(such as a variable, constant, or function name) .
User Action : Change the name to comply with the rules for naming
user identifiers. See the BASIC-PLUS-2 Reference Manual for more
information .

Compile-Time and Environment Error Messages A-23

illegally formed numeric constant
Explanation : ERROR-The program contains either (1) an invalid
E-format expression or (2) a numeric constant with a digit that is invalid
in the specified radix, for example, a decimal constant containing a
hexadecimal digit .
User Action : Supply a valid E-format expression or a constant that is
valid in the specified radix .

illegally nested DEFs
Explanation : ERROR-The program contains a DEF function block
within another DEF function block .
User Action : Remove the inner DEF block. A DEF block cannot contain
another DEF block .

implied continuation not allowed
Explanation : ERROR-The program contains an implied continuation
line after a statement that does not allow implicit continuation, for
example, a REM statement .
User Action : Use an ampersand (&) to continue the statement .

implied declaration not allowed for <name> with /TYPE=EXPLICIT
Explanation : ERROR-A program compiled with the TYPE=EXPLICIT
qualifier contains an implicitly declared variable .
User Action : Compile the program without the TYPE=EXPLICIT
qualifier, or declare the variable explicitly .

inaccessible code follows line <n> statement <m>
Explanation : WARNING-The program contains one or more statements
that cannot be accessed, for example, a multi-statement line whose first
statement is GOTO, EXIT, ITERATE, RESUME, or RETURN .
User Action: Make sure that the GOTO, EXIT, ITERATE, RESUME, or
RETURN statement is the only statement on a numbered line or the last
statement on a multi-statement line .

INCLUDE directive file must be on a random access device
Explanation : ERROR-A %INCLUDE directive specifies a device other
than a disk .
User Action : Change the %INCLUDE directive to specify a random access
device .

A-24 Compile-Time and Environment Error Messages

INCLUDE directive RMS error number <number>
Explanation: ERROR-A %INCLUDE directive caused an RMS-11 error
when accessing the specified file .
User Action: Take action based on the reported RMS-11 error number .

INCLUDE directive syntax error
Explanation : ERROR-A %INCLUDE directive is not followed by a
quoted string .
User Action: Supply a quoted string .

inconsistent function usage for function <name>
Explanation : ERROR-The parameter list in a DEF function invocation
contains a string where the function expected a number, or vice versa .
This message is issued only when the invocation occurs before the DEF
statement in the program .
User Action: Supply a correct parameter in the function invocation or
correct the parameter list in the DEF statement .

inconsistent subscript use for <array-name>
Explanation : ERROR-The number of subscripts in an array reference
does not match the number of subscripts specified when the array was
created .
User Action: Specify the same number of subscripts .

input prompt must be a string constant
Explanation : ERROR-An INPUT, LINPUT, or INPUT LINE argument
list contains a numeric constant immediately following the statement .
User Action : Remove the numeric constant. You can specify only a
string constant immediately after an INPUT, LINPUT, or INPUT LINE
statement .

insufficient space for MAP DYNAMIC variable in MAP <name>
Explanation : ERROR-A variable named in a MAP DYNAMIC statement
is larger than the space allocated in the corresponding MAP statement .
User Action: Increase the size of the MAP so it is large enough to hold
the largest member.

Compile-Time and Environment Error Messages A-25

integer constant exceeds machine integer size
Explanation : ERROR-The value specified in a DECLARE CONSTANT
statement exceeds the largest allowable value for an integer . The
maximum value is 32767 .
User Action : Supply a value in the valid range .

integer constant required
Explanation : ERROR-The program contains a non-integer named
constant in a context that requires an integer . For example :
DIM A (' 123' D)
User Action : Supply an integer constant .

integer error or overflow
Explanation : WARNING-The program contains an integer expression
whose value is outside the valid range .
User Action : Modify the expression so that its value is within the
allowable range, or use an integer data type that can contain all possible
values for the expression .

internal logic error detected
Explanation : ERROR-An internal logic error was detected .
User Action : This error should never occur . Submit a Software
Performance Report with a machine-readable copy of the source program .

invalid conversion requested
Explanation: ERROR-The program contains a reference to the REAL or
INTEGER function, and the argument to the function is an entire array or
an RFA expression .
User Action : Remove the invalid argument . The argument to these
functions must be a numeric expression .

invalid file format
Explanation: ERROR-The file is not a RSTS/E native mode file .
User Action : Put the file in the proper format . If it is an RMS-11 file,
then use PIP to convert it to a RSTS/E native mode file .

A-26 Compile-Time and Environment Error Messages

invalid integer type
Explanation : ERROR-A reference to the INTEGER function contains an
invalid data type keyword, for example, A = INTEGER(A, SINGLE) .
User Action : Change the invalid data type keyword. The INTEGER
function returns only BYTE, WORD, or LONG values .

invalid real type
Explanation : ERROR-A reference to the REAL function contains an
invalid data type keyword, for example, A = REAL(A, LONG) .
User Action : Change the invalid data type keyword . The REAL function
returns only SINGLE, DOUBLE, GFLOAT, or HFLOAT values .

<command> is an illegal command from initialization file
Explanation: ERROR-An initialization file contains an invalid
command, such as COMPILE .
User Action: Remove the invalid command .

<text> is an invalid keyword value
Explanation : FATAL-The command supplied an invalid value for a
keyword .
User Action : Supply a valid value .

<clause> is an unsupported OPEN clause
Explanation : ERROR-An OPEN statement specifies invalid attributes
for the file .
User Action : Substitute valid attributes for the file .

<name> is not a DYNAMIC MAP variable of MAP <name>
Explanation: ERROR-A REMAP statement names a variable that was
not named in the MAP DYNAMIC statement for the associated MAP
statement .
User Action: Remove the variable from the REMAP statement, or name
the variable in the MAP DYNAMIC statement for the associated MAP
statement .

ITERATE must appear within a loop
Explanation : ERROR-The program contains an ITERATE statement
that is not within a FOR-NEXT, WHILE, or UNTIL loop .
User Action : Remove the ITERATE statement or surround it with a loop .

Compile-Time and Environment Error Messages A-27

jump into DEF
Explanation: ERROR-The program attempts to transfer control into a
DEF block .
User Action : Change the control statement; you cannot transfer control
into a DEF block except by invoking the function .

jump out of DEF
Explanation: ERROR-The program attempts to transfer control out of a
DEF block .
User Action : Change the control statement; you cannot transfer control
out of a DEF block except by an EXIT DEF, FNEXIT, FNEND, or END
DEF statement .

jump out of program unit
Explanation: ERROR-In a source file containing more than one program
module, a statement attempts to transfer control from one module into
another.
User Action : Change the statement that attempts to transfer control ; you
cannot transfer control into a different program module .

jump to label: <label> is into a block
Explanation: ERROR-The program attempted to transfer control into a
FOR-NEXT, WHILE, UNTIL, or SELECT CASE block .
User Action : Change the program logic so that it does not transfer control
into a block .

jump to line number <number> is into a block
Explanation: INFORMATION-The program transfers control to a line
number within a FOR-NEXT, WHILE, UNTIL, or SELECT CASE block .
User Action: This is an informational message . However, it is bad
programming practice to transfer control into a block .

jump to unreferencable line number <lin-num>
Explanation : ERROR-A RESUME, GOSUB, or GOTO statement
attempts to transfer control to a CASE statement .
User Action: Label or number the SELECT statement and transfer
control to the beginning of the SELECT-CASE block .

A-28 Compile-Time and Environment Error Messages

key <vbl-name> in MAP <map-name> cannot be a dynamic variable
Explanation: ERROR-A KEY clause in an OPEN statement specifies a
variable declared as dynamic in a MAP DYNAMIC statement .
User Action: Specify a static variable in the KEY clause ; that is, declare
the variable in a MAP statement, not a MAP DYNAMIC statement .

KEY <vbl-name> in MAP <name> is too long (max is 255)
Explanation : ERROR-A KEY variable is longer than 255 characters .
User Action: Reduce the length of the KEY variable . The maximum key
length is 255 characters .

KEY <vbl-name> is not an unsubscripted variable in MAP <name>
Explanation: ERROR-An OPEN statement for an indexed file specifies a
KEY variable that does not appear in a MAP statement .
User Action : Place the KEY variable in the MAP statement referenced by
the OPEN statement's MAP clause .

KEY clauses require a MAP clause
Explanation: ERROR-An OPEN statement specifies KEY clauses
without specifying a MAP clause .
User Action : Supply a MAP clause to define the position of the keys in
the record buffer.

key is needed for indexed files
Explanation: ERROR-The program attempts to open an indexed file for
output, and the PRIMARY KEY clause is missing .
User Action : Supply a PRIMARY KEY clause .

key must be either integer or string
Explanation: ERROR-A FIND or GET statement on an indexed file
contains a key specification that is not an integer or string .
User Action: Change the key specification to be an integer or a string .

key segment <vbl-name> in map <map-name> must be a string key
Explanation : ERROR-An OPEN statement specifies a segmented key
containing a numeric variable . For example :
10 OPEN '' INDEX .DAT '' AS FILE #1, ORGANIZATION INDEXED, &

PRIMARY KEY (A$, B$, C%), MAP ABC

User Action: Specify only string variables in segmented keys .

Compile-Time and Environment Error Messages A-29

key, <vbl-name> in map <map-name> must be either integer or string
Explanation: ERROR-An OPEN statement contains a key specification
that is not an unsubscripted integer or string variable .
User Action: Change the key specification to be an unsubscripted integer
or string variable .

keyword inconsistent with <OPEN clause> clause
Explanation: ERROR-An OPEN statement contains an ALLOW,
ACCESS, or RECORDTYPE clause whose keyword argument is invalid, for
example, ACCESS FORTRAN .
User Action: Change the clause argument to a valid keyword for that
clause .

keyword <name> is reserved in VAX BASIC
Explanation : WARNING-This keyword is reserved in VAX BASIC .
User Action : Remove the keyword if you want your program to be
transportable .

<keyword> keyword inconsistent with <keyword>
Explanation: ERROR-An OPEN statement contains contradictory record
format specifications, for example, both FIXED and VARIABLE .
User Action : Specify only one record format .

<keyword> keyword is inconsistent with file organization
Explanation: ERROR-An OPEN statement contains a keyword that is
inapplicable to the file organization, for example, ACCESS SCRATCH with
ORGANIZATION VIRTUAL .
User Action : Remove the inconsistent keyword .

<text> keyword requires a value
Explanation: ERROR-A keyword command was typed without a value .
User Action: Supply a valid keyword value .

label <label> not defined
Explanation : ERROR-The program tries to transfer control to a
non-existent label .
User Action: Define the label before transferring control to it .

A-30 Compile-Time and Environment Error Messages

label <name> does not label an active block statement
Explanation: ERROR-An EXIT statement in a loop, IF-THEN-ELSE, or
SELECT-CASE block specifies a label which does not refer to that block .
User Action : Change the program so that the label actually refers to the
block in which the EXIT statement occurs .

label <name> does not label an active loop statement
Explanation : ERROR-In a loop, an EXIT or ITERATE statement
specifies a label which does not refer to that loop .
User Action: Change the program so that the label actually refers to the
loop in which the EXIT or ITERATE statement occurs .

label not allowed on RESUME
Explanation : ERROR-A RESUME statement specifies a label rather
than a line number.
User Action: Change the label to a line number .

language feature is declining
Explanation : INFORMATION-This error is reported only when the
FLAG:DECLINING qualifier is in effect. The program contains a language
feature that is not recommended for new program development, for
example, the FIELD statement.
User Action: DIGITAL suggests that you use (1) MAP, MAP DYNAMIC,
and REMAP statements instead of a FIELD statement, (2) EDIT$
rather than CVT$$ functions, and (3) overlaid MAPs rather than CVTxx
functions .

language feature is operating system dependent
Explanation : ERROR-The program contains a PRINT statement with
RECORD clause on a system which does not support the RECORD clause .
User Action: Remove the RECORD clause .

LET directive syntax error
Explanation : ERROR-A %LET directive contains a syntax error, for
example, an invalid lexical identifier, or you specified the %LET directive
while syntax checking was enabled .
User Action : Either use the correct syntax for the %LET directive or
disable syntax checking .

Compile-Time and Environment Error Messages A-31

lexical identifier must be declared before reference
Explanation: ERROR-A %IF directive names a lexical constant which
was not named in a preceding %LET directive .
User Action : Declare the lexical constant with the %LET directive before
referencing it .

line number <n> follows line number <m>
Explanation : WARNING-The source program line numbers are not in
ascending order.
User Action : Put the line numbers in ascending order.

line number <n> undefined due to conditional compilation
Explanation : ERROR-The program references a line number which
does not appear in the object code as a result of the branch taken in a
%IF-%THEN-%ELSE-%END-%IF directive .
User Action : Change the %IF-%THEN-%ELSE-%END-%IF directive or
remove the line number reference .

line number may not appear in INCLUDE directive file
Explanation: ERROR-The file specified in a %INCLUDE directive
contains a line number.
User Action : Remove the line number from the file .

line too long
Explanation: ERROR-A program contains either (1) a text line that
exceeds the maximum characters allowed (the maximum length of a text
line is 225 characters on RSTS/E systems and 132 characters on RSX-11M
/M-PLUS systems), or (2) a multi-statement line that contains more than
32767 characters .
User Action : Either (1) break the line into two text lines, using the
ampersand (&) continuation character, or (2) split the multi-statement
line by adding a new line number.

logical operation on non-integer quantity
Explanation : ERROR-The program contains a logical operation
performed on strings or real numbers .
User Action : Change the logical operands to integers .

A-32 Compile-Time and Environment Error Messages

loop control variable must be a numeric variable
Explanation : ERROR-A FOR statement attempts to assign a string
expression as the loop control variable's initial value .
User Action: Remove the string expression. You can assign only numeric
values as the loop's initial value .

loop initial value must be a numeric expression
Explanation : ERROR-A FOR statement attempts to assign a string
value to the loop control variable .
User Action : Remove the string expression. You can assign only numeric
values to the loop control variable .

loop limit must be numeric
Explanation : ERROR-A FOR statement attempts to assign a string
expression as the loop control variable's limiting value .
User Action : Remove the string expression . You can assign only numeric
values as the loop control variable's limiting value .

loop will never execute
Explanation: WARNING-The program contains a FOR-NEXT loop
that is not executable; for example, FOR I% = 1% TO 0% . Compilation
continues, but the loop is ignored .
User Action: Change the loop parameters or insert an appropriate STEP
clause .

MAP <name> larger than previously defined
Explanation : FATAL-When a program is run with the BASIC-PLUS-2
RUN command, the length of a map is defined by the length of the first
occurrence of the map. Therefore, if the current program module in
memory defines a MAP as 100 bytes in length and a loaded program
module defines the same MAP as 50 bytes in length, the MAP is defined as
containing 50 bytes (because the loaded module was compiled before the
program module currently in memory) .
User Action : Make sure the MAP statements are the same size .

MAP <name> used in OPEN not defined
Explanation : ERROR-An OPEN statement's MAP clause references a
non-existent MAP statement .
User Action : Define the MAP statement referenced by the MAP clause, or
remove the MAP clause .

Compile-Time and Environment Error Messages A-33

MAP DYNAMIC <map-name> may not be larger than 32767 bytes
Explanation : ERROR-A MAP DYNAMIC statement references a map
that is greater than 32767 bytes in size .
User Action: Reduce the size of the map, as defined in the MAP
statement(s), to 32767 bytes or less .

MAP DYNAMIC <name> requires MAP or static string
Explanation : ERROR-The program contains a MAP DYNAMIC
statement whose name does not appear in a MAP statement or is not a
static string. Because parameters to DEF functions are only local copies,
you cannot use a MAP DYNAMIC statement on a DEF parameter .
User Action : Provide a corresponding MAP statement with the same
name or declare the string name within the preceeding MAP to make it a
static string.

MAP statement requires map name
Explanation : ERROR-A MAP statement does not specify a map name .
User Action : Specify a name for the MAP.

MAP too large in OPEN
Explanation : ERROR-The size of the MAP area referenced in an OPEN
statement is greater than 32767 bytes .
User Action : Reduce the size of the MAP area .

MAP variable <name> referenced before declaration
Explanation: INFORMATION-A reference to a MAP variable occurs
before the MAP statement .
User Action : Make sure that the MAP statement precedes any references
to variables in the MAP .

MAT statements require one or two dimensions
Explanation: ERROR-A MAT statement references an array of more
than two dimensions .
User Action : Remove the array reference . MAT statements are valid only
on arrays of one or two dimensions .

A-34 Compile-Time and Environment Error Messages

matrix dimension error
Explanation : ERROR-The program either (1) contains a MAT IDN,
MAT TRN, or MAT INV performed on a one dimensional array, or (2)
performs a matrix operation which requires identical subscripts in the
operand arrays and those arrays have different subscripts .
User Action : Dimension the arrays to the proper number of subscripts .

maximum conditional compilation depth exceeded
Explanation: ERROR-There are too many nested %IF-%THEN-%ELSE-
%END-%IF directives in the program .
User Action : Reduce the number of nested %IF-%THEN-%ELSE-%END-
%IF directives .

maximum number of dimensions exceeded . Maximum is <number>
Explanation: ERROR-An array declaration specifies more than the
allowed number of dimensions .
User Action : Reduce the number of dimensions . The maximum is 8 .

maximum parameters exceeded for <name> . Maximum is <number>
Explanation: ERROR-The program attempts to declare a DEF
statement with more than 32 parameters or a subprogram with more
than 255 parameters .
User Action: Reduce the number of parameters ; DEF statements allow up
to 32 parameters and subprograms allow up to 255 parameters .

<item> may not be passed BY <mechanism>
Explanation: ERROR-The program specifies an incorrect passing
mechanism for a parameter's data type or an invalid parameter . For
example, you cannot pass an entire array BY VALUE, nor can you pass a
label as a parameter.
User Action : Specify a valid parameter or passing mechanism .

mismatched END, expected <block>
Explanation: ERROR-The program contains an incorrect END
statement, for example, an END RECORD statement instead of an
END GROUP statement .
User Action : Supply the correct type of END statement .

Compile-Time and Environment Error Messages A-35

missing END IF directive before end of program unit
Explanation : ERROR-A %IF directive crosses a program module
boundary.
User Action : Terminate the %IF with a %END %IF before beginning a
new source module .

mode for parameter <n> of routine <name> changed to match declaration
Explanation : ERROR-The data type specified in a routine invocation
does not match that of the routine declaration . BASIC-PLUS-2 issues
this message only if the data type conversion results in a parameter that
cannot be modified by the routine that was invoked .
User Action : Make the data type specifications in the declaration and the
invocation match .

mode for parameter <n> of routine <name> not as declared
Explanation : ERROR-The CALL or invocation of a routine specifies a
string argument for a parameter that was specified as a numeric when the
routine was declared, or vice versa .
User Action : Change the string parameter to numeric, or vice versa .

module <name> not a BASIC-PLUS-2 object module
Explanation: FATAL-A program module being loaded with the
BASIC-PLUS-2 LOAD command was not created by BASIC-PLUS-2
Version 2.0 .
User Action : If the module source file is written in an earlier verion of
BP2, compile the source file with the BASIC-PLUS-2 COMPILE command
and reload the module . If the source file was written in another language
(MACRO, for example), link and run your program from the system
monitor level .

more than one main module
Explanation : FATAL-There is more than one main program loaded, or
a main module is loaded and another main module is the current program
module when the RUN command is given .
User Action: Reload the program modules, removing all but one of the
main modules .

multiple definition of <name>
Explanation : ERROR-A variable is declared in more than one
declarative statement.
User Action : Make sure that the variable is declared only once .

A-36 Compile-Time and Environment Error Messages

multiple definition of lexical identifier is illegal
Explanation: ERROR-A lexical constant is named in more than one
%LET directive .
User Action : Declare the lexical constant only once with %LET.

name is too long, changed to <name>
Explanation: WARNING-A variable or array name is longer than 31
characters. BASIC-PLUS-2 truncates the name to 31 characters and
continues compilation so that other errors may be detected . The actual
program line remains unchanged and no object file is produced .
User Action: Reduce the length of the variable name to 31 or fewer
characters .

named array <array-name> is too large
Explanation: ERROR-An array requires more than 229 - 1 bytes of
storage .
User Action: Reduce the size of the array.

negative FILL or string length
Explanation: ERROR-The program contains a negative FILL
specification or string length .
User Action : Change the FILL specification or string length to a positive
number .

nested FOR loops with same control variable <name>
Explanation: ERROR-The program contains nested FOR-NEXT loops
that use the same index variable .
User Action: Change the index variable for all but one of the loops .

no change made
Explanation: WARNING-The search string in an EDIT command was
not located in the text .
User Action: Enter valid search string .

no file specified for command in initialization file-command ignored
Explanation: WARNING-An initialization file contains a BRLRES,
DSKLIB, LIBRARY, ODLRMS, or RMSRES command or qualifier without
the required file specification .
User Action: Provide a valid file specification .

Compile-Time and Environment Error Messages A-37

no main program
Explanation : FATAL-When the BASIC-PLUS-2 RUN command was
given, at least one subprogram was loaded or currently in memory, but
there was no main module loaded as an object module or currently in
memory.
User Action: If there is no current program module in memory, call in
the main module with the OLD command . Otherwise, compile and reload
all subprograms as object modules and then call the main program into
memory.

no such MAP area <name>
Explanation : ERROR-A REMAP statement names a non-existent MAP
area .
User Action : Supply a MAP statement before executing the REMAP
statement .

numeric array expected
Explanation : ERROR-A CHANGE statement does not specify a numeric
array.
User Action : Supply a numeric array in the CHANGE statement .

numeric constant required
Explanation : ERROR-The program contains a string in a context that
requires a numeric constant. For example :
DECLARE INTEGER CONSTANT A = "ABC"

User Action : Supply a numeric constant .

numeric expression is needed
Explanation: ERROR-The program contains a string expression in a
context that requires a numeric expression, for example, WHILE A$.
User Action : Supply a numeric expression .

numeric expression is needed in built-in function
Explanation : ERROR-A reference to a BASIC-PLUS-2 built-in function
contains a string instead of a numeric expression .
User Action : Supply a numeric expression .

A-38 Compile-Time and Environment Error Messages

object file I/O error # <num>
Explanation : FATAL-An error occured during the creation of the object
file. The error number is the RMS returned status .
User Action : Take action based on the RMS error number .

OPEN clause <clause> value greater than <number>
Explanation : ERROR-An OPEN statement contains a RECORDSIZE,
FILESIZE, EXTENDSIZE, WINDOWSIZE, BLOCKSIZE, BUCKETSIZE,
or BUFFER clause whose argument is too large .
User Action : Supply a smaller value for the argument .

operator expected, not found
Explanation : A compiler directive contains an invalid lexical expression
which has a right parenthesis immediately followed by a lexical identifier.
User Action : Correct the lexical expression .

operator must follow right parenthesis
Explanation : ERROR-The program contains an incorrect lexical
expression .
User Action : Correct the lexical expression .

OPTION clause contradicts prior clause
Explanation : ERROR-The OPTION statement contains contradictory
clauses, for example, specifying the default integer size as both BYTE and
LONG.
User Action : Remove one of the clauses .

OPTION statement out of sequence
Explanation: ERROR-The OPTION statement is either (1) not the first
statement in a main program or (2) not the first statement following the
SUB or FUNCTION statement .
User Action : Move the OPTION statement so it is either the first
statement in the main program or the first statement following the SUB or
FUNCTION statement in the subprogram .

Compile-Time and Environment Error Messages A-39

ORGANIZATION UNDEFINED requires FOR INPUT clause
Explanation : ERROR-The program opens a file with ORGANIZATION
UNDEFINED, but does not specify FOR INPUT .
User Action: Specify FOR INPUT in the OPEN statement . You cannot
write to a file with an undefined file organization . However, once you
interpret the file organization using the FSP$ function, you can perform
output by closing the file and then reopening it FOR OUTPUT, specifying
the appropriate organization clause .

<keyword> overrides NOLINE
Explanation : WARNING-The program (1) was compiled with the
NOLINES qualifier and (2) uses a keyword that requires line number
information. For example, ERL and RESUME with line number
statements both require that the program be compiled with the LINES
qualifier.
User Action : None. If you use a keyword that requires line number
information, BASIC-PLUS-2 automatically overrides the NOLINE default
and sets LINES in effect .

parameter <n> of <type> structure not as declared
Explanation : ERROR-The actual parameter list in a CALL to a SUB
subprogram or an invocation of a FUNCTION subprogram specifies an
entire array where the subprogram declaration specified a simple variable,
or vice versa .
User Action : Change the actual parameter list to match the declared
parameter list, or vice versa .

parameter may not be received by <mechanism>
Explanation : ERROR-The subprogram specifies an incorrect passing
mechanism for a parameter's data type or an invalid parameter. For
example, you cannot receive an entire array BY VALUE .
User Action : Specify a valid parameter or passing mechanism .

parameter type specification required with /EXPLICIT
Explanation: ERROR-In a program compiled with the /TYPE :EXPLICIT
qualifier, no data type keyword is specified for a parameter.
User Action : Supply a data type keyword for the parameter. There are no
default data types when you compile a program with the /TYPE:EXPLICIT
qualifier .

A-40 Compile-Time and Environment Error Messages

<n> parameters expected for <routine>
Explanation: ERROR-The CALL statement or invocation of a routine
specifies a different number of parameters than the number specified when
the routine was declared .
User Action : Change the number of parameters to match the number
declared .

passing mechanism disagrees with declaration
Explanation : ERROR-The CALL statement or invocation of a routine
specifies a different passing mechanism for a parameter than that specified
when the routine was declared .
User Action : Remove the BY clause specified in the CALL statement
or invocation ; BASIC-PLUS-2 automatically passes parameters with the
passing mechanism specified when the routine was declared .

passing mechanism not allowed for <item>
Explanation: ERROR-The program specifies a passing mechanism in a
context other than an external subprogram invocation or declaration .
User Action: Remove the passing mechanism .

passing mechanism not allowed for DEF <vbl-name>
Explanation : ERROR-A DEF invocation specifies a passing mechanism
for a parameter.
User Action: Remove the passing mechanism .

PRINT USING clause must be a string expression
Explanation : ERROR-A PRINT USING statement specifies a numeric
format string.
User Action : Supply a valid format string .

PRINT USING conflicts with RECORD clause
Explanation: ERROR-A PRINT USING statement contains a RECORD
clause .
User Action: Remove the RECORD clause or use the PRINT statement
instead of PRINT USING .

program structures nested too deeply
Explanation : FATAL-The program contains too many nested block
constructs, for example, DEF function definitions .
User Action: Reduce the number of nested block constructs .

Compile-Time and Environment Error Messages A-41

program too big to compile
Explanation : FATAL-The program is too big .
User Action : Recode the program as two or more modules .

program too large to RUN
Explanation : FATAL-Maximum memory has been exceeded by a
program being run in the BASIC-PLUS-2 environment .
User Action : To reduce the memory requirements of your program, write
an overlay descriptor (ODL) file to overlay the program modules ; then link
and run your task from the system monitor level . (If you ran the program
with the /DEBUG qualifier, the debugger added to the size of your task .
You may be able to run the program in the BASIC-PLUS-2 environment
with the RUN/NODEBUG command .)

radix not supported
Explanation: ERROR-A literal constant specifies a radix. For example,
in the following DECLARE statement, H is an invalid radix specifier :
10

	

DECLARE LONG CONSTANT A = H"111"

User Action : Supply a valid BASIC-PLUS-2 radix specifier.

READ access inconsistent with FOR OUTPUT
Explanation: ERROR-An OPEN statement specifies the FOR OUTPUT
and ACCESS READ clauses .
User Action: The FOR OUTPUT clause specifies that a new file is
created; ACCESS READ specifies that the program can only read the file .
If you want to create a new file, remove the ACCESS READ clause ; if you
want read-only access to a file, specify the FOR INPUT clause .

READ without DATA statement
Explanation: ERROR-The program contains a READ statement and
there are no DATA statements .
User Action : Supply a DATA statement, or remove the READ statement .

real constant expressions not supported
Explanation: ERROR-The program contains a DECLARE REAL
CONSTANT statement that specifies an expression for the constant value .
User Action : Remove the expression. You can specify only literal values
when declaring floating-point constants .

A-42 Compile-Time and Environment Error Messages

record too big from INCLUDE directive file
Explanation : FATAL-The file specified in a %INCLUDE directive
contains a record longer than 255 characters .
User Action : Edit the file to remove any records longer than 255
characters .

repeat count must be positive numeric
Explanation: ERROR-A FILL item specifies a non-numeric or negative
repeat count, for example, FILL(A$) or FILL(-3) .
User Action : Supply a valid repeat count .

<item> requires a numeric expression
Explanation : ERROR-The program contains a string expression in a
context requiring a numeric expression .
User Action: Supply a numeric expression .

<item> requires conditional expression
Explanation : ERROR-A CASE or IF keyword is immediately followed by
a floating-point or string expression .
User Action : Supply a conditional expression (relational, logical, or
integer) .

<item> requires string expression
Explanation : ERROR-The program contains a numeric expression in a
context requiring a string expression, for example, the file specification in
an OPEN statement, or the default file specification in a DEFAULTNAME
clause .
User Action : Supply a string expression .

result attributes inconsistent with prior declaration
Explanation : ERROR-An external or DEF function declaration specifies
a different data type for the function's result than the DEF or FUNCTION
statement specifies .
User Action: Change the specified data type in either the declaration or
the DEF or FUNCTION statement so that the data types agree .

RFA expression required
Explanation : ERROR-A GET statement's RFA clause contains an
expression that is not of the RFA data type .
User Action : Supply a valid RFA expression.

Compile-Time and Environment Error Messages A-43

RFA not allowed in this context
Explanation : ERROR-The program attempts to use an RFA expression
in an arithmetic expression or other invalid context .
User Action : Remove the RFA expression . You can use the RFA data type
only in file I/O, in an assignment statement or in a comparison .

scale factor has been set to <number>
Explanation: WARNING-A SCALE command has reset the scale factor .
User Action : None .

scale factor out of range-ignored
Explanation: WARNING-The SCALE qualifier specifies a scale factor
that is not between 0 and 6, inclusive .
User Action : Supply a valid scale factor .

scale has been truncated to <number>
Explanation: WARNING-A floating-point number was specified in the
SCALE command. The number has been truncated and the resulting
integer is now the scale factor .
User Action : None .

scale is out of range-valid is 0 to 6
Explanation : ERROR-The OPTION statement specifies a scale factor
that is not between 0 and 6, inclusive .
User Action : Supply a valid scale factor .

scale factor used is 0 for single precision
Explanation : WARNING-An attempt was made to set the SCALE factor
while in single precision .
User Action : Set the precision to DOUBLE. You cannot use scaling when
in single precision .

SINGLE constant required
Explanation : ERROR-The program contains a DECLARE SINGLE
CONSTANT statement that specifies an expression for the constant value .
User Action : Remove the expression . You can specify only literal values
when declaring floating-point constants .

A-44 Compile-Time and Environment Error Messages

SPAN is inconsistent with NOSPAN
Explanation: WARNING-An OPEN statement specifies both SPAN and
NOSPAN clauses .
User Action : Remove one of the clauses .

specified numeric exceeds valid character code
Explanation: FATAL-A quoted literal of type character C contains a
value outside the valid range, for example, © 300' C .
User Action : Use a valid ASCII value .

star (*) is needed in DEF, not °/-,
Explanation: ERROR-The program contains a statement that starts
with DEF/.
User Action: Change the DEF/ to DEF* .

string constant expression is too long
Explanation: ERROR-The program contains a DECLARE STRING
CONSTANT statement where the value assigned to the constant exceeds
the maximum number of characters allowed for string constant expressions .
In BASIC-PLUS-2, the maximum length of a string constant expression at
compile time is 128 characters .
User Action: Change the string constant to a string variable and assign
the string expression to the variable at run time .

string constant required
Explanation: ERROR-The program contains a numeric expression in a
context that requires a string expression . For example :
DECLARE STRING CONSTANT ABC = 123

User Action : Supply a string literal or a named string constant .

string expression is needed
Explanation: ERROR-The program contains a numeric expression where
a string expression is needed, for example, NAME 1% AS "ABC .DAT" .
User Action : Supply a string expression .

string expression is needed in built-in function
Explanation: ERROR-The program specifies a numeric expression for a
built-in function that requires a string argument .
User Action : Supply a string expression for the built-in function .

Compile-Time and Environment Error Messages A-45

string is too large
Explanation : ERROR-A string exceeds the maximum allowable length .
The maximum length is 32767 characters .
User Action : Reduce the length of the string .

string length not allowed on dynamic string <name>
Explanation : ERROR-The program contains a dynamic string variable
declaration that specifies a string length .
User Action : Length specifications are allowed only for fixed-length
strings; remove the length specification from the dynamic string, or allocate
the string in a MAP or COMMON statement .

string length not allowed on MAP DYNAMIC variable
Explanation : ERROR-A string variable in a MAP DYNAMIC statement
specifies a string length .
User Action : Remove the string length . All string variables named in a
MAP DYNAMIC statement have a length of zero until a REMAP statement
executes .

string length not allowed on numeric FILL
Explanation : ERROR-The program contains a numeric FILL item that
specifies a length .
User Action : Remove the length specification from the numeric FILL
item .

string length not allowed on numeric variable <name>
Explanation: ERROR-The declaration for a numeric variable contains a
specification for string length .
User Action: Remove the string length specification .

string length specification for <name> must be numeric
Explanation : ERROR-The length specification for a fixed-length string
is non-numeric, for example COMMON A$ = "ABC" .
User Action : Supply a numeric length specification .

string literal required for compiler directive
Explanation : ERROR-A quoted string is missing in a compiler directive
that requires one, for example, %IDENT.
User Action : Supply a string literal for the compiler directive .

A-46 Compile-Time and Environment Error Messages

string variable expected
Explanation : ERROR-A CHANGE statement specifies a numeric
variable .
User Action : Supply a string variable ; the CHANGE statement changes a
string variable to a numeric array, and vice versa .

string variable required
Explanation : ERROR-A statement references a numeric variable instead
of a string variable, for example LINPUT A% .
User Action : Supply a string variable instead of a numeric variable .

subscript may not be specified for entire array
Explanation: ERROR-A CALL statement or external function reference
passes an entire array as a parameter and contains a subscript expression,
for example A(,,3) .
User Action : Remove the subscript expression . You cannot specify any
subscripts when passing an entire array as a parameter.

subscript out of range for <array-name>
Explanation: ERROR-The program references an array element with
constant subscript(s) outside the bounds of the array .
User Action : Check program logic to make sure all subscripts are within
the bounds of the array.

suffix not allowed on FILL after data-type keyword
Explanation: ERROR-A FILL item defined with an explicit data type
ends in a percent or dollar sign .
User Action: Remove the FILL item's percent or dollar sign .

suffix not allowed on variable <name>
Explanation : ERROR-A variable defined with explicit data type ends in
a percent or dollar sign .
User Action: Remove the variable's percent or dollar sign .

symbol <name> multiply defined
Explanation : FATAL-More than one subprogram with the same name
has been loaded with the BASIC-PLUS-2 LOAD command .
User Action : Remove or rename the subprograms .

Compile-Time and Environment Error Messages A-47

system commands cannot be executed from ini file
Explanation : ERROR-An initialization file contains a command
preceded by a dollar sign.
User Action : Remove the command from the initialization file .
Initialization files cannot perform system commands .

text following END ignored
Explanation : ERROR-The compiler detected text following an END,
END SUB, or END FUNCTION statement .
User Action: Remove the text . If an END, END SUB, or END
FUNCTION statement appears in the program, it must be the last
statement .

THEN directive must follow a lexical expression
Explanation: ERROR-A %IF directive contains a lexical expression that
is not immediately followed by a %THEN .
User Action : Supply a %THEN clause. %THEN, %ELSE, and %END %IF
are required in a %IF directive .

too few arguments
Explanation: ERROR-The invocation of a BASIC-PLUS-2 built-in
function contains too few arguments .
User Action: Supply the correct number of arguments to the function .

too many arguments
Explanation : ERROR-The invocation of a BASIC-PLUS-2 built-in
function contains too many arguments .
User Action: Supply the correct number of arguments to the function .

too many array indices active
Explanation : ERROR-A subscript expression contains more than 100
array indices between the open parenthesis and the close parenthesis .
User Action : Reduce the number of active array indices .

too many function parameters active
Explanation : ERROR-An external function invocation contains too many
expressions in the actual parameter list .
User Action : Reduce the number of expressions in the actual parameter
by assigning the expressions to temporary variables .

A-48 Compile-Time and Environment Error Messages

too many keys-limit is 255
Explanation : ERROR-An OPEN statement specifies more than 255
index keys .
User Action : Reduce the number of index keys . The maximum is 255 .

too many subprograms or maps
Explanation : FATAL-A program being run in the BASIC-PLUS-2
environment contains more than 16 MAPs or calls more than 16
subprograms .
User Action : Link and run your program from the system monitor level .

too many temporaries generated for DEF at line <line-number> statement
<statement-number>
Explanation: ERROR-A program contains code within a DEF function
that contains too large a number of temporary variables .
User Action : Either change the DEF function to an external function or
reduce the number of temporaries required within the DEF function .

TYPE default of STRING is not allowed
Explanation : ERROR-STRING was specified as the default data type
in (1) a compiler command, (2) a qualifier to the BASIC-PLUS-2 DCL
command, or (3) an OPTION statement .
User Action : Specify a numeric data type as the default .

unable to copy file, RMS error <error number>
Explanation : FATAL-An RMS-11 error occurred while attempting to
copy the RUN task into the user's account . See the RSTS /E RMS-11
User's Guide or the RSX-11M/MPLUS RMS-11 User's Guide for an
explanation of the error .
User Action: Take action based on the associated RMS error .

unaligned COMMON or MAP variable <vbl-name> in <psect>
Explanation : WARNING-The total storage preceding a numeric variable
in a COMMON or MAP is an odd number of bytes .
User Action : None. BASIC-PLUS-2 pads the preceding storage with a
blank byte because the PDP-11 requires that numeric data start on a word
boundary. VAX BASIC does not pad the storage because numeric data can
start on any byte boundary. However, if you want the program to run on
both types of system, you should ensure that all numeric data start on a
word boundary.

Compile-Time and Environment Error Messages A-49

undefined line number
Explanation : ERROR-A statement tries to transfer control to a
non-existent line .
User Action : Replace the non-existent line number with the correct
destination line number .

undefined/unresolved global <name>
Explanation: FATAL-Either (1) a call was made to a subprogram that
was not a loaded module or the current program module in memory when
the RUN command was given, or (2) the compiler generated a global that
does not exist in the RUN task .
User Action : (1) Make sure all external subprograms are either loaded or
are the current program in memory. (2) If all subprograms are loaded or
currently in memory and this message appears, submit an SPR and include
all relevant information .

unexpected end of file
Explanation : ERROR-The compiler encountered an end-of-file
immediately after an ampersand continuation character .
User Action : Remove the ampersand continuation character, or continue
the line .

unresolved/undefined symbols
Explanation: ERROR-A program executed in the BASIC-PLUS-2
environment calls or invokes a subprogram or routine that has not been
loaded with the LOAD command .
User Action : Load the subprogram or routine before running the program
in the BASIC-PLUS-2 environment .

unsaved change has been made, CTRL/Z or EXIT to exit
Explanation : WARNING-A BASIC-PLUS-2 source program in memory
has been modified, and an EXIT command or Ctrl/Z has been entered .
BASIC-PLUS-2 signals the error notifying you that if you exit from the
compiler, the program modifications will be lost .
User Action: If you want to save the program, enter the SAVE command .
If you do not want to save the program, enter EXIT or press Ctrl/Z .

A-50 Compile-Time and Environment Error Messages

unterminated string literal
Explanation : ERROR-The program contains an improperly terminated
string literal ; for example, -ABC, -ABC , , and ' ABC ,, are all improperly
terminated.
User Action : Use the same type of quotation mark (either single or
double) for both beginning and ending string delimiters .

user ABORT directive <text>
Explanation: FATAL-The compilation was terminated as the result of a
%ABORT directive . The compiler prints the text following the %ABORT
directive .
User Action : None .

user PRINT Message: <text>
Explanation : INFORMATION-This message was generated as a result
of a %PRINT directive . The compiler prints the text you specify in the
context of this message .
User Action: None .

user variable <name> not allowed in declaration
Explanation: ERROR-The parameter list in an external subprogram
declaration contains a user variable name .
User Action : Remove the variable from the parameter list. When
declaring a routine, the parameter list can contain only data type and
parameter-passing mechanism specifications .

value too large for constant
Explanation: ERROR-The value of an EXTERNAL CONSTANT is larger
than the specified data type allows .
User Action : Make sure the data type specified in the EXTERNAL
CONSTANT statement matches that of the actual constant .

variable <name> not aligned in COMMON/MAP <name>
Explanation: WARNING-The total storage preceding a numeric variable
in a COMMON or MAP is an odd number of bytes .
User Action: None . BASIC-PLUS-2 pads the preceding storage with a
blank byte because the PDP-11 requires that numeric data start on a word
boundary. VAX BASIC does not pad the storage because numeric data can
start on any byte boundary. However, if you want the program to run on
both types of system, you should ensure that all numeric data start on a
word boundary.

Compile-Time and Environment Error Messages A-51

variable <name> not aligned in multiple references in MAP <name>
Explanation: ERROR-More than one overlaid MAP area contains the
same variable, but the variable's position differs in the MAP statements .
User Action: The same variable can appear in multiple overlaid MAPs,
but the variable must occupy the same position in the PSECT; make sure
that the variable appears in the same position in the MAP statements .

variable or constant required
Explanation: ERROR-The program contains an executable DIM
statement that contains an expression in the bounds list .
User Action : Remove the expression from the bounds list . Executable
DIM statements can have only constants or variables (simple or
subscripted) as bounds .

virtual array space exceeded at array <name>
Explanation : ERROR-The storage for virtual arrays on a single channel
exceeds 2147483647 bytes .
User Action: If there is only one virtual array on the channel, you must
reduce the amount of storage used by the array. However, if there is
more than one virtual array on the channel, you can put each array on a
separate channel .

virtual array string <name> length increased from <n> to <m>
Explanation : WARNING-In a string virtual array DIM statement, the
specified string length is not a power of two .
User Action : None. BASIC-PLUS-2 increases the string length to the
next higher power of two .

virtual array string <name> length truncated from <n> to <m>
Explanation: WARNING-A string virtual array specifies a string length
greater than 512 . BASIC-PLUS-2 truncates the length specification to
512 .
User Action : None. The maximum string length for virtual arrays is 512 .

WINDOWSIZE inconsistent with CLUSTERSIZE
Explanation: ERROR-An OPEN statement contains both a
WINDOWSIZE and CLUSTERSIZE clause .
User Action: Remove either the WINDOWSIZE or the CLUSTERSIZE
clause. CLUSTERSIZE is valid only on RSTS/E systems, and
WINDOWSIZE is valid on all systems except RSTS/E .

A-52 Compile-Time and Environment Error Messages

work file error-out of space, program too large
Explanation : FATAL-The BASIC-PLUS-2 workfile is full and the
compilation can not continue because the program is too large to compile .
User Action : Recode the program as two or more modules .

work file error-RMS create failure
Explanation : FATAL-The BASIC-PLUS-2 workfile cannot be created .
User Action : Verify that the default account is accessible and that enough
disk space is available to create the workfile .

Compile-Time and Environment Error Messages A-53

This appendix describes run-time errors, their causes, and the user action
required to correct them .

BA Diagnosing Run-Time Errors
BASIC-PLUS-2 signals a run-time error message if an error occurs during
program execution . There are three different levels of run-time errors :
warning, error (also called trappable errors), and fatal . These errors are
described as follows :
©

	

Warning level errors
Errors that have a warning severity level do not cause a program to abort ;
however, they do indicate that an error has occurred . In some cases, when
a warning error occurs, BASIC-PLUS-2 prompts you for information or
correct data ; in other cases, program execution continues but the results
are not as expected . You do not need error-handling routines to trap
warning errors .

B

©

	

Error level errors

Run-Time Error Messages

Errors that have an error severity level cause the program to abort unless
they are trapped in a user-written error handling routine. Once the error
is successfully handled, program execution continues .

©

	

Fatal level errors
Errors that have a fatal severity level cause the program to abort . You
cannot trap fatal errors .

Run-Time Error Messages B-1

B .2 Error Message Format
The format of a BASIC-PLUS-2 run-time error message is as follows :
< I ><message> at line n in "module module-name"

< I > Is a character indicating the severity of the error . The severity indicator can
be either a percent sign (%) or question mark (?) . A question mark indicates
an error of error or fatal severity . A percent sign indicates an error of warning
severity.

<x>

	

Is the line number where the error occurred .
<y>

	

Is the name of the module where the error occurred .

B.3 Numerical List of Error Messages
This section contains a list of the BASIC-PLUS-2 run-time error messages .
They are listed according to error number ; from lowest to highest. (The first
two errors listed are unnumbered .)

?Cannot open error file
Explanation: The BASIC-PLUS-2 error message file could not be opened .
User Action : On RSX systems, re-install BASIC-PLUS-2 to make sure
that the error message file is successfully installed on the system . If this
error still appears after a successful installation, please submit an SPR .

?RMS error # <num>
Explanation: RMS returned an error status that could not be handled by
BASIC-PLUS-2 . The number is the RMS error status returned by RMS .
User Action : See the RMS documentation for your system for a
description of the error. If the error is -912, it is likely that you closed a
file that other files were accessing with the CONNECT clause . If you close
a file, you must also close all files connected to the file .

1 ?Bad directory for device
Explanation: ERROR-Either the device directory does not exist or is
unreadable, or on RSTS/E systems, the program tried to access a magnetic
tape with a file structure other than the default file structure .
User Action: Either supply a valid directory, change the default magnetic
tape file structure with an ASSIGN MTO : .DOS or ANSI command, or
override the default by specifying MODE 16384 for DOS format or MODE
24576 for ANSI format when you open the file .

B-2 Run-Time Error Messages

2 ?Illegal file name
Explanation : ERROR-The file name (1) is too long, (2) is incorrectly
formatted, (3) contains embedded blanks or invalid characters, or (4) on
RSX-11M/M-PLUS systems, is in lowercase letters .
User Action : Supply a valid file specification .

3 ?Account or device in use
Explanation: ERROR-The specified operation cannot be performed
because the device is already in use or because the account cannot be found
or opened .
User Action: Wait until the device is available or specify another device
or account.

4 ?No room for user on device
Explanation : ERROR-No user storage space exists on the specified
device or on RSTS/E systems . You have exceeded the number of files
allocated for your account .
User Action : Delete files that are no longer needed to free disk space in
the account in which the error occurred .

5 ?Can't find file or account
Explanation : ERROR-The specified file or directory is not on that device .
User Action: Supply a valid file specification .

6 ?Not a valid device
Explanation : ERROR-The device is illegal or nonexistent .
User Action : Supply a valid device .

7 ?I/O channel already open
Explanation: ERROR-The program attempts to open an I/O channel
that is already open for input or output .
User Action : Close the channel and reopen it or specify another channel .

8 ?Device not available
Explanation : ERROR-The requested device is in use .
User Action : Wait until the device is available or specify a different
device .

Run-Time Error Messages B-3

9 ?I/O channel not open
Explanation : ERROR-The program attempted to perform an I/O
operation before opening the channel .
User Action : Open the channel with the OPEN statement before
attempting an I/O operation to it .

10 ?Protection violation
Explanation : ERROR-The program attempted to read or write to a file
whose protection code did not allow the operation, or on RSTS/E systems,
you attempted to extend a contiguous file beyond its initially allocated size .
User Action : Use a different file, change the file's protection code, or
change the attempted operation . On RSTS/E systems, use the FILESIZE
clause with the CONTIGUOUS clause to allocate enough contiguous disk
space when you open the file .

11 ?End of file on device
Explanation : ERROR-The program attempted to read data beyond the
end of the file .
User Action: None. The program can trap this error in an error handler .

12 ?Fatal system I/O failure
Explanation : ERROR-An I/O error has occurred in either (1) the system
or (2) Record Management Services . As a result, the last operation will
not be completed .
User Action : See the RSTS/E RMS-11 User's Guide or the
RSX-11M/M-PLUS RMS-11 User's Guide for information on RMS-11
errors, or retry the operation .

13 ?User data error on device
Explanation : ERROR-One or more characters may have transmitted
incorrectly because of a parity error, bad punch combination on a card, or
similar error.
User Action: Repeat the data entry operation .

14 ?Device hung or write locked
Explanation: ERROR-The program attempted an operation to a
hardware device that is not functioning properly or is protected against
writing.
User Action : Check the device on which the operation is performed .

B-4 Run-Time Error Messages

15 ?Keyboard wait exhausted
Explanation : ERROR-No input was received during the execution of an
INPUT, LINPUT, or INPUT LINE statement that was preceded by a WAIT
statement.
User Action: None. You must supply input within the specified time .

16 ?Name or account now exists
Explanation: ERROR-The program attempted to create or rename a file
or account with a file name that already exists .
User Action : Either (1) use the KILL statement to erase the old file
before creating the file, or (2) use a different file name .

17 ?Too many open files on unit
Explanation: ERROR-The program attempted more than one DECtape
output file per DECtape drive . BASIC permits only one open file per
DECtape drive .
User Action : Close the file that is open on the unit or specify a different
unit .

18 ?Illegal SYSO usage
Explanation: ERROR-RSTS/E only. The program attempted an illegal
SYS call .
User Action: See the appropriate RSTS/E SYS call documentation .

19 ?Disk block is interlocked
Explanation: ERROR-RSTS/E only. The requested disk block segment
is already in use (locked) .
User Action : Try the operation again .

20 ?Pack IDs don't match
Explanation: ERROR-RSTS/E only. You have specified an incorrect
identification code for the disk pack .
User Action : Use the correct pack ID .

21 ?Disk pack is not mounted
Explanation: ERROR-RSTS/E only. No disk pack is mounted on the
specified disk drive .
User Action: Mount a disk pack on the disk drive or specify a disk drive
that has a mounted disk pack .

Run-Time Error Messages B-5

22 ?Disk pack is locked out
Explanation : ERROR-RSTS/E only. The specified disk pack is mounted
but is temporarily disabled .
User Action: Wait until the disk pack is available or specify another disk
drive .

23 ?Illegal cluster size
Explanation : ERROR-RSTS/E only. The specified cluster size is
unacceptable .
User Action : Change the cluster size. The cluster size must be a power
of 2. A file cluster size must be equal to or greater than the pack cluster
size and cannot be greater than 256. A pack cluster size must be equal to
or greater than the device cluster size and cannot be greater than 16 . The
device cluster size is determined by the device type .

24 ?Disk pack is private
Explanation : ERROR-RSTS/E only. The program cannot access the
specified disk pack .
User Action : Specify another disk pack .

25 ?Disk pack needs REBUILDing
Explanation : WARNING-RSTS/E only. The storage allocation table
needs to be rebuilt and a nonfatal disk mounting error has occurred .
User Action : Use the CLEAN or ONLCLN operation in the UTILTY
program .

26 ?Fatal disk pack mount error
Explanation : ERROR-RSTS/E only. The disk cannot be successfully
mounted .
User Action : See your system manager .

27 ?I/O to detached keyboard
Explanation : ERROR-RSTS/E only. A program attempted to perform
I/O to a hung-up dataset or to a detached console keyboard .
User Action : None. You cannot perform I/O to a detached keyboard or
hung-up dataset .

B-6 Run-Time Error Messages

28 ?Programmable AC trap
Explanation : ERROR-A CTRL/C was pressed at the controlling
terminal .
User Action: None. However, you can trap this error with an error
handler.

29 ?Corrupted file structure
Explanation: ERROR-Either (1) RMS-11 has detected an invalid file
structure on disk, or (2) on RSTS/E systems, a fatal error in a CLEAN
operation has occurred.
User Action: See your system manager or the RSTS/E RMS-11 User's
Guide or the RSX-11M/M-PLUS RMS-11 User's Guide .

30 ?Device not file-structured
Explanation: ERROR-A program attempted to access a nondisk device
that is not file-structured . This error occurs, for example, when you try to
gain a directory listing for a nondirectory device .
User Action : None. You cannot access a nondisk device that is not
file-structured .

31 ?Illegal byte count for I/O
Explanation : ERROR-Either the program contains a PUT statement
with a COUNT value greater than the RECORDSIZE clause established in
the OPEN statement or the buffer specified in the MAP statement, or on
RSTS/E systems, the disk is corrupted for your program if this error occurs
when you try to execute the program .
User Action: Reduce the size of the COUNT clause to match the size of
the buffer. You cannot put more characters in a buffer than the buffer's
default or specified size .

32 ?No buffer space available
Explanation : ERROR-RSTS/E only. No buffer is available for file access .
Possible causes are either (1) the receiving program has exceeded the
pending message limit, or (2) the sending program has attempted to send
a message and no small buffer is available for the operation .
User Action: See your system manager.

Run-Time Error Messages B-7

33 ?Odd address trap
Explanation: FATAL-Either (1) the program attempted to address
nonexistent memory, or (2) on RSTS/E systems, the program attempted to
access an odd address using the PEEK function .
User Action: None. Submit an SPR if this message appears for any
reason other than those listed in the explanation and include all relevant
output.

34 ?Reserved instruction trap
Explanation : FATAL-The program tried to execute an illegal or reserved
instruction or a Floating-Point Processor (FPP) instruction on a system
that does not have floating-point hardware .
User Action : None. If your system has floating-point hardware and this
message appears, submit an SPR including all relevant information .

35 ?Memory management violation
Explanation : FATAL-Either (1) the program attempted to read or write
to a memory location that does not allow access, or (2) on RSTS/E systems,
the program attempted to access an address using the PEEK function .
User Action : None . Submit an SPR if this message appears for any
reason other than those listed in the explanation and include all relevant
output .

36 ?SP Stack Overflow
Explanation : ERROR-The program attempted to extend the program
stack beyond its legal size .
User Action : None . If your program generates this message, submit an
SPR and include all relevant information .

37 ?Disk error during swap
Explanation: ERROR-RSTS/E only. The system swapped your job into
or out of memory. The contents of your job (the current task) are lost,
but the job remains logged in to the system and control is returned to the
keyboard monitor.
User Action : Report the occurrence of this error message to your system
manager.

38 ?Memory parity failure
Explanation: ERROR-RSTS/E only. The memory occupied by your
program has a parity error.
User Action : Contact your system manager.

B-8 Run-Time Error Messages

40 ?Magtape record length error
Explanation : ERROR-RSTS/E only. A record in a file on magnetic tape
was longer than the buffer designed to handle it .
User Action : Reduce the size of your record or increase the size of the
buffer.

42 ?Virtual buffer too large
Explanation : ERROR-The program attempted to access a VIRTUAL file,
and the buffer size was not a multiple of 512 bytes .
User Action : Change the I/O buffer to be a multiple of 512 bytes .

43 ?Virtual array not on disk
Explanation : ERROR-The program attempted to reference a virtual
array on a nondisk device .
User Action : Virtual arrays must be on disk ; change the file specification
in the OPEN statement to open this array on disk .

44 ?Matrix or array too big
Explanation: ERROR-The program contains an array that is too large
for memory.
User Action : Dimension the array with smaller subscripts .

45 ?Virtual array not yet open
Explanation: ERROR-The program attempted to reference a virtual
array before the associated file on disk was opened .
User Action : Open the file on disk that contains the virtual array before
you reference it .

46 ?Illegal I/O Channel
Explanation: ERROR-The program specified an I/O channel outside the
legal range .
User Action : Specify I/O channels in the range 0 to 12, inclusive .

47 ?Line too long
Explanation: ERROR-The input line was longer than the record buffer.
User Action : Reduce the size of the input line to 255 characters .

Run-Time Error Messages B-9

48 %Floating point error
Explanation: WARNING-A program operation resulted in a floating-
point number with an absolute value outside the range 10--38 to 1038 . If
the program does not transfer to an error handling routine, BASIC returns
a zero as the floating-point value for a number lower than 10 --38 and the
system's maximum positive number for a number higher than 1038 .

User Action: Check program logic or trap the error in an error handler.

50 %Data format error
Explanation: ERROR-The value supplied for a numeric variable is not a
valid number, for example "ABC" and "L .2" .
User Action: Supply numeric values of the correct data type .

51 %Integer error
Explanation : WARNING-The program requires an integer conversion
from a larger data type (LONG or WORD) to a smaller data type (BYTE)
and the resultant value is outside the allowable range . If the program
does not transfer to an error handling routine, BASIC returns zero for the
integer value .
User Action : Use an integer in the valid range. BYTE integers cannot be
greater than 127 ; WORD integers cannot be greater than 32767 ; LONG
integers cannot be greater than 2147483647 .

52 ?Illegal number
Explanation: WARNING-The program specifies a data type in an
INPUT or READ statement that does not agree with the value supplied .
The number entered is too large for the desired variable .
User Action: Change the INPUT or READ statement or supply data of

the correct type .

53 %Illegal argument in log
Explanation : WARNING-The program contains a negative or zero
argument to the LOG or LOG10 function .
User Action: Supply an argument in the valid range .

54 %Imaginary square roots
Explanation: WARNING-An argument to the SQR function is negative .
If the program does not transfer to an error handling routine, BASIC
returns the square root of the absolute value of the argument .
User Action: Supply arguments to the SQR function that are greater than
or equal to zero .

B-10 Run-Time Error Messages

55 ?Subscript out of range
Explanation: ERROR-The program attempts to reference an array
element outside of the array's dimensioned bounds .
User Action: Check program logic to make sure that all array references
are to elements within the array boundaries .

56 ?Can't invert matrix
Explanation : ERROR-The program attempts to invert a single-
dimensional array.
User Action: Supply a matrix array in the proper form for inversion .

57 ?Out of data
Explanation : ERROR-A READ statement requested additional data
from an exhausted DATA list .
User Action : Remove the READ statement, reduce the number of
variables in the READ statement, or supply more DATA items .

58 ?ON statement out of range
Explanation: ERROR-The index value in an ON GOTO or ON GOSUB
statement is less than one or greater than the number of line numbers in
the list.
User Action : Check program logic to make sure that the index value is
greater than or equal to one, and less than or equal to the number of line
numbers in the ON GOTO or ON GOSUB statement .

59 ?Not enough data in record
Explanation : ERROR-You did not supply enough data to fill all the
specified variables in an INPUT statement .
User Action : Supply enough data or reduce the number of specified
variables .

60 ?Integer overflow, FOR loop
Explanation : ERROR-The value of the loop index in the program
exceeded the range for the loop variable . This can also occur during the
evaluation of loop termination in the following cases :

©

	

If the initial value minus the step value causes an overflow

Run-Time Error Messages B-11

© If the limit value plus the step value causes an overflow
User Action: Correct the loop index so it does not exceed the allowed
range for the index's data type . You can do this by either modifying the
loop or by using a different data type for the index variable .

61 %Division by 0
Explanation : WARNING-The program attempts to divide a value by
zero. If the program does not transfer to an error handling routine, BASIC
returns the value of zero .
User Action : Check program logic and change the attempted division, or
trap the error in an error handler .

63 ?Field overflows buffer
Explanation : ERROR-A FIELD statement attempts to access more data
than exists in the specified buffer .
User Action : Change the FIELD statement to match the buffer's size or
increase the buffer's size .

64 ?Not a random access device
Explanation : ERROR-The program attempts a random access on a
device that does not allow such access . This error occurs, for example, if
you attempt a PUT operation with a RECORD clause to a file on magnetic
tape .
User Action : Change the access to sequential instead of random or use a
suitable I/O device .

65 ?Illegal MAGTAPEO usage
Explanation: ERROR-The program contains an incorrectly formatted or
invalid MAGTAPE function code or function argument .
User Action : Change the MAGTAPE function code or argument .

72 ?RETURN without GOSUB
Explanation : FATAL-The program executes a RETURN statement
before a GOSUB statement .
User Action : Check program logic to make sure that the RETURN
statement is executed only in a subroutine or remove the RETURN
statement.

B-12 Run-Time Error Messages

73 ?FNEND without function call
Explanation : FATAL-The program attempts to execute an END DEF or
FNEND statement before executing a function call .
User Action : Check program logic to make sure that the FNEND
statement is executed only in a multi-line DEF or remove the END DEF or
FNEND statement .

88 ?Arguments don't match
Explanation : FATAL-The arguments in a function call do not match the
arguments defined for the function, either in number or in type .
User Action : Change the arguments in the function call to match those in
the DEF statement or change the arguments in the DEF statement .

89 ?Too many arguments
Explanation : FATAL-A function invocation or CALL statement passed
more arguments than were expected .
User Action: Reduce the number of arguments to the number expected .
The maximum number of arguments is eight .

97 ?Too few arguments
Explanation : FATAL-A function invocation or CALL passed fewer
arguments than were defined in the function or subprogram .
User Action : Change the number of arguments to match the number
defined in the function or subprogram .

103 ?Program lost-Sorry
Explanation : FATAL-A fatal system error caused your program to be
lost .
User Action: This error should never occur. Submit a Software
Performance Report if this error occurs .

104 ?RESUME and no error
Explanation: FATAL-The program executes a RESUME statement
outside of the error handling routine .
User Action: Check program logic to make sure that the RESUME
statement is executed only in the error handler .

Run-Time Error Messages B-13

105 ?Redimensioned array
Explanation: FATAL-A matrix statement has tried to redimension an
array larger than the array's initial allocation .
User Action: Do not redimension an array larger than its initial
allocation. Correct the matrix statement .

116 ?PRINT-USING format error
Explanation : ERROR-The program contains a PRINT USING statement
with an invalid format string .
User Action: Change the PRINT USING format string .

126 ?Maximum memory exceeded
Explanation : FATAL-The program has insufficient string and I/O buffer
space because either (1) its allowable memory size has been exceeded, or
(2) the system's maximum memory capacity has been reached .
User Action: Reduce the amount of string or I/O buffer space, or split the
program into two or more modules .

127 %SCALE factor interlock
Explanation : FATAL-A subprogram was compiled with a different
SCALE factor than the calling program .
User Action : Recompile one of the programs with a scale factor that
matches the other.

128 ?Tape records not ANSI
Explanation : ERROR-The records on the magnetic tape you accessed
are in neither ANSI D nor ANSI F format .
User Action : On RSX-11M/M-PLUS systems, remount the tape with the
DOS (DO), Files-11 (RS) or RT-11 (RT) qualifier to determine the format
of the records on the magnetic tape . On RSTS/E systems, set the magnetic
tape to DOS format with the ASSIGN command or OPEN the file with the
MODE 16384 (DOS) clause .

129 ?Tape BOT detected
Explanation : ERROR-The program attempts a rewind or backspace
operation on a magnetic tape that is already at the beginning of the tape .
User Action : Check program logic ; do not rewind or backspace if the
magnetic tape is at its beginning .

B-14 Run-Time Error Messages

130 ?Key not changeable
Explanation : ERROR- An UPDATE statement attempted to change a
KEY field that did not have the CHANGES clause specified in the OPEN
statement .
User Action : Specify the CHANGES clause for that key field in the OPEN
statement. Note that the primary key cannot be changed and that you
cannot specify the CHANGES clause when you open an existing file if
the OPEN statement that created the file did not contain the CHANGES
clause .

131 ?No current record
Explanation : ERROR- The program attempts a DELETE or UPDATE
operation when the previous GET or FIND operation failed or when no
previous GET or FIND operation was done .
User Action : Correct the cause of failure for the previous GET or FIND
operation or make sure a GET or FIND operation was done, and then retry
the operation .

132 ?Record has been deleted
Explanation: ERROR-A record previously located by its Record File
Address (RFA) has been deleted .
User Action : None .

133 ?Illegal usage for device
Explanation : ERROR-The requested operation cannot be performed for
the following reasons :
©

	

The device specification contains illegal syntax .

©

	

The specified device does not exist on your system .

©

	

The specified device is inappropriate for the requested operation (for
example, trying to access an INDEXED file on a magnetic tape) .

User Action : Supply the correct device type .

134 ?Duplicate key detected
Explanation: ERROR- In a PUT operation to an indexed file, a duplicate
key was specified, and the DUPLICATES clause was not specified when the
file was created .
User Action: Change the duplicate key or recreate the file specifying the
DUPLICATES clause for that key.

Run-Time Error Messages B-15

135 ?Illegal usage
Explanation: ERROR-The program tried to open either a file of
undeclared organization or a file without a record operation specified in the
ACCESS clause .
User Action: Declare the file organization in the OPEN statement or
specify the record operation you want to perform in the ACCESS clause .

136 ?Illegal or illogical access
Explanation: ERROR-The requested access is impossible for the
following reasons :
©

	

The attempted record operation and the ACCESS clause in the OPEN
statement are incompatible .

©

	

The ACCESS clause is inconsistent with the file organization .
©

	

The ACCESS READ or APPEND clause was specified when the file
was created .

User Action: Change the ACCESS clause .

137 ?Illegal key attributes
Explanation : ERROR-The program specified an illegal combination of
key characteristics .
User Action : Check the OPEN statement for either a NODUPLICATES
clause and CHANGES clause, or a CHANGES clause without a
DUPLICATES clause .

138 ?File is locked
Explanation : ERROR-The program does not allow shared access and
attempts to access a file that has been locked by another user or by the
system .
User Action : Change the ACCESS or ALLOW clause in the OPEN
statement to allow shared access or wait until the file is released by other
user(s) .

139 ?Invalid file options
Explanation : ERROR-The program has specified invalid file options in
the OPEN statement .
User Action : Change the invalid file options .

B-16 Run-Time Error Messages

140 ?Index not initialized
Explanation: ERROR-The program attempts a GET or FIND operation
on a record in an empty INDEXED file .
User Action : None. You cannot perform GET or FIND operations on a
record that does not exist .

141 ?Illegal operation
Explanation: ERROR- The program attempts to do one of the following :

©

	

Delete a record in a sequential file
©

	

Update a record on a magnetic tape file
©

	

Perform RMS-11 I/O on a virtual file (RSTS/E only)
User Action: Change the illegal operation . Block I/O requires virtual
organization. RMS-11 I/O requires sequential, relative, or indexed
organization .

142 ?Illegal record on file
Explanation: ERROR-A record contains an invalid record length .
User Action: Check the file for possible bad data .

143 ?Bad record identifier
Explanation: ERROR-The program attempted a record access that
specified one of the following :

©

	

A zero or negative record number on a RELATIVE file

©

	

A GET or FIND operation on an INDEXED file with a null key

User Action : Change the record number or key specification to a valid
value .

144 ?Invalid key of reference
Explanation: ERROR-The program attempted to perform a GET, FIND,
or RESTORE operation on an INDEXED file using an invalid KEY clause,
for example, an alternate KEY that has not been defined .
User Action: Use a valid KEY clause in the GET, FIND, or RESTORE
statement .

145 ?Key size too large
Explanation: ERROR-The key length on a GET or FIND is either zero
or larger than the key length defined for the target record .
User Action: Change the key specification in the GET or FIND statement .

Run-Time Error Messages B-17

146 ?Tape not ANSI labeled
Explanation : ERROR-The program attempts to access a file-structured
magnetic tape that does not have an ANSI volume label .
User Action : Either write an ANSI label when initializing the tape or
change the access in the program to device-specific .

147 ?RECORD number exceeds maximum
Explanation : ERROR-The specified record number exceeds the
maximum specified for this file or the maximum record number was
negative when the file was created .
User Action : Reduce the specified record number .

148 ?Bad RECORDSIZE value on OPEN
Explanation : ERROR-Either (1) the value in the RECORDSIZE
clause is zero or greater than 16384, or (2) the value does not match the
RECORDSIZE clause used when the file was created .
User Action : Change the value in the RECORDSIZE clause .

149 ?Not at end of file
Explanation : ERROR-The program attempted a PUT operation either
on a sequential file before the last record, or without opening the file with
an ACCESS WRITE clause .
User Action : Open a sequential file with an ACCESS APPEND clause or
open the file with an ACCESS WRITE clause .

150 ?No primary key specified
Explanation : ERROR-The program attempts to create an INDEXED file
without specifying a PRIMARY KEY value .
User Action : Specify a PRIMARY KEY value .

151 ?Key field beyond end of record
Explanation : ERROR-The position given for the key field exceeds the
maximum size of the record .
User Action : Specify a key field within the record .

B-18 Run-Time Error Messages

152 ?Illogical record accessing
Explanation : ERROR-The program attempts to perform an operation
that is invalid for the specified file organization, for example, a random
access on a sequential file .
User Action : Supply a valid operation for that file organization or change
the file organization .

153 ?Record already exists
Explanation : ERROR-An attempted random access PUT operation on a
RELATIVE file has encountered a pre-existing record .
User Action : Specify a different record number in the RECORD clause of
the PUT statement or delete the existing record .

154 ?Recordibucket locked
Explanation : ERROR-The program attempts to access a record or
bucket that has been locked by another program .
User Action : Try the operation again .

155 ?Record not found
Explanation: ERROR-A random access GET or FIND operation was
attempted on a deleted or nonexistent record .
User Action : None .

156 ?Size of record invalid
Explanation : ERROR-The program contains a COUNT clause
specification that is invalid because COUNT :

©

	

Equals zero
©

	

Exceeds the maximum size of the record
©

	

Conflicts with the actual size of the current record during a sequential
file UPDATE operation on disk

©

	

Does not equal the maximum record size for fixed format records

User Action : Supply a valid COUNT value .

157 ?Record on file too big
Explanation: ERROR-The specified record is longer than the record
buffer.
User Action: Increase the record buffer's size .

Run-Time Error Messages B-19

158 ?Primary key out of sequence
Explanation: ERROR-RMS-11 has detected an error in a sequential
PUT operation to an INDEXED file .
User Action : Change the PUT statement . If this does not work, the file is
corrupted and you cannot do anything .

159 ?Key larger than record
Explanation : ERROR-The key specification exceeds the maximum
record size .
User Action : Reduce the size of the key specification .

160 ?File attributes not matched
Explanation: ERROR-The following attributes in the OPEN statement
do not match the corresponding attributes of the target file :
©

	

ORGANIZATION
©

	

BUCKETSIZE
©

	

BLOCKSIZE
©

	

KEY
©

	

Record format
User Action : Change the OPEN statement attributes to match those of
the file or remove the clause .

161 ?Move overflows buffer
Explanation: ERROR-The combined length of elements in the MOVE
statement exceeds the record size defined for the file .
User Action : Reduce the size of the elements in the MOVE statement or
increase the file's record size .

162 ?Cannot open file
Explanation : ERROR-The specified file cannot be opened .
User Action : Check the STATUS variable for system error codes .

164 ?Terminal format file required
Explanation : ERROR-The program attempted to use PRINT #, INPUT
#, LINPUT #, MAT INPUT #, MAT PRINT #, or PRINT USING # to access
a RELATIVE, INDEXED, or VIRTUAL file .
User Action : Supply a terminal-format file .

B-20 Run-Time Error Messages

165 ?Cannot position to EOF
Explanation: ERROR-The operating system could not find the end of a
sequential file opened with ACCESS APPEND . The file could be corrupted .
User Action : None .

166 ?Negative fill or string length
Explanation : ERROR-A MOVE statement contains a FILL item or
string length with a negative value .
User Action : Change the FILL item or string length value to be greater
than or equal to zero .

167 ?Illegal record format
Explanation : ERROR-The record format is illegal for one of the
following reasons :
©

	

The specified record does not match the organization of the file .

©

	

The specified record is illegal for the operating system on which the file
resides .

©

	

There are embedded carriage control characters in variable length
records .

User Action : Correct the record format . Make sure the record has the
same organization as specified when the file was created, that the record
size is valid for the operating system, and that there are no embedded
carriage control characters .

168 ?Illegal ALLOW clause
Explanation : ERROR-The value specified for the ALLOW clause is
illegal for the type of file organization or for the operating system on which
the file resides .
User Action : Change the ALLOW clause argument .

170 ?Index not fully optimized
Explanation : ERROR-A record was successfully written to an INDEXED
file; however, the alternate key path was not optimized . This slows record
access .
User Action: Delete the record and rewrite it .

Run-Time Error Messages B-21

171 ?RRV not fully updated
Explanation : ERROR-RMS-11 wrote a record successfully but did
not update one or more Record Retrieval Vectors. Therefore, you cannot
retrieve any records associated with those vectors .
User Action : Delete the record and rewrite it .

173 ?Invalid RFA field
Explanation : ERROR-During a FIND or GET operation by RFA, an
invalid record's file address was contained in the RAB .
User Action : None . Please submit an SPR and include relevant output .

175 ?Bad node name
Explanation : ERROR-The specified node name is invalid, or, for NAME
AS, the two node names are different .
User Action : Check node name .

180 ?No support for op in task
Explanation : FATAL-The program attempts to do the following :
©

	

Open a file that has an organization that is not specified by a qualifier
to the BUILD command .

©

	

Perform an I/O operation that requires RMS-11 file support not
included in the BUILD command .

User Action : Change the ORGANIZATION clause in the OPEN statement
or use the BUILD command with the correct qualifier.

182 ?Network operation rejected
Explanation: ERROR-A DECnet operation has failed .
User Action : Check that the DECnet link is available . Check that the
operation is supported both over the network and by the remote node .

183 ?REMAP overflows buffer
Explanation : ERROR-The combined length of elements in the REMAP
statement exceeds the record buffer defined for the file .
User Action : Reduce the size of the elements in the REMAP statement or
increase the size of the record buffer specified by the MAP statement .

B-22 Run-Time Error Messages

184 ?Unaligned REMAP variable
Explanation : ERROR-A REMAP statement attempts to put a WORD
variable on an odd byte boundary .
User Action: Change the variables in the REMAP statement to align on
an even byte boundary.

185 %RECORDSIZE overflows MAP
Explanation : WARNING-The file's record size specified in the
RECORDSIZE clause is larger than the storage allocated by the MAP
statement .
User Action : Reduce the file's record size with the RECORDSIZE clause
or increase the amount of storage allocated by the MAP statement .

186 ?Improper error handling
Explanation : ERROR-The program attempts to execute a RESUME
statement in a program module other than the parent module or the
module where the error occurred .
User Action : Change the program logic to execute a RESUME statement
in the parent module or the module where the error occurs .

196 ?REMAP string not static
Explanation: ERROR-You referenced a string with a REMAP statement
that was not declared in a COMMON or MAP statement .
User Action : Declare the string in a COMMON or MAP statement .

243 ?CHAIN to non-existent line no
Explanation : ERROR-RSTS/E only. The program attempts to chain
to another program using a line number that does not exist in the target
program .
User Action: Change the line number to an existing line number in the
target program .

246 ?Error trap needs RESUME
Explanation : ERROR-An error handler attempts to execute an END
without first executing a RESUME statement .
User Action : Change the program logic so that the error handler executes
a RESUME statement before executing an END statement .

Run-Time Error Messages B-23

247 ?Illegal RESUME to subroutine
Explanation : ERROR-While in an error handler activated by a
subroutine, the error handler attempts to RESUME without a line
number.
User Action : None . You cannot use RESUME without a line number if
the current module name does not match the error module name ; that is,
you cannot RESUME to a subroutine unless you specify a line number .

248 ?Illegal return from subroutine
Explanation : ERROR-An external subroutine tries to execute a
RETURN statement before the CALL statement calling the subroutine is
executed .
User Action: Change the program so that the CALL statement comes
before the RETURN statement .

250 ?Not implemented
Explanation : ERROR-The program attempted to use a language feature
that does not exist in this version of BASIC, for example, TIME(4%) .
User Action : Do not use the feature .

251 ?Recursive subroutine call
Explanation : ERROR-The program contains a subroutine that attempts
to call itself.
User Action : A subroutine cannot call itself . Correct the program logic .

252 ?File ACP failure
Explanation : ERROR-The operating system's file handler reported an
error to RMS-11 .
User Action : The corresponding error value is stored in the
STATUS variable . See the RSTS/E RMS-11 User's Guide or the
RSX-11M/MPLUS RMS-11 User's Guide for more information .

253 ?Directive error
Explanation: ERROR-A system service call resulted in an error.
User Action : The corresponding error value is stored in the
STATUS variable . See the RSTS/E RMS-11 User's Guide or the
RSX-11M/MPLUS RMS-11 User's Guide for more information .

B-24 Run-Time Error Messages

B.4 Alphabetical List of Error Messages
Table B-1 contains an alphabetical list of the BASIC-PLUS-2 run-time
errors and their associated error numbers . See the previous section for an
explanation of these errors .

(continued on next page)

Run-Time Error Messages B-25

Table B-1 Alphabetical List of Run-Time Errors

Text Number

?Account or device in use 3
?Arguments don't match 88
?Bad directory for device 1
?Bad node name 175
?Bad record identifier 143
?Bad RECORDSIZE value on OPEN 148
?Cannot open file 162
?Cannot open error file None
?Cannot position to EOF 165
?Can't find file or account 5
?Can't invert matrix 56
?CHAIN to non-existent line no 243
?Corrupted file structure 29
%Data format error 50
?Device hung or write locked 14
?Device not available 8
?Device not file-structured 30
?Directive error 253
?Disk block is interlocked 19
?Disk error during swap 37
?Disk pack is locked out 22
?Disk pack is not mounted 21
?Disk pack is private 24
?Disk pack needs REBUILDing 25

Table B-1 (Cont.) Alphabetical List of Run-Time Errors

B-26 Run-Time Error Messages

(continued on next page)

Text Number

%Division by 0 61
?Duplicate key detected 134
?End of file on device 11
?Error trap needs RESUME 246
?Fatal disk pack mount error 26
?Fatal system 1/O failure 12
?Field overflows buffer 63
?File ACP failure 252
?File attributes not matched 160
?File is locked 138
%Floating point error 48
?FNEND without function call 73
?I/O channel already open 7
?I/O channel not open 9
?I/O to detached keyboard 27
?Illegal ALLOW clause 168
%Illegal argument in log 53
?Illegal byte count for I/O 31
?Illegal cluster size 23
?Illegal file name 2
?Illegal I/O Channel 46
?Illegal key attributes 137
?Illegal MAGTAPEO usage 65
?Illegal number 52
?Illegal operation 141
?Illegal or illogical access 136
?Illegal record format 167
?Illegal record on file 142
?Illegal RESUME to subroutine 247

Table B-1 (Cont.) Alphabetical List of Run-Time Errors

(continued on next page)

Run-Time Error Messages B-27

Text Number

?Illegal return from subroutine 248
?Illegal SYS() usage 18
?Illegal usage 135
?Illegal usage for device 133
?Illogical record accessing 152
%Imaginary square roots 54
?Improper error handling 186

?Index not fully optimized 170
?Index not initialized 140

%Integer error 51
?Integer overflow, FOR loop 60

?Invalid file options 139
?Invalid key of reference 144
?Invalid RFA field 173
?Key field beyond end of record 151
?Key larger than record 159
?Key not changeable 130
?Key size too large 145
?Keyboard wait exhausted 15
?Line too long 47
?Magtape record length error 40
?Matrix or array too big 44
?Maximum memory exceeded 126
?Memory management violation 35
?Memory parity failure 38
?Move overflows buffer 161
?Name or account now exists 16
?Negative fill or string length 166
?Network operation rejected 182

Table B-1 (Cont.) Alphabetical List of Run-Time Errors

B-28 Run-Time Error Messages

(continued on next page)

Text Number

?No buffer space available 32

?No current record 131

?No primary key specified 150

?No room for user on device 4

?No support for op in task 180

?Not a random access device 64

?Not a valid device 6

?Not at end of file 149

?Not enough data in record 59

?Not implemented 250

?Odd address trap 33
?ON statement out of range 58

?Out of data 57
?Pack IDs don't match 20
?Primary key out of sequence 158
?PRINT-USING format error 116
?Program lost-Sorry 103
?Programmable AC trap 28
?Protection violation 10

?Record already exists 153
?Record has been deleted 132

?Record not found 155

?RECORD number exceeds maximum 147

?Record on file too big 157

?Record/bucket locked 154

%RECORDSIZE overflows MAP 185

?Recursive subroutine call 251

?Redimensioned array 105

?REMAP overflows buffer 183

Table B-1 (Cont .) Alphabetical List of Run-Time Errors

B .5 Non-BASIC Errors
The following errors are not generated by BASIC-PLUS-2 ; however, they can
be displayed with the ERT$ function and are included for completeness .

Run-Time Error Messages B-29

Text Number

?Reserved instruction trap 34
?RESUME and no error 104
?RETURN without GOSUB 72
?RMS error # <num> None
?RRV not fully updated 171
%SCALE factor interlock 127
?Size of record invalid 156
?SP Stack Overflow 36
?Subscript out of range 55
?Tape BOT detected 129
?Tape not ANSI labeled 146
?Tape records not ANSI 128
?Terminal format file required 164
?Too few arguments 97
?Too many arguments 89
?Too many open files on unit 17
?Unaligned REMAP variable 184
?User data error on device 13
?Virtual array not on disk 43
?Virtual array not yet open 45
?Virtual buffer too large 42

B-30 Run-Time Error Messages

Number Text

39 ?Magtape select error
41 ?Non-res run-time system
49 %Argument too large in EXP
62 ?No run-time system
66 ?Missing special feature
67 ?Illegal switch usage
68 - 70 Unused ERROR messages
71 ?Statement not found
74 ?Undefined function called
75 ?Illegal symbol
76 ?Illegal verb
77 ?Illegal expression
78 ?Illegal mode mixing
79 ?Illegal IF statement
80 ?Illegal conditional clause
81 ?Illegal function name
82 ?Illegal dummy variable
83 ?Illegal FN redefinition
84 ?Illegal line number(s)
85 ?Modifier error
86 ?Can't compile statement
87 ?Expression too complicated
90 %Inconsistent function usage
91 ?Illegal DEF nesting
92 ?FOR without NEXT
93 ?NEXT without FOR
94 ?DEF without FNEND
95 ?FNEND without DEF
96 ?Literal string needed
98 ?Syntax error
99 ?String is needed

Run-Time Error Messages B-31

Number Text

100 ?Number is needed
101 ?Data type error
102 ?1 or 2 dimensions only
106 %Inconsistent subscript use
107 ?ON statement needs GOTO
108 ?End of statement not seen
109 ?What
110 ?Bad line number pair
111 ?Not enough available memory
112 ?Execute only file
113 ?Please use the RUN command
114 ?Can't CONTinue
115 ?File exists-RENAME/REPLACE
117 ?Matrix or array without DIM
118 ?Bad number in PRINT-USING
119 ?Illegal in immediate mode
120 ?PRINT-USING buffer overflow
121 ?Illegal statement
122 ?Illegal FIELD variable
123 Stop
124 ?Matrix dimension error
125 ?Wrong math package
163 ?No file name
169 ?Unused ERROR message
172 ?Record lock failed
174 ?File expiration date unexpired
176 179 Unused ERROR messages
181 ?Decimal overflow
187 ?Illegal record locking clause
188 226 Unused ERROR messages
227 ?String too long

B-32 Run-Time Error Messages

Number Text

228 ?Record attributes not matched
229 ?Differing use of /DOU
230 ?No fields in image
231 ?Illegal string image
232 ?Null image
233 ?Illegal numeric image
234 ?Numeric image for string
235 ?String image for numeric
236 ?TIME limit exceeded
237 ?1st arg to SEQ$ > 2nd
238 ?Arrays must be same dimension
239 ?Arrays must be square
240 ?Cannot change array dimensions
241 ?Floating overflow
242 ?Floating underflow
244 ?Exponentiation error
245 ?Illegal exit from DEF
249 ?Argument out of bounds
254 - 255 Unused ERROR messages

ASCII Codes and Data Representation

ASCII is a 7-bit character code with an optional parity bit (8) added for many
devices. Programs normally use seven bits internally with the eighth bit being
zero; the extra bit is either stripped (on input) or added by a device driver (on
output) so the program will operate with either parity- or nonparity-generating
devices. The eighth bit is reserved for future standardization .
The International Reference Version (IRV) of ISO Standard 646 is identical
to the IRV in CCITT Recommendation V 3 (International Alphabet No . 5) .
The character sets are the same as ASCII except that the ASCII dollar sign
(hexadecimal 24) is the international currency sign, which looks like ### .

ISO Standard 646 and CCITT V.3 also specify the structure for national
character sets, of which ASCII is the U .S. national set. Certain specific
characters are reserved for national use . These are the values and symbols :

c

ASCII Codes and Data Representation C-1

Hexadecimal Value IRV ASCII

23 # #
24 ### $ (General currency symbol vs . dollar sign)
40 Q C
5B [[
5C \ \
5D l l
5E A A

60
7B { {
7C I I
7D } }
7E () - (Overline vs . tilde)

ISO Standard 646 and CCITT Recommendation V.3 (International Alphabet
No. 5) are identical to ASCII except that the number sign (23) is represented
as ## instead of #, and certain characters are reserved for national use .

(continued on next page)

C-2 ASCII Codes and Data Representation

Table C-1 ASCII Codes

8-Bit
Decimal Hexadecimal
Code Code Character Remarks

0 00 NUL Null (tape feed)
1 01 SOH Start of heading (^A)
2 02 STX Start of text (end of address, AB)
3 03 ETX End of text (^C)
4 04 EOT End of transmission (shuts off the TWX

machine AD)
5 05 ENQ Enquiry (WRU, ^E)
6 06 ACK Acknowledge (RU, AF)
7 07 BEL Bell (^G)
8 08 BS Backspace (^H)
9 09 HT Horizontal tabulation (^I)
10 OA LF Line feed (^J)
11 OB VT Vertical tabulation (AK)
12 OC FF Form feed (page, AL)
13 OD CR Carriage return (^M)
14 OE SO Shift out (AN)
15 OF Si Shift in (^O)
16 10 DLE Data link escape (^P)
17 11 DC1 Device control 1 (^Q)
18 12 DC2 Device control 2 (AR)
19 13 DC3 Device control 3 (^S)
20 14 DC4 Device control 4 (^T)
21 15 NAK Negative acknowledge (ERR, AU)
22 16 SYN Synchronous idle (AV)
23 17 ETB End-of-transmission block (^W)

Table C-1 (Cont.) ASCII Codes

(continued on next page)

ASCII Codes and Data Representation C-3

Decimal
Code

8-Bit
Hexadecimal
Code

	

Character Remarks

24 18

	

CAN Cancel (AX)

25 19

	

EM End of medium (^Y)

26 1A

	

SUB Substitute (^Z)

27 1B

	

ESC Escape (prefix of escape sequence)

28 1C

	

FS File separator

29 1D

	

GS Group separator

30 1E

	

RS Record separator

31 1F

	

US Unit separator

32 20

	

SP Space

33 21

	

! Exclamation point

34 22 Double quotation mark

35 23

	

Number sign
36 24

	

$ Dollar sign

37 25

	

% Percent sign
38 26

	

& Ampersand
39 27 Apostrophe
40 28

	

(Left (open) parenthesis
41 29

	

) Right (close) parenthesis
42 2A Asterisk
43 2B

	

+ Plus sign
44 2C

	

, Comma
45 2D

	

- Minus sign, hyphen

46 2E Period (decimal point)
47 2F

	

/ Slash (slant)

48 30

	

0 Zero
49 31

	

1 One

50 32

	

2 Two

Table C-1 (Cont .) ASCII Codes

C-4 ASCII Codes and Data Representation

(continued on next page)

Decimal
Code

8-Bit
Hexadecimal
Code Character Remarks

51 33 3 Three
52 34 4 Four
53 35 5 Five
54 36 6 Six
55 37 7 Seven
56 38 8 Eight
57 39 9 Nine
58 3A Colon
59 3B ; Semicolon
60 3C < Less than (left angle bracket)
61 3D = Equal sign
62 3E > Greater than (right angle bracket)
63 3F ? Question mark
64 40 Q Commercial at
65 41 A Uppercase A
66 42 B Uppercase B
67 43 C Uppercase C
68 44 D Uppercase D
69 45 E Uppercase E
70 46 F Uppercase F
71 47 G Uppercase G
72 48 H Uppercase H
73 49 I Uppercase I
74 4A J Uppercase J
75 4B K Uppercase K
76 4C L Uppercase L
77 4D M Uppercase M

Table C-1 (Cont.) ASCII Codes

(continued on next page)

ASCII Codes and Data Representation C-5

Decimal
Code

8-Bit
Hexadecimal
Code Character Remarks

78 4E N Uppercase N
79 4F 0 Uppercase 0
80 50 P Uppercase P
81 51 Q Uppercase Q
82 52 R Uppercase R
83 53 S Uppercase S
84 54 T Uppercase T
85 55 U Uppercase U
86 56 V Uppercase V
87 57 W Uppercase W
88 58 X Uppercase X
89 59 Y Uppercase Y
90 5A Z Uppercase Z
91 5B [Left square bracket
92 5C \ Backslash (reverse slant)
93 5D I Right square bracket
94 5E ^ Circumflex (caret)
95 5F _ Underscore (underline)
96 60 Grave accent
97 61 a Lowercase a
98 62 b Lowercase b
99 63 c Lowercase c
100 64 d Lowercase d
101 65 e Lowercase e
102 66 f Lowercase f
103 67 g Lowercase g
104 68 h Lowercase h

Table C-1 (Cont.) ASCII Codes

C .1 Radix-50 Character Set
Many items, such as file names and file types, are stored in Radix-50 format .
This format allows three characters of data to be stored as a 2-byte integer
(one 16-bit word) .

C-6 ASCII Codes and Data Representation

Decimal
Code

8-Bit
Hexadecimal
Code Character Remarks

105 69 i Lowercase i
106 6A j Lowercase j
107 6B k Lowercase k
108 6C 1 Lowercase 1
109 6D m Lowercase m
110 6E n Lowercase n
111 6F o Lowercase o
112 70 p Lowercase p
113 71 q Lowercase q
114 72 r Lowercase r
115 73 s Lowercase s
116 74 t Lowercase t
117 75 u Lowercase u
118 76 v Lowercase v
119 77 Lowercase w
120 78 Lowercase x
121 79 y Lowercase y
122 7A z Lowercase z
123 7B { Left brace
124 7C I Vertical line
125 7D } Right brace
126 7E Tilde
127 7F DEL Delete (rubout)

© ble C-2 lists the characters representable in Radix-50 format, together with
their ASCII octal and Radix-50 octal equivalents .

Table C-2 Radix-50 Character Set

Radix-50 evaluates a character according to the format :

©

	

= Y * 50^Z

©

	

Is the value of the character .
Y

	

Is the Radix-50 octal equivalent of the character.
50

	

Is a constant (in octal) .
Z

	

Is the character's position in the string . The leftmost digit is assigned position
two, the middle character is assigned position one, and the rightmost character is
assigned position zero .

©

	

represent a 3-character alphanumeric string in Radix-50 format, the first
character is placed in the leftmost position of the Radix-50 word . For example,
in the string X2B, the character X (30 octal) is multiplied by 502 to give 113000
(octal) . The character 2 (40 octal) is multiplied by 50 1 to give 002400. The
character B (2 octal) is multiplied by 500 to give 000002. Adding the value of
each character gives the full octal value of the Radix-50 word .

X = 30 * 50 2 = 113000
2 = 40* 50 1 = 002400
B = 02 * 500 = 000002

TOTAL = 115402 (octal)

Note that addition is also carried out in octal .

Table C-3 simplifies this process by listing the value of each Radix-50
character for each position .

ASCII Codes and Data Representation C-7

ASCII Octal Radix-50 Octal
ASCII Character Equivalent Equivalent

space 40 0
A through Z 101 through 132 1 through 32
$ 44 33

56 34
0 through 9 60 through 71 36 through 47

Table C-3 ASCII and Radix-50 Equivalents

(continued on next page)

C-8 ASCII Codes and Data Representation

First or Single Character Second Character Third Character

space 000000 space 000000 space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003

D 014400 D 000240 D 000004
E 017500 E 000310 E 000005

F 022600 F 000360 F 000006

G 025700 G 000430 G 000007

H 031000 H 000500 H 000010

I 034100 1 000550 1 000011

J 037200 J 000620 J 000012

K 042300 K 000670 K 000013

L 045400 L 000740 L 000014

M 050500 M 001010 M 000015

N 053600 N 001060 N 000016

0 056700 0 001130 0 000017

P 062000 P 001200 P 000020

Q 065100 Q 001250 Q 000021

R 070200 R 001320 R 000022

S 073300 S 001370 S 000023

T 076400 T 001440 T 000024

U 101500 U 001510 U 000025

V 104600 V 001560 V 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 Y 000031
Z 121200 Z 002020 Z 000032
$ 124300 $ 002070 $ 000033

127400 002140 000034

Table C-3 (Cont.) ASCII and Radix-50 Equivalents
First or Single Character

	

Second Character

	

Third Character

word :

C.2 BYTE Integer Format
Figure C-1 shows the format of a BYTE integer value .

Figure C-1 Byte-Length Integer Format

7 0

S
i
9
n

Binary Number

decimal octal

+6 = 006

+22 = 026

-7 = 371

-1

	

= 377

NU-2188A-RA

BYTE integers are stored in sign-extended two's complement representation .
For example, here are the octal values for four different binary numbers :

ASCII Codes and Data Representation C-9

0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042
5 155300 5 002570 5 000043
6 160400 6 002640 6 000044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

BYTE integer constants must be in the range -128 to +127 .

C.3 WORD Integer Format
Figure C-2 shows the format of a WORD integer value .

Figure C-2 Word-Length Integer Format

15

decimal octal

+6 = 000006

+22 = 000026

-7 = 177771

-1

	

= 177777

0

S
i
9
n

Binary Number

NU-2189A-RA

WORD integers are stored in sign-extended two's complement representation .
For example, here are the octal values for four different binary numbers :

WORD integer constants must be in the range -32768 TO +32767 .

C.4 LONGWORD Integer Format
Figure C-3 shows the format of a LONG integer value .

C-10 ASCII Codes and Data Representation

Figure C-3 Longword Integer Format

31

S
i
9
n

Binary Number

decimal

	

octal

+6 = 000000000006
+22 = 000000000026
-7 = 37777777771
-1

	

= 37777777777

0

NU-2190A-RA

LONG integers are stored in sign-extended two's complement representation .
For example, here are the octal values for four different binary numbers :

LONG integer constants must be in the range -2147483648 to +2147483647 .

C .5 Floating-Point Formats
The exponent for both 2-word and 4-word floating-point formats is stored
in excess 128 (200 octal) notation . Binary exponents from -128 to +127 are
represented by the binary equivalents of zero through 255 (zero through 377
octal) .
Fractions are represented in sign-magnitude notation, with the binary radix
point to the left .

Numbers are assumed to be normalized . The most significant bit is assumed
to be 1 and is not stored. However, if the exponent is 0, the bit is also 0 . The
value zero is represented by two or four words of zeros . Figure C-4 shows the
format of floating-point values .

ASCII Codes and Data Representation C-11

Figure C-4 Floating-Point Format

Number 2-word Format 4-word Format

word 1 :

word 2 :

0+ Binary excess
128 exponent

High-order
mantissa

15 14

15

C-12 ASCII Codes and Data Representation

7 6

NU-2191A-RA

C.5.1 Single-Precision Format
Two words describe each single-precision floating-point value . Figure C-5
shows the format of the description .

Figure C-5 Single-Precision Format

Sign

0

Low-order mantissa

0
NU-2192A-RA

The effective precision is 23 bits (six digits of accuracy) and the magnitude
range is .29E-38 to .17E39 .

+1 .0 40200 40200
0 0

0
0
0

-5 140640 140640
0 0

0
0
0

C.5.2 Double-Precision Format
Four words describe each double-precision floating-point value. Figure C-6
shows the format of the description .

Figure C-6 Double-Precision Format

Sign

word 1 :

word 2 :

word 3 :

word 4 :

0+ Binary excess
128 exponent

High-order
mantissa

15 14

Low-order mantissa

15

Lower-order mantissa

15

15

7 6 0

0

0

Lowest-order mantissa

0
NU-2193A-RA

The effective precision is 55 bits (16 decimal digits of accuracy) and the
magnitude range is .29E-38 to .17E39 .

ASCII Codes and Data Representation C-13

C.6 String and Array Formats
Figure C-7 shows the format of a dynamic string . Each box represents a
word .

Figure C-7 Dynamic String Format

code
-0 FPTR

LEN

String Header BPTR

C-14 ASCII Codes and Data Representation

String
NU-2194A-RA

Dynamic strings contain a 2-word string header . The first word is a forward
pointer (FPTR) that points to the first character of the string. The second word
represents the length (LEN) of the string in bytes . Following the data in the
string and aligned on the next higher word boundary is a word that points
back to the forward pointer. This word is internally specific and should not be
accessed .

C.6.1 Array Formats
Arrays in memory contain two array descriptor words . The first descriptor
word defines the number of dimensions, as described in the following figures .
The second array descriptor word is described in C .6.2 .
Figure C-8 shows the format of arrays in memory.

Figure C-8 Format of Arrays in Memory

NU-2195A-RA

* The first word contains the number of elements in the array if the array is
redimensioned by a MATRIX statement or the array is used as a subroutine
argument. Otherwise, the word describing the size of an array does not exist .

**

	

If the array appears in a MAP DYNAMIC statement, the value of array descriptor
1 is 256 plus the number of dimensions .

If a MACRO subprogram accepts an array passed by a descriptor as an
argument, the array pointer in the argument list will point to SUB n .

ASCII Codes and Data Representation C-15

word : Size of array *
01 number of elements

word : Array descriptor word 1 ** number of dimensions
(1 if array is a one-dimensional
array, 2 if array is a two-dimensional

word : Array descriptor word 2 array, and so on)

word : SUB #n

word : SUB #n-1

word(s) :

word : SUB #1

word : Pointer to array storage

Figure C-9 shows the format of virtual arrays .

Figure C-9 Format of Arrays in Virtual Memory

C-16 ASCII Codes and Data Representation

NU-2196A-RA

The high- and low-order words point to the number of elements in the array if
the array is redimensioned by a MATRIX statement or if the array is used as a
subroutine argument; otherwise, the word describing the size of an array does not
exist.

If a MACRO subprogram accepts an array passed by a descriptor as an
argument, the array pointer in the argument list will point to SUB #n .

Figure C-10 shows the format of dynamic arrays .

word : Size of array ©

	

word number ofhigh-order

	

*
elements in

word : Size of array low-order©

	

word array

word : Array descriptor word 1 dimensions©

	

number of
(1 if array is a one-dimensional
array, 2 if array is a

word : Array descriptor word 2 two-dimensional array and so on)

word : SUB #n

word : SUB #n-1

word(s) :

word : SUB #1

word : High-order word file©

	

of offset

word : Low-order word file©

	

of offset

Figure C-10 Dynamic Arrays

word :

word :

word :

word :

word :

word(s) :

word :

word :

word :

Size of array in elements

Array descriptor word 1

Array descriptor word 2

SUB #n

SUB #n-1

SUB #1

Pointer to storage location

Length of array in bytes

number of elements

number of dimensions
(1 if array is a one-dimensional
array, 2 if array is a
two-dimensional array and so on)

NU-2197A-RA

The first word contains the number of elements in the array if the array is
redimensioned by a MATRIX statement or the array is used as a subroutine
argument; otherwise, the word describing the size of an array does not exist .

ASCII Codes and Data Representation C-17

Figure C-11 shows the format of dynamic string array pointers .

C-18 ASCII Codes and Data Representation

NU-2198A-RA

C.6.2 Array Descriptor Word 2
The second array descriptor word is a 16-bit word used by BASIC to describe
the characteristics of an array. The bits of array descriptor word 2 are
explained in Figure C-12 .

Figure C-11 Dynamic String Array Pointers

-10 FPTR element 0 L
Free space

LEN element 0

FPTR element 1 0 Element 1PTR
LEN element 1

FPTR element 2 Free space

LEN element 2

0 Element 0

Free space

Element 2

Free space

Figure C-12 Array Descriptor Word 2

NU-2199A-RA

Bit 12 no longer contains dimension information . Instead, along with bits 11
and 10, it contains type information .

Note that although the STRING and LONGWORD data types have the same
code, string arrays have bit 15 set .

T-Data Type

L - Location (memory or common)

Each array sets the bits of the array descriptor word as follows :

Numeric memory

	

Bits 0 through 9 are set to 0 . Bits 10 through 12 set the data
type (for example, 001 for word, 110 for single-precision, 111
for double-precision) . Bit 13 is set to 0 . Bit 14 is set to 0 if the
array is in memory and 1 if the array is a COMMON . Bit 15 is
set to 0 .

Numeric virtual Bits 0 through 7 represent the channel number . Bits 8 and 9
are set to 0. Bits 10 through 12 set the data type . Bit 13 is set
to 1 . Bits 14 and 15 are set to 0 .

ASCII Codes and Data Representation C-19

Bits
Array Type

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Numeric Memory 0 L 0 T 0 0 0 0 0 0 0 0 0 0

Numeric Virtual 0 0 1 T 0 0 Channel number

String Memory 1 0 0 T 0 0 0 0 0 0 0 0 0 0

String Common 1 1 0 0 Element length in bytes

String Virtual 1 0 1 LOG2(LEN) Channel number

BYTE = 000
WORD = 001
LONG = 010
SINGLE = 110
DOUBLE = 111
STRING = 010
RFA

	

= 100

String memory

	

Bits 0 through 9 are set to 0. Bits 10 through 12 set the data
type. Bits 13 and 14 are set to 0 . Bit 15 is set to 1 .

String common

	

Bits 0 through 11 represent the element length in bytes . Bits
12 and 13 are set to 0 . Bits 14 and 15 are set to 1 .

String virtual Bits 0 through 7 represent the channel number . Bits 8 through
12 represent LOG2 of the string length . Bit 13 is set to 1 . Bit
14 is set to 0. Bit 15 is set to 1 .

The maximum number of elements is present in the array descriptor only when
the array is redimensioned by a MATRIX statement or when the array is used
as a subroutine argument .

C-20 ASCII Codes and Data Representation

A
%ABORT directive, 14-9
ABS function, 8-2
ACCESS clause, 17-8
Addition

array, 10-20
Ampersand (&)

data, 5-6
in comment field, 4-5
MAT INPUT statement, 10-14

Ampersand (&), 1-3
APPEND command, 1-13
Arithmetic

exectution time, 20-4
Array, 4-9, 10-1 to 10-23

accessing, 12-14
addition, 10-20
arithmetic, 10-20
assigning data to, 10-12
assigning values to, 10-10, 10-13
bounds, 4-10
column, 10-16
computation, 10-19
creating, 10-2 to 10-8
definition of, 4-10
descriptor format, C-18
determinant, 10-23
dimensions, 10-9
displaying, 10-9
elements, 4-10, 10-7, 10-10, 10-13
explicit, 10-2
filling, 10-13
fixed-length string, 10-6

Index

Array (cont'd)
format, 10-16, C-14
I/O functions, 10-17
implicit, 10-7
input, 10-18 to 10-19
inverting, 10-22
list, 10-1
matrix, 10-1
matrix functions, 10-20
multiplication, 10-20
one-dimensional, 10-1
output, 10-18 to 10-19
overlaying, 10-7
passing, 11-12
printing elements, 10-16
reassigning values, 10-20
record buffer, 10-7
redimensioning, 10-5, 10-15, 11-12
referencing, 10-3, 10-7
row, 10-16
sharing, 10-6
string elements, 10-15
subscripted variable, 4-10
subscripts, 10-1 to 10-2
subtraction, 10-20
transposing, 10-22
two-dimensional, 10-1, 10-17
types of, 4-10
undeclared element, 10-7
values, 10-9
vector, 10-1
virtual, 9-1, 12-5, 12-14
zero-based, 10-1

ASCII
character codes, C-1 to C-6

Index-1

ASCII (cont'd)
character set, 4-4

ASCII function, 8-7
Asterisk (*)

PRINT USING statement, 13-8

B
BASIC character set, 4-4
BASIC command
/CROSS-REFERENCE qualifier, 2-7,

2-9
/DEBUG qualifier, 3-1
description of, 2-2
format of, 2-2
/LIST qualifier, 2-7
/[NO]BOUND qualifier, 2-4
/[NO]BUILD qualifier, 2-4
/[NO]/BUILD qualifier, 2-12
/[NO]CHAIN qualfier, 2-4
/[NO]CROSS-REFERENCE qualifier, 2-4
/[NO]DEBUG qualfier, 2-5
/[NO]FLAG qualifier, 2-5
/[NO]LINES qualifier, 2-5
/[NO]LIST qualifier, 2-5
/[NO]MACRO qualifier, 2-6
/[NO]OBJECT qualifier, 2-6
/[NO]WARNINGS qualifier, 2-7
qualifiers, 2-2 to 2-7
/SCALE qualifier, 2-6
/USING qualifier, 2-6
/VARIANT qualifier, 2-6

Binary dump, 19-12
Block

CASE, 6-13
data, 12-1
decision, 6-1
descriptor, 11-31
IF. . .THEN . . .ELSE,
loop, 6-3
RMS, 12-1
SELECT, 6-13

Bounds
See Array

Index-2

Branch, 11-20
Breakpoint

setting, 3-1, 3-3
BRLRES command, 1-13
Bucketsize, 12-37

default value, 12-38
Buffer

I/O, 12-6
record, 12-6

BUILD command, 1-13, 2-12
/CLUSTER qualifier, 18-11
CMD file, 1-13
/IDS qualifier, 16-1
memory-resident library, 1-17
ODL file, 1-13
subprogram, 11-18

Byte
boundary, 11-16
format, C-9

BYTE data type, 4-6

C
CALL statement, 11-2, 11-5

BY clause, 11-25
format, 11-6
parameter, 11-6
subprogram, 11-6

CASE block, 6-13
Character

nonprinting, 4-4
Character set

MAT PRINT statement, 10-16
PRINT USING statement, 13-7

ASCII, 4-4, C-1
BASIC, 4-4
RAD-50, C-6

CHR$ function, 8-7
CLOSE statement, 12-27

ending PO to a tape, 17-23
4-3 CMD file, 2-2

generating, 2-12
Column, 10-16
Comma (,)

in PRINT statement, 5-9

Comma (,)
EXTRACT command, 1-16

Command file
See CMD file

Comment
in environment, 1-8
in programs, 4-4

Comment field, 4-4
data, 5-6

Common, 11-12
array, 10-6
block, 11-13
data type, 11-13
defining area, 7-15
initializing, 11-41
name, 11-13
numeric variable, 11-16
PSECT, 11-16
storage, 11-15

COMMON statement, 7-9,10-6
example of, 11-14
format, 11-13
with subprograms, 7-14

Communication
task-to-task, 17-42

Compilation
aborting, 14-8, 14-9
conditional, 14-10
controlling, 14-8
displaying message during, 14-10
errors, A-1 to A-53

Compilation listing
altering, 14-2
controlling, 14-5
cross-reference section, 2-7, 2-9, 14-6
default file type, 2-7
paging, 14-4
qualifier summary section, 2-11
source program section, 2-7
subtitle, 14-3
title, 14-2
version number, 14-4

COMPILE command, 1-10, 1-14
Compile-time error

list of, A-1 to A-53

Compiler
See also Environment
functions of, 2-2
invoking, 1-2
invoking from DCL, 2-2
options, 1-14

Compiler directive, 14-1 to 14-11
compilation listing, 14-2
definition of, 14-1
rules of use, 14-1
uses of, 14-1

PRINT USING statement, 13-9

D
Data

block, 12-1
format error, 15-3
formatting, 13-1
record, 12-1
representation, C-9 to C-20
rereading, 5-7
sharing, 5-7, 11-12
string, 9-5

Index-3

Conditional expressions
in IF. . .THEN . . . ELSE statement, 6-10
in WHILE . . . NEXT loops, 6-7

Constant
changing value of, 14-8
data type, 7-7
declaring, 7-6
definition of, 7-6
external, 7-7
lexical, 14-8,
named, 7-6

14-9

string, 9-1
Control statement, 6-1 to 6-21

execution time of, 20-4
COS function, 8-3
%CROSS directive, 14-6
Cross-reference listing, 2-9, 14-6
CTRLC function, 8-16, 15-7
CtrlIC trapping,
Currency symbol

8-16, 15-7

Data format
array, C-14
byte integer, C-9
double-precision, C-13
floating-point, C-11
longword integer, C-10
single-precision, C-12
string, C-14
word integer, C-10

DATA statement, 5-6 to 5-7
arrays, 10-12
comments in, 5-6
continuing, 5-6

Data type, 7-1 to 7-19
assigning, 7-1
BYTE, 4-6
constant, 7-7
declaring, 7-5
definition of, 7-1
explicit, 7-2
explict, 4-5
floating-point, 4-6, 7-2
function, 8-2
implicit, 4-5, 7-2
integer, 7-1, 7-3
INTEGER, 4-6
keywords, 7-14
LONG WORD, 4-6
promotions, 7-8
REAL, 4-6
RFA, 4-6, 7-2
selecting, 20-3
size, 7-4
string, 7-1
STRING, 4-6
subprogram, 11-5
subtype, 7-4
suffix, 7-2
types of, 4-6
WORD, 4-6

DATE$ function, 8-14
DCL command

BASIC, 2-2
LINK, 2-13
RUN, 2-14

Index-4

DCL command (cont'd)
TKB, 2-12

linking programs at, 2-13
running programs at, 2-14
using debugger at, 3-7

Debugger, 3-1 to 3-20
commands, 3-3
error messages, 3-18
invoking, 3-1
sample session, 3-4

Decision block, 6-1
Decision structure, 6-10
Declaration, 7-1 to 7-19
Declarative statement, 7-1
DECLARE statement, 7-5, 10-3 to 10-4
Declining features, 2-5
DECnet

file access, 18-12
I/O, 17-41

DEF function
control, 8-23
error handler, 15-9
multi-line, 8-19
parameters, 8-23
recursion, 8-20
single-line, 8-18

DEF statement, 8-17, 11-2
Default

displaying environment, 1-23
error handler, 15-2
initialization file, 1-26
program file type, 2-3
setting environment, 1-23

DELETE command, 1-15
DELETE command>with comma (,), 1-15
DELETE command>with hyphen (-), 1-15
DELETE statement, 12-20 to 12-21
Descriptor block, 11-31
DET function, 10-23

DCL commands
LIBRARY, 18-5

DCL level
compiling programs at, 2-2
developing programs at, 2-1

DIMENSION statement, 10-4 to 10-6
array dimensioning, 10-5

creating, 17-36
opening, 17-36

Documentation
online, 1-17

Double-precision
format, C-13

DSKLIB command, 1-15, 18-5, 18-6
Dump Analyzer Utility, 19-12

dump file, 19-13
Dynamic mapping, 7-17, 12-7 to 12-9
Dynamic storage, 4-7

allocating, 7-9
Dynamic string, 9-2

E
ECHO function, 8-17
EDIT command

editing mode, 1-15
/EDT qualifier, 2-1
line mode, 1-15
/RECOVER qualifier, 2-1

EDIT$ function, 9-16
Editing

command mode, 1-16
environment, 1-15
journal file, 2-1

online help, 2-1

building programs in, 1-13
CMD file, 1-13
compiling programs in, 1-4, 1-10, 1-14
continuing lines in, 1-3
creating programs in, 1-3 to 1-4
DCL commands in, 1-12
debugging in, 3-4
default memory-resident library, 1-13,

1-17
default object module library, 1-15
default ODL file, 1-19
defaults, 1-10
deleting program lines in, 1-15
developing programs in, 1-1 to 1-27
displaying program in, 1-18
editing in, 1-15
entering, 1-1
exiting from, 1-7, 1-16
identification message, 1-2, 1-17
invoking, 1-1
line numbers in, 1-2
linking programs in, 1-4
listing file, 1-14
loading object modules in, 1-18
locating programs in, 1-20
multi-unit programs in, 1-6
naming programs in, 1-19
object modules in, 1-10
ODL file, 1-13
options, 1-14
program lines in, 1-2
prompt, 1-2
renaming programs in, 1-20
replacing programs in, 1-20
running programs in, 1-4, 1-20

Index-5

declarative, 10-5
executable, 10-5

Disk unit
allocating, 17-35

Disks
accessing, 17-34

line mode, 1-16
program, 1-4
prompt, 2-1

EDT editor, 2-1

running subprograms in, 1-6
statements in, 1-2
Task Builder, 1-13

Environment commands, 1-10 to 1-26

Device-specific I/O
to disks, 17-34
to tape, 17-19
to unit record devices,

DIF$ function, 8-11
17-19

ELSE clause, 6-10
END IF statement, 6-11
END statement, 6-19, 6-21
Environment, 1-1 to 1-26

appending programs in, 1-13

ERL function, 15-5
ERN$ function, 15-6
ERR function, 15-4
Error

analyzing fatal, 19-13
anticipating, 15-2
clearing, 15-11
common, 15-3
compile-time, A-1 to A-53
correcting, 15-12
Ctrl/C, 15-7
diagnosing, 15-2
end-of-file, 15-10
environment, A-1 to A-53
fatal, 15-1, 15-2, A-1, B-1
format, A-l, B-2
identifying, 15-4
information, 15-1, 15-4
level, A-1
line number, 15-5
message text, 15-6
non-BASIC, 15-4
number, 15-3, 15-4, B-1
online information about, 1-17
Optimizer Utility, 19-9
output, 13-17
pending, 15-8
print, 13-17
program name, 15-6
Resequencer Utility, 19-16
run-time, 15-1, B-1 to B-32
severity, 15-1, A-1, B-1
subprogram, 15-6, 15-8
testing, 15-3
text, A-1, B-1
trappable, 15-1
trapping, 15-1
warning, 15-1

Error handler, 15-1 to 15-12
control, 15-10
Ctrl/C, 15-7
CTRLC function, 15-7
default, 15-2, 15-9, 15-10
definition of, 15-1
ERL function, 15-5

Index-6

Error handler (cont'd)
ERN$ function, 15-6
ERR function, 15-4
error condition, 15-12
error number, 15-4
ERT$ function, 15-6
falling through, 15-12
functions, 15-4 to 15-8
intermittent, 15-10
leaving, 15-11
line number, 15-5
loop variables, 15-12
message text, 15-6
program name, 15-6
resuming compilation, 15-12
subprogram, 15-6, 15-8

of large tasks, 19-1
resuming, 15-11
stopping, 6-19
suspending, 6-19

EXIT command, 1-16
EXIT statement, 6-15 to 6-16
EXP function, 8-5
Exponential format

with asterisk fill, 13-11
Expression, 4-12

conditional, 14-10
Expressions

mixed-mode, 7-7
EXTERNAL statement, 7-7, 11-5

data type, 11-5
definition, 11-5
format, 11-5
parameter, 11-5

EXTRACT command, 1-16
EXTTSK option, 20-9

types of, 15-1
user-written, 15-2

ERT$ function, 15-6
Exception

See Error
Exclamation point (!), 4-4
Execution

F
Fatal error, 15-2, A-1
Field, 12-1

blank-if-zero, 13-12
centered, 13-15
E format, 13-10
extended, 13-15
leading zeros, 13-11
left justified, 13-14
negative, 13-10
record buffer, 12-9
right justified, 13-14

opening, 12-12
operations, 12-11
organization, 12-1, 12-3
primary keys, 12-4
random access, 12-4
relative, 11-18, 12-4
renaming, 12-27
restoring, 12-26
returning file name, 12-29
returning status, 12-29
RMS, 12-1, 17-1

File (cont'd)
sequential, 12-3
shared access, 12-4
status of, 12-37
structure, 17-18
tape, 17-2
task image, 2-12
terminal-format, 5-14, 12-3
transferring data to, 12-26
truncating, 12-26
virtual array, 12-5, 12-14

File name
specifying in the OPEN statement, 17-1

File type
BASIC program, 2-3
listing file, 2-7
object module, 2-13
task image, 2-12

Files-11 file, 12-1
FILL

formats, 7-13
items, 7-13

FIND statement, 12-15 to 12-16
random access, 12-15
record pointer, 12-15
sequential, 12-15

FIX function, 8-2
Fixed-length record, 12-2
Fixed-length string, 9-1
Floating-point

data type, 7-3
format, C-11
numbers, 13-1
PRINT statement, 13-1
variables, 4-9

FOR modifier, 6-1
FOR statement

in immediate mode statements, 1-9
FOR . . . NEXT loops, 6-4 to 6-7
Format

ANSI, 17-2
array, C-14
byte-length integer, C-9
centered, 13-15
double-precision, C-13

Index-7

zero-fill, 13-11
File

alternate keys, 12-4
closing, 12-27 to 12-28
CMD, 2-2
compiling from DCL, 2-2
DECnet access to, 18-12
deleting, 12-28
determining organization, 12-28
editing, 2-1
error handling, 15-2
file-related functions, 12-28 to 12-37
files-11 format, 12-1
I/O, 12-1 to 12-46, 17-1
including external, 14-7
indexed, 12-4

12-3
line numbers, 14-7
native mode, 12-1,
object module, 2-13
ODL, 2-2

Format (cont'd)
dynamic string, C-14
exponential, 13-10
fields, 13-2
floating-point, C-11
integer, 13-3
left-justified, 13-14
longword integer, C-10
negative field, 13-10
output, 5-9, 13-1

FSP$ function, 12-28
FSS$ function, 12-29
Function, 8-1 to 8-26

ASCII, 8-7
built-in, 8-1 to 8-17, 14-9, 15-4
Ctrl/C trapping, 15-7
data conversion, 8-7
data type, 7-5, 8-2
date and time, 8-14 to 8-16
declaring, 8-21
DEF, 8-17
definition of, 8-1
error handling, 15-4 to 15-8
external, 8-1, 8-24
file-related, 12-28 to 12-37
lexical, 14-9
multi-line, 8-19
naming, 8-17, 8-19, 8-21
numeric, 8-2
numeric string, 8-8
parameter list, 8-18
recursion in, 8-22
string, 9-9 to 9-17
string arithmetic, 8-10
subprogram, 8-24
terminal control, 8-16

Index-8

Function (cont'd)
type of, 8-1
user-defined, 8-1, 8-17

FUNCTION statement, 11-2
format, 11-4

FUNCTION subprogram, 11-2
data type, 11-4
ending, 11-4
example of, 11-7
exiting, 11-4
naming, 11-4
parameter, 11-4

G

H
Handler

See Error handler
Help

EDT editor, 2-1
environment, 1-17
prompt, 1-17
topics, 1-17

HELP command, 1-17
Hyphen(-)

EXTRACT command, 1-16

I- and D-Space, 16-1 to 16-4
I/O

buffer, 12-6
device-specific, 17-18
matrix, 10-17
network, 17-41
RMS, 17-2
terminal-format file, 5-14
to disks, 17-34
to magnetic tape, 17-2, 17-19
to remote nodes, 17-41
to unit record devices, 17-19

right-justified, 13-14
run-time error, B-2
single-precision, C-12
special symbols,
strings, 13-2

13-6

undefined, 17-18
word-length integer,

FORMAT$ function, 8-8
FREE statement, 12-24

C-10
GET statement, 12-16 to 12-18
GETRFA function, 12-25
GOSUB statement, 6-17,11-2

%IDENT directive, 14-4
IDENTIFY command, 1-17
IF modifier, 6-1
IF statement

in immediate mode statements, 1-9
%IF-%THEN-%ELSE-%END %IF directive,

14-8,14-10
IF. . .THEN. . .ELSE statement, 6-10 to 6-11
Immediate mode, 1-8 to 1-9

examining variables in, 1-8
FOR statement in, 1-9
IF statement in, 1-9
invalid statements, 1-9
UNLESS statement in, 1-9
UNTIL statement in, 1-9
WHILE statement in, 1-9

%INCLUDE directive, 7-16,14-7
Indexed keys, 12-4
Initialization file

creating, 1-26
definition of, 1-26

Input, 5-1 to 5-8
from source program, 5-5 to 5-8
from terminal, 5-4
from terminal-format files, 5-4
interactive, 5-1
receiving, 5-1
string, 5-4

INPUT LINE statement, 5-4, 5-14
prompt, 5-4
with strings, 9-3

INPUT statement, 5-1 to 5-3, 5-14
prompt, 5-4
with strings, 9-3

INQUIRE command, 1-17
Instruction and data space

See I- and D-Space
INT function, 8-2
Integer

data type, 7-3
format, 13-3
output, 5-12
variables, 4-10

INTEGER data type, 4-6

INV function, 10-22
ITERATE statement, 6-15 to 6-16

K
Keypad mode editing, 2-1
KILL statement, 12-28

L
Label, 4-2
LEN function, 9-9
%LET directive, 14-8, 14-9
LET statement, 10-7, 10-18

dynamic strings, 9-2
string data, 9-6

Lexical constant, 14-9
assigning values, 14-8
creating, 14-8

Lexical expression, 14-8, 14-9
Lexical function

built-in, 14-9
Librarian Utility, 18-4
Library, 18-1 to 18-13

APR, 18-11
clustering, 18-11
creating, 18-4
default, 18-1
defining, 18-5
definition of, 18-1
DSKLIB command, 18-5
identifying need for, 18-3
Librarian Utility, 18-4
memory-resident, 1-13, 1-17, 18-1
object module, 1-15, 18-1, 18-3
ODL file, 18-5
OTS routines, 18-3
remote file access, 18-12
RMS, 18-7
RMS memory-resident, 18-8
RMS object module, 18-8
RMS ODL files, 18-9
selecting, 18-5, 18-6
thread names, 2-2
types of, 18-1

Index-9

environment, 1-2
error, 15-5
error handling, 15-11
generating, 1-22
in programs, 4-1
resequencing, 19-13
rules of use, 4-1
SEQUENCE command, 1-22
using, 1-2

Line numbers
included file, 14-7

Line terminator
accepting as input, 5-4

LINK command
/BASIC qualifier, 2-13
CMD file, 2-13
file specification, 2-13
format, 2-13
ODL file, 2-13
specifying, 2-13

LINPUT statement, 5-4, 5-14
prompt, 5-4
with strings, 9-3

LIST command, 1-18
%LIST directive, 14-5
Listing file

altering, 14-2
compiler directives, 14-2
controlling, 14-5
cross-reference, 14-6
Optimizer Utility, 19-5
paging, 14-4

Index-10

control variable, 6-4
index, 6-4

Loop block, 6-3
Loops
FOR . . . NEXT, 6-4 to 6-7
UNTIL . . .NEXT, 6-8
WHILE . . .NEXT, 6-7

LSET statement
concatenating strings, 9-2
dynamic strings, 9-2
string data, 9-7

M
Macro subprogram, 11-25, 11-30 to 11-45

building, 11-42
calling, 11-30
common area, 11-38
debugging, 3-1
error handling, 11-45, 15-4
example of, 11-37
map area, 11-38
parameter, 11-30
virtual array, 11-31

Magnetic tape files
opening, 17-22

Map, 11-12
area, 11-13
data type, 11-14
defining area, 7-15
initializing, 11-41
multiple, 7-12, 9-18
name, 11-14

Library (cont'd)
user-created, 18-1,
using, 18-5

18-3
Listing file (cont'd)

subtitle, 14-3
title, 14-2

LIBRARY command, 1-17
Line

version number, 14-4
LISTNH command, 1-18

continuing, 1-3
deleting, 1-15
displaying, 1-18

LOAD command,
LOCK command,
LOG10 function,

1-6,1-18
1-19
8-4

long, 1-3
Line mode, 1-8

line numbers in,
Line mode editing,
Line number

1-8
2-1

Logarithm, 8-4
Longword

format, C-10
LONGWORD data type, 4-6
Loop, 6-3 to 6-9

MAT INPUT statement, 10-13, 10-14
prompt, 10-13
subscripts, 10-13

MAT LINPUT statement, 10-15
MAT PRINT statement, 10-16

comma (,), 10-16
semicolon (;), 10-16

MAT READ statement, 10-12
MAT statement, 10-5, 10-10

array dimensions, 10-9
keywords, 10-10
subscripts, 10-11
subtracting elements of arrays, 10-20

Matrix, 10-1
addition, 10-20
arithmetic, 10-19
assignment, 10-20
determinant return, 10-23
functions, 10-19, 10-21 to 10-23
I/O functions, 10-17
inversion, 10-19, 10-22
multiplication, 10-20
operators, 10-19
subtraction, 10-20
transposition, 10-19, 10-22

MCR commands, xxi
Memory

clearing, 1-22
extending, 20-9
large tasks, 19-1
overlaying, 11-20
saving, 19-4

Mixed-mode expressions, 7-7
Mode

immediate, 1-8
line, 1-8

Modifiers
statement, 6-1 to 6-3

Module names, 4-3
MOVE statement, 12-6, 12-9 to 12-11

FILL formats, 7-13
Multiplication

array, 10-20

N
NAME. . . AS statement, 12-27
Native mode file, 12-1, 12-3
Negative field, 13-10
Network I/O, 17-41
NEW command, 1-19
%NOCROSS directive, 14-6
NOECHO function, 8-17
Nokeypad mode editing, 2-1
%NOLIST directive, 14-5
Nonprinting characters, 4-4
Notation

credit, 13-12
debit, 13-12

Null
character, 9-3
string, 9-3

NUM function, 10-17

Index-11

Map (cont'd)
numeric variable, 11-16
PSECT, 11-16

Memory-resident library, 18-1
clustering, 18-11
creating, 18-4

record buffer, 7-13
single, 7-10

default, 18-2
RMS, 18-7

storage, 11-15
string data, 9-18

MAP DYNAMIC statement, 7-17,
MAP statement, 7-10, 10-7

example of, 11-14
format, 11-14
overlaying array, 10-7
with subprograms, 7-14

12-7

RMS ODL file, 18-9
selecting, 18-2, 18-4

Message
compilation, 15-2
compile-time error, A-1 to A-53
error text, 15-6
run-time error, B-1 to B-32

MID$ function, 9-14

digits, 13-4
printing, 13-4
special symbols in, 13-6

Numeric data
interpreting with multiple maps, 7-13

O
Object module, 1-10

loading, 1-18
reducing size of, 19-1

Object module file, 2-13
Object module library, 18-3

advantages, 18-3
creating, 18-5
module names in, 4-3
RMS, 18-9
RMS ODL file, 18-9
selecting, 18-3, 18-5
types of, 18-3

Object Time System
See OTS routines

ODL file, 2-2
default, 1-19
editing, 11-23
generating, 2-12
modifying, 18-6
overlay structure, 11-20
RMS, 18-9, 18-10
subprogram, 11-20
user-created library, 18-6

ODLRMS command, 1-19
OLD command, 1-4, 1-20
ON ERROR GO BACK statement, 15-6,

15-9, 15-11
ON ERROR GOTO 0 statement, 15-10
ON ERROR GOTO statement, 15-3
ON. ..GOSUB . ..OTHERWISE statement,

6-18
ON. ..GOTO. . .OTHERWISE statement, 6-10

Index-12

BUCKETSIZE clause, 12-37
BUFFER clause, 12-39
clauses, 12-12, 12-37 to 12-46
CLUSTERSIZE clause, 12-39
CONNECT clause, 12-39
CONTIGUOUS clause, 12-40
DEFAULTNAME clause, 12-40
EXTENDSIZE clause, 12-41
FILESIZE clause, 12-41
FOR INPUT, 12-12
FOR OUTPUT, 12-12
MAP clause, 12-12
NOSPAN clause, 12-42
opening indexed files, 12-13
ORGANIZATION clause, 12-5,12-12,

12-28
RECORDSIZE clause, 12-12
RECORDTYPE clause, 12-28,12-42
specifying file characteristics, 12-12
TEMPORARY clause, 12-43
UNLOCK EXPLICIT clause, 12-24
USEROPEN clause, 12-43
WINDOWSIZE clause, 12-46

Operand, 4-12
promotion, 7-7

OPT command, 19-1
/[NO]LIST qualifier, 19-2
/[NO]OUTPUT qualifier, 19-2
/SEGMENT SIZE qualifier, 19-2

Optimizer Utility
dialogue, 19-3
error messages, 19-9
listing file, 19-5

OPTION statement, 1-14, 7-4
OTS routines

in library, 18-3
object module library, 18-5
Optimizer Utility, 19-1
thread name, 2-2

Output, 5-8 to 5-14
displaying, 5-8

NUM$ function,
NUM1$ function,
Number

decimal point,

8-8
8-9

13-5

Online documentation, 1-17
OPEN statement, 5-14, 12-12 to 12-13

ACCESS clause, 12-23
ALLOW clause, 12-23

Overlay description language file
See ODL file

Overlay structure
branches, 11-20
common area, 11-17
defining, 11-20
map area, 11-17
memory requirements, 11-22
ODL file, 11-20
root, 11-20

P
%PAGE directive, 14-4
Parameter

actual, 11-8
formal, 11-8
list, 8-18, 11-8
modifiable, 11-8
passing, 11-8
passing mechanisms,
types of, 11-8
unmodifiable, 11-9
virtual array, 11-12

PLACE$ function, 8-11,
POS function, 9-10
Precision

string arithmetic, 8-11
Predefined constants

for array elements, 10-19
precision, 5-13

PRINT USING notation
credit, 13-12

PRINT USING statement, 13-1 to 13-18
asterisk (*), 13-8
blank-if-zero, 13-12
centered output, 13-15
comma in, 13-7
currency symbol, 13-9
debit, 13-12
E format, 13-10
error conditions, 13-17
extended field, 13-15
leading zeros, 13-11
left justified output, 13-14
negative field, 13-10

aborting, 14-9
appending, 1-13
array sharing, 10-6
branch, 11-20

Index-13

BEL, 4-8 comments, 4-4
BS, 4-8 compiling, 1-14, 2-2
CR,
DEL,
ESC,

4-8
4-8
4-8

conditionals, 14-10, 15-3
continuing lines, 4-2
control, 6-1 to 6-21, 15-3

FF, 4-8 controlling execution of, 14-8
HT, 4-8 creating, 1-2, 1-3 to 1-4, 2-1
LF, 4-8 creating variables, 4-5

Output (cont'd)
floating-point numbers, 5-13

Predefined constants (cont'd)
PI, 4-8

format for numbers, 5-12 SI, 4-8
formatting, 5-9, 13-1 SO, 4-8
left justified, 13-14 SP, 4-8
number format, 5-12 VT, 4-8
right justified, 13-14
string format, 5-12

%PRINT directive, 14-10
PRINT statement, 5-8, 5-14

quotation mark, 13-15
right justified output, 13-14

11-25
string, 13-15
strings, 13-12

Print zones, 5-9 to 5-12
PROD$ function, 8-11, 8-14

8-13
Program

See also Subprogram

editing, 2-1
elements of, 4-1
error handling in, 15-2
executing, 1-4, 2-14
execution, 6-19
identifying errors in, 15-4
including file in, 14-7
input, 5-1
inserting message in, 14-10
labels in, 4-2
line, 1-3
line numbers in, 4-1
linking, 2-12 to 2-14
listing, 1-18, 14-2
main, 11-2, 11-7
memory-resident library, 18-2
module, 11-1
multi-unit, 11-1
naming, 1-19, 4-3
no line numbers in, 4-1
non-BASIC, 11-25
optimization, 20-1 to 20-9
optimizing, 19-1
output, 5-1
overlay structure, 11-21
overlaying, 11-20
PSECT, 11-13
renaming, 1-20
replacing, 1-20
resequencing lines, 19-13

specifying data types, 4-5
statements in, 4-3

Index-14

PROGRAM statement, 4-3
Promotion, 7-7
Prompt

question mark, 5-4
PSECT, 2-2, 11-13, 11-38, 19-1

common, 11-16
map, 11-16
size, 11-16

PUT statement, 12-18 to 12-20
sequential, 12-18

Q
QUO$ function, 8-11
Quotation mark

double, 5-12
PRINT statement,
single, 5-12

5-12

R
Radix-50

See RAD-50
Random access, 12-4
Random number generator, 8-5
RANDOMIZE statement, 8-6

context, 12-5
controlling access, 12-23
current, 12-5

RCTRLC function, 8-16
READ statement, 5-6 to 5-7
REAL data type,
Record

4-6

Program (cont'd) Program (cont'd)
Ctrl/C, 15-7 subtitle, 14-3

threaded code, 19-5
title, 14-2
transporting, 20-1
units, 4-3
version number, 14-4

debugging,
definition of,
developing,
displaying,

3-1
4-1

2-1 to 2-14
1-18

documenting, 4-4

root, 11-20 access, 12-5
running, 1-20, 2-14 buffer, 7-13, 12-6
section, 11-13 by key access, 12-5

by RFA access, 12-5
channel number, 12-37
character transfer, 12-36

segment size,
segmentation,
sharing code,

19-2
11-1
14-8

Record (cont'd)
deleting, 12-20
file address, 12-24
fixed-length, 12-2
format, 12-2 to 12-3
locating, 12-15
locked, 12-18
locking, 12-24
MOVE statement, 12-9
moving variables, 12-9
next, 12-5
operations, 12-11
order, 12-5
pointer, 12-5

after file location, 12-15
after file retrieval, 12-16
after update, 12-22
resetting, 12-26

random access, 12-5, 12-16
reading, 12-16
retrieving, 12-16
RFA access, 12-24
sequential access, 12-5
stream format, 12-3
unlocking, 12-24
updating, 12-21, 12-24
variable-length, 12-2
variables, 12-9
writing, 12-18

Record File Address (RFA), 12-24
Record Management Services

See RMS
RECOUNT function, 12-36
Relative file, 12-4
REM statement, 4-5
REMAP statement, 7-17, 12-7

FILL formats, 7-13
Remote files

accessing, 17-41
RENAME command, 1-20
REPLACE command, 1-7,1-20
Resequencer Utility, 19-13

command file, 19-15
commands, 19-15
error messages, 19-16

RESTORE # statement, 11-17
RESTORE statement, 5-7, 12-26
RESUME statement, 15-6, 15-11
Retrieval pointers, 12-46
RETURN statement, 6-17
RFA data type, 4-6
RMS, 17-1

libraries, 18-7
ODL file, 18-9
using, 12-1

RMSRES command, 18-8
RND function, 8-5
Root, 11-20

PRINT statement, 5-10
SEQUENCE command, 1-22
Sequential file, 12-3
SET command, 1-10, 1-23

/CLUSTER qualifier, 18-11

Index-15

Round-off errors
overcoming with SCALE command, 1-22

Row, 10-16
RSET statement

concatenating strings, 9-2
dynamic strings, 9-2
string data,

RUN command,
Run-time error,

9-7
1-4, 1-10, 1-20, 2-14
15-1

cause of, 2-14
list of, B-1 to B-32

RUNNH command, 1-4,1-20

S
SAVE command, 1-21
%SBTTL directive, 14-3
SCALE command, 1-22
SCRATCH command, 1-22
SCRATCH statement, 12-26
SEG$ function, 8-19, 9-12
Segment size, 19-2
SELECT block, 6-13
SELECT. . . CASE statement, 6-13 to 6-15
Semicolon (;)

MAT PRINT statement, 10-16

SET NO PROMPT statement
prompt, 5-5

SET VARIANT command, 14-9
SET [NO] PROMPT statement, 5-4 to 5-5,

10-13
SHOW command, 1-10, 1-23
SIN function, 8-3
Single-precision

format, 5-13, C-12
SLEEP statement, 6-19
SPACE$ function, 9-15
Statement

declarative, 4-7
Statement modifiers, 6-1 to 6-3

FOR, 6-1
IF, 6-1
UNLESS, 6-1
UNTIL, 6-1
WHILE, 6-1

Static storage, 4-7
allocating, 7-9
dynamic mapping, 7-17

STATUS function, 12-37
STEP clause, 6-4
STOP statement, 1-8, 6-19, 6-20
Storage

dynamic, 4-7, 20-2
redefining, 7-16
static, 4-7, 7-17, 20-2

Stream record, 12-3
String

format, 13-1, C-14
format field, 13-13, 13-15
functions, 9-9 to 9-17
handling, 9-1 to 9-20
left-justified, 13-14
literal, 5-9

Index-16

String (cont'd)
manipulating, 9-9, 9-18
manipulating with multiple maps, 7-12
mapping storage, 9-18
numeric, 8-8
output, 5-12
printing, 13-12
right-justified, 13-14
storage, 9-18
variable, 4-10, 9-1
virtual array, 9-1
virtual arrays, 9-5

STRING data type, 4-6
STRING$ function, 9-15
SUB statement, 11-2

format, 11-3
SUB subprogram, 11-2

example of, 11-7
Subprogram

array, 11-12
array sharing, 10-6
calling, 11-2, 11-6
common, 11-12
controlling execution, 14-8
creating, 11-1
Ctrl/C, 15-7
data type, 11-5
debugging, 3-1
declaring, 11-5
definition of, 11-1
ending, 11-4
environment, 1-6
error handling, 15-4, 15-6, 15-8
error handling in, 15-2
executing, 11-17
exiting, 11-4
file access, 11-17
function, 8-24
FUNCTION statement, 11-2
invoking, 11-6, 11-23
linking, 11-18
macro, 11-25
map, 11-12
name, 11-3, 11-6
non-BASIC, 11-24 to 11-45

arithmetic functions, 8-10
assigning data, 9-5
centered, 13-15
constant, 9-1
data formatting, 13-1
definition of, 9-1
dynamic, 9-1
fixed-length, 9-1, 9-4

Subprogram (cont'd)
overlay structure, 11-21
overlaying, 11-17
parameter, 11-3, 11-9
parameter passing, 11-8
sharing code, 14-8
sharing data, 5-7, 11-12
SUB statement, 11-2
types of, 11-2

Subroutine, 11-2
definition of, 6-16
entry point, 6-17
executing, 6-16
local, 6-16

Subscripted variables, 4-9
Subscripts, 4-10

in MAT READ statement, 10-12
Subtraction

array, 10-20
SUM$ function, 8-11

T
TAN function, 8-3
Tape unit

allocating for device-specific I/O, 17-20
Tapes

LINK command, 2-13
ODL file, 1-13, 2-2
RMS library, 18-8
RUN $TKB, 2-12
subprogram, 11-18
task image file, 2-12
task overlay, 11-23

Task Builder (cont'd)
TKB command, 2-12

Terminal control
functions, 8-16

Terminal-format file, 12-3, 12-26
closing, 5-14
I/O, 5-14
opening, 5-14
writing records to, 5-14

THEN clause, 6-10
Thread, 2-2, 19-1
TIME function, 8-15
TIME$ function, 8-15
%TITLE directive, 14-2
TKB command, 2-12

CMD file, 2-12
ODL file, 2-12

TRM$ function, 9-16
TRN function, 10-22

Resequencer, 19-13

V
VAL function, 8-10
VAL% function, 8-10
Variable

array, 4-9, 4-10, 12-9
changing value of, 14-8
control, 6-4
data type, 7-5
declaring, 4-5

Index-17

memory requirements, 11-22
overlaying, 11-20

Task Builder
CMD file, 1-13, 2-2
function, 2-2
invoking, 2-12, 2-13

allocating, 17-2
Task

executing large, 19-1
extending, 16-1
I- and D-Space, 16-1
image file, 2-12

U
UNLESS modifier, 6-1
UNLESS statement

in immediate mode statements, 1-9
UNLOCK statement, 12-24
UNSAVE command, 1-25
UNTIL modifier, 6-1
UNTIL statement

in immediate mode statements, 1-9
UNTIL . . . NEXT loops, 6-8
UPDATE statement, 12-21 to 12-23
User-created library,
Utility

18-3

Variable (cont'd)
FILL, 12-9
floating-point, 4-9
initialization, 1-9, 4-11, 7-10, 15-12,

20-3
integer, 4-10
loop, 6-4
names, 4-9
record, 12-9
redefining, 7-16
scalar, 12-9
string, 4-10, 9-1
subscripted, 4-9, 4-10

Variable-length record, 12-2
%VARIANT directive, 14-8, 14-9
Vector, 10-1
Virtual array

macro subprogram, 11-31
string, 9-1, 9-5

Virtual array file, 12-5

WAIT statement, 6-19, 6-20
Warning error, 15-2, A-1
WHILE modifier, 6-1
WHILE statement

in immediate mode statements, 1-9
WHILE . . . NEXT loops, 6-7
Word

array descriptor, C-19
boundary, 11-16
format, C-10

WORD data type, 4-6

Z

creating, 12-14

W

Zero
division by, 15-3

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order .

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825) .

Telephone and Direct Mail Orders

'For internal orders, you must submit an Internal Software Order Form (EN-01740-07) .

Your Location Call Contact

Continental USA, 800-DIGITAL Digital Equipment Corporation
Alaska, or Hawaii P.O. Box CS2008

Nashua, New Hampshire 03061
Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-267-6215 Digital Equipment of Canada
Attn: DECdirect Operations KAO2/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International Local Digital subsidiary or
approved distributor

Internal' USASSB Order Processing - WMO/E15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

Reader's Comments

Please use this postage-paid form to comment on this manual . If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form .
Thank you for your assistance .

BASIC-PLUS-2
User's Guide

AA-JP35B-TK

I rate this manual's :
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

I would like to see more/less

Excellent

El
El
0
0
El
0
0
0

Good
El
El
El
El
El
0
0
0

Fair
El
El
El
El
0
0
0
0

Poor
El
El
El
El
El
El
0
El

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual :
Page

	

Description

Additional comments or suggestions to improve this manual :

I am using Version of the software this manual describes .
Name/Title Dept .
Company Date
Mailing Address

Phone

Do Not Tear - Fold Here and Tape	

da9BD aa
TM

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS .

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Information Products
NUO1-1/G10
55 NORTHEASTERN BLVD
NASHUA, NH 03062-9934

No Postage
Necessary

If Mailed
in the

United States

Do Not Tear - Fold Here	

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209
	page 210
	page 211
	page 212
	page 213
	page 214
	page 215
	page 216
	page 217
	page 218
	page 219
	page 220
	page 221
	page 222
	page 223
	page 224
	page 225
	page 226
	page 227
	page 228
	page 229
	page 230
	page 231
	page 232
	page 233
	page 234
	page 235
	page 236
	page 237
	page 238
	page 239
	page 240
	page 241
	page 242
	page 243
	page 244
	page 245
	page 246
	page 247
	page 248
	page 249
	page 250
	page 251
	page 252
	page 253
	page 254
	page 255
	page 256
	page 257
	page 258
	page 259
	page 260
	bp2v27um_b.pdf
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209
	page 210
	page 211
	page 212
	page 213
	page 214
	page 215
	page 216
	page 217
	page 218
	page 219
	page 220
	page 221
	page 222
	page 223
	page 224
	page 225
	page 226
	page 227
	page 228
	page 229
	page 230
	page 231
	page 232
	page 233
	page 234
	page 235
	page 236
	page 237
	page 238
	page 239
	page 240
	page 241
	page 242
	page 243
	page 244
	page 245
	page 246
	page 247
	page 248
	page 249
	page 250
	page 251
	page 252
	page 253
	page 254
	page 255
	page 256
	page 257
	page 258
	page 259
	page 260
	page 261
	page 262
	page 263
	page 264
	page 265
	page 266
	page 267
	page 268
	page 269
	page 270
	page 271
	page 272
	page 273
	page 274
	page 275
	page 276
	page 277
	page 278
	page 279
	page 280
	page 281
	page 282
	page 283
	page 284
	page 285
	page 286
	page 287
	page 288
	page 289
	page 290
	page 291
	page 292
	page 293
	page 294
	page 295
	page 296
	page 297
	page 298
	page 299
	page 300
	page 301
	page 302
	page 303
	page 304
	page 305
	page 306
	page 307
	page 308
	page 309
	page 310
	page 311
	page 312
	page 313
	page 314
	page 315
	page 316
	page 317
	page 318
	page 319
	page 320

