
RAXC0 lIAI/VllS Perforrance llanagerent Sed.nr

Sectlon WI - Prooraninq lectnlques

lhia sestlon discusseg progmDi.ng tachniquea rhieh
rriIl regult in subgtantlal perfonance irprwelent.
It is trardly erhaustlve; ccnon senae ard elelentary
ratters are not irrcluded (e.9.,

BoB*8, notA=B**?.0)

Fortran ls used as th€ delonatratlon language. ltany of
theae pointa apply to other languagee' though the
prograner frequently doeg not have as nuch control
cnrer thel. Fortran ig the language of cholce tor
serioug developuent rork under UG rdren done by Pro-
feegionsl progranersr

- it tendg to be portable

- it has hlgh level constnrctg, for tdten thelr use
ig tolerable

- it ls a lon level language, ro lt can be con-
trolled to operate efficiently

- erong "gtandatd" languages, none 1g Fre pro-
ductive for the gkilled prograer ard rcst are
iorse (BASIC and CIIilL in partiorlar, lncluding
uge for IP appli.catioag)

- rcst VllS servicea can be accessed easily

- it !,g aa cqlete a language as can be fqrd

- lt terds to be rore flerlble than fufl hlgh level
larguages (CO8OL' BASIC, PUI)

- it promteg atnrctured code, but aIlong tleviations
fror atrict stnretural nrleg rdten such tre
apprqriate

- {ata stnrctures are urder the prograrer'a cotts
trol, a lrgt for good vlrtual perforrance

- the \tllS capiler producea relatively good obJect
code.

lhe ner lf,ls V4 Fortran coepLler has an lrproved optlr
lser r*dch nill produce lrproved code tn nry case!
(on average, expect 5t). llorever, there trill bc caaea

Copyrlght RAICO,Inc. 1986 llrpllcatJ.on ln any tnner prohlblted.

----llotes

Page 7.1

RA,IG) VAX/lrl,El Parfotrance llanagereat Sed.nar

rdpre lt non't, ard ln som cases th€ 1I3 coryllcr 1g
better (particuarly for coryler loglc flans as oppoaed
to loopirE ard irdering). Buga have been noted in its
co4iled ertput rith the only rcrkar.ourd beinS to
corpile rith the /ll0OgfIllIZE qualifier. Ihis reaultg
ln code drich perfotrs terrlbly.

A njor prograring concern ls to reduce the arcunt of
tstrrry USedl

Use naller structurea rdten possible - Il2, BIIE
-- if values to be stored rtill fit. For one byte
strlngs, use gY[E, not OIARACIEI'II. hceptionsr

- if values nill be used ag array lrderes' uae
rr4

- if a locatlon ls frequently tested as a lo-
gical value, uae I€GISLT{, but not if th€
value ig frequently get and reset ard ooly
tested in one or tno plaees or lnfrequently.

tlake aure ru}ti.-dinengional array filling ard
referencing is done prilarily alorry the lnnerret
irdex. Avold data gtmctureg drich are fllled in
a scattered, non-cluetered pattern.

Uee the nen record definltion facillty to create
tight table foruats for tables nith sultiple data
types. Blelents tdrlch are used to rake referenc-
ing deci.gione should be aeparated into parallel
tableg.

Keep all elerente referenced by a partlcular nou-
tine or prograr phaae in a physically cmpact
D€rcry area. Organlze coton blockg carefull.y to
acheive thte. lhLg technique also alda debugging.

Erecution speed 1g increaaed if code length 1g
shortened:

Use logical tests r*rerever poaaihle tnsteld of
zerolrnn-zero flaga. Bit flag liats are helptul'
hrt don't use ttp iatrl.nsic functlqu ISHEI,
ISiEf,, Ef,ESI, IBCIA or ISIIFFC as they are lryLe-

Coprrright RAXCl3,Inc. 1986 Duplicatlon ln any ranner prohlbited.

---f,otea

Page 7.2

RAX$ VAX/lrtG Perforrance llanagerent Serioar

xnted by actual gubroutine calls, rpt lrline
code. User

IF (ELAG/4) IIIEI
instead of

IF (BIESI(EIAG,Z)) IHEII
(but be careful of negatlve nalues).

Keep all frequently accessed scalara ard stll
arrays rithin L27 bylea of the gtart of a comn
block or $IICAL. To control placemnt place varl-
ableg in erplicitly organized cmn blockg ard
use the c:oss-reference liating to verify offsets.
lhis allona one byte operard offaetg instetd of 2
or 4.

l{inieize argurent listg on gubroutine calle ercept
rdreat:

- the actual argunnts are actually different
variables fror call to call

- a diaenslon ean be cut ont of array referenc-
ing (ie., ttp gubroutine conflneg itself to
*ork on only one vector or plane of an array.)
llote tlnt in sG eaaes t}te corpller ray rec-
ogrdze this ard optirize for 1t.

Collect eubroutines norrally called during the
sa"re phase of procesring, but not calllng each
otlnr, into one routlne uelng EIIIPY gtateaenta.
Avoid nrltl-purpoae entry polnte rdrere a purporc
selectlon variable ls paased ar !n argnlent. Ure
aeparate entry pointa for each function.

For ereeutlon speed in general:

Avoid ghort subroutines ard statelent functlons
that ron't be called ln line. (See page I-9,
Fortran User'a Rrlde.) A subroutlne call rrd
retura requires a rinilur of 25 ricrogecords
(78O). Ilrpllcate code r$ere necessary.

Be careful of rultiple elerent "IF tests. lhe
onject code produced by Fortran erraluates thel
frn the last elcnt to the f1rgt, except *tere
ttrey are dlfferent levels of ccplerity, ln *rictl

Copyrlght RAXCO,Inc. 1.986 lltpllcatlon ln any Enner prohlblted.

----l$otes

Page 7.3

RAXS VAI/\tllS Perforrance llanag*nt Seri.nar

caae the slrplest are evaluated flrst. lhls 1r
eontrary to AIISI rtandards ard natural erpecta-
tions.

lable searches are nonally a rajor user of cot
pute tlre resourcet. Adapt techniguea drich take
advantage of natural data or reference orderlng.
llo single "hi tech' gearch routine is begt for aLL
case8. Sort data erternally if it reduceg
aearching.

Sirple string to nurertc cornrerslons (or nureric
to atringl should be done directly or nith th€
library routlneg (OtS$Cllll s_rx). Ilo not use
Fortran lnternal reada ard rriteg.

Avold use of T.IBSGEI_UI, as 1t ls very alor.
?here is no procecslng cost tf large ar?ay8 are
declared ln the code but not used durlng executj.on
(aasurinE the portion that is used ta effecttvely
clustered). Calculating addresgeg at nrn tire can
be very tire conauning.

Avoid dynanic storage declarations ln any fon.
Turn off bourde checklng for production operatlon.

Avoid tortured code constnrctions to adhere to the
'n[es" of stmctured progranlng (guch ag 'never"
ueing a GO lO.) lhe real norld has choaen not to
confom to the riqld gtructure acadartclang nqld
ltke it to have. As a guidelLne, atmctured pro-
graring 18 ueeful; as a religioo, lt ls
debilitating.

Avoid deaigns ddch call for sub-process creatlon.
(lhe EL conard 'SPAlll' should be outlaned frc
general u8age.) Sub-procegs creatlon ard rany
fong of inter-proceas conrnication rre very
expenslve ard rarely neeeaslry. Utder lJllS (ard
easiLy accesgible 1n Fortran) are auy rnlber of
features nhich nake parallel proceasing logic very
easy to iryl*nt rithin a aingle process.

If yor nrst hsve rultiple proc€laeE, lnter-process
control ard cmrnlcatLon slpuld be hldled via

----llotes

Copyrlght RAICO,Inc, 1.985 Dupllcatlon 1n any rrnner prohlblted. Page 7.4

RAXCO VN(/lRGi Perforraace llanageeent Sed.nar

CEF'8, ASI's ad global areaa. Ihe Lock ranager
ard railborer ghould be avoided.

EL la inefficient -- retrlte frequently- erecuted
routineg in Fortran. Htren IE, is uaed' elirinate
coo"enta, ercept at the erd of the file after a
$EXI3 line. lllnirize € procedure references
Erge the cnards ln. Avoid repetitive ca1lg to
tlre gan functl.on. Eq.r, don't do

$IEI,ETG A.A;
SDTI.EIE B.B;

rattrer
SDEX.EIE A.l;,8.8;

If yor lust use Fortran I/O:

Avoid fornts (ercept "(A)" or '(Q,A)") t*terever
posslble. Of courle, for report generatlon thls
high level facllity ls invaluable ard rculd only
be replaced in intenaive, repetitlve aLtuattons,
and then rith direct calla to QIO.

Specify RECORIIIYPE='EfXED' rdrenever poesible.
llhen doing unforratted I/O, tf it can't be fired,
apecify 'VASIIAEII.E'. Use the default for unforrat-
ted only ntren doing large "durpa' of data in inge
fora.

Ibta "Iists" ln an I/O staterent should ahnye
consiet of exactly one variable' preferably a
charcter varlable. hplled do lists Bre as bad ag
liata of variableg.

uAcR0

lhe Fortran coryller 1g good, but replacing a
stall conpute lntenalve gection of code rith neLI
nritten lilacro can often cut erecutlon tires bI
50t.

Use non-gharahle code for raxiru speed -- place
Local data 1n the sar€ Psect as ths code (rake lt
nritable) ntthin 32000 bytes, or' preferably, L?7
bytea of r*pre tt rrfll be used. lhig allors one

Copyright RAXC0,Inc, 1985 llrpl:lcatlon ln any tanner prolrlblted.

-----Notes

Page 7.5

RAXS VAX/Vtfi Perforrance l{anageaent Serlnar

or tno byte operard offsets rlthout tylng uP Pre-
sious registers xlth bage addresses.

Itrren using character instructlong, be Bnare of the
values left in registera 0 throtgh 5 after in-
struction corpletion. lhey are $ery often useful,

Avoid CAIJ€ and CALLS calls to subprogral aegreents
-- uae BSBB, BSEII or JSB rhenever posslble. Avoid
POPR ard PUSI{R if pocaible. I.e., use reglstere
conaistantly.

Freguent calls to syater servicea gtpuld not uae
the racros -- defi.ne the argr.rrent List explleitly
(ard locally, lf poasible) ard initi.allze lnvar-
iant argunente at coryJ-le tire.

Explore the VAX lngtnrction get ard addreaslng
mdes and use thet. ttrere is exceptional Porer
there Hhictr hlgh 1evel languages just can't take
advantage of.

-----llotes

Copyrlght RAX@,Inc. 1986 Dupllcatlon ln any rarcrer prohlblted. Page 7.5

