This document expresses some thoughts which have been rolling around my mind since 1980 when I rekindled my interest in biology. At that time, I was a computer technologist who had recently decided that a career in software design might offer more stability than one in hardware maintenance. That same year I stumbled upon "The Eighth Day of Creation" in a Toronto book store when something clicked in my head. This web-page will be successful only if I can light a similar spark in at least one other person. Enjoy!
Edit History | What |
---|---|
1998-01-23 | original web page. Be sure to visit the first page at: genes as technology #1 |
2003-08-27 | added my side of some email correspondence |
2004-10-31 | added links to https://en.wikipedia.org (an open-source encyclopedia) |
+--- bit names (a.k.a. tack names | +- data bits (for one written byte) 0 0 1 1 2 0 3 1 4 0 5 1 6 0 7 1 P 1 (in this example P=1 for odd parity)
0 01...0x 1 11...1x 2 00...0x 3 10...1x 4 01...0x 5 11...1x 6 00...1x 7 10...1x P 11...0x !! !+- Block Check Character (x = 0 or 1) !! +-- Data character #1023 !+------ Data character #1 +------- Data character #0
BCC Shift Register Logic ======================== notes: CRC-16 polynomial = x^16 + x^15 + x^2 + 1 : x = XOR +------+-----------------+-----+ data feedback line (feedback operation before each shift) | | | ^ v v v | +->FE->x->DCBA987654321->x->0->x<-- data input (via shift, LSB first)
Suffice it to say that enzymes exist which step along DNA looking for incomplete base pairs (caused by ionizing radiation, cosmic particles, environmental toxins, etc.) and can repair the damage. However, if DNA damage occurs during cell division the damage is usually copied (blind) which may cause one of the following events:
More to follow...
Sent: 2003-08-27
First off, the ribosome "is" the CPU (but perhaps microprocessor would be more accurate) as far as protein synthesis is
concerned. As far as I can tell, only certain portions of DNA are enabled at any one time (when they are unwound) and then
transcription enzymes read segments of the enabled DNA copying them into messenger RNA (mRNA) segments. The ribosomes read mRNA
and then translate each triple base sequence into a single amino acid. At this point, one must wonder what is going on here since
amino acids are the fundamental building blocks of proteins. Enzymes are simple proteins so they "might" be mediating the whole
program (possibly enabling a subroutine on some other DNA sequence not yet unwound; possibly sending a signal to windup the DNA
sequence just transcribed; but who knows because this is just conjecture on my part? It's just the way that I might have done it
if I was designing the thing from scratch). Everyone only thinks of muscle tissue when protein is mentioned but it is the basis
for everything from digestive enzymes, neurotransmitters, some long chain hormones (not steroids but maybe longer chain stuff like
insulin etc.) so you can see how certain hormones might just express portions of DNA which then might trigger some kind of
reaction.
As I understand it, the biology community thinks of the whole genome as a set of books (like encyclopedias). The chromosomes are
the books and the genes are the chapters. I don't know if genes are one single code sequence or a collection of similar
subroutines but I'd bet on the latter idea.
One interesting idea comes from something known as a Dermoid
tumor. When these tumors are opened doctors sometimes find: whole teeth, hair, finger nails, whole fingers, etc. Now we know that
healthy cells are always communicating their existence to there neighbors while tumor cells just do their own thing. Healthy cells
exchange messages like these "we are liver cells" which probably keeps the "liver cell" program reinforced while all other
programs are disabled. In the case of Dermoid tumors,
something must be happening that causes the wrong program to become enabled and so a tooth starts growing where it shouldn't.
Sent: 2003-08-28
You mentioned the Human Genome Project and you are right about the "bits" part. Most people don't know that a new
informal project, called the Human Proteome Project, will attempt to sequence all known proteins in terms of amino acids
(as well as their physical structure in three dimensions). Once you know which proteins have which sequence, you can go back to
the Human Genome database to annotate it (e.g. this DNA sequence produces that protein structure). This is very similar to what
you would do when hacking a binary program (like Windows) then working backwards to first produce assembly language then annotate
further until you have the original source code instructions (e.g. C/C++)
You don't need to be a genius to recognize that biological sciences lurched forward about the same time when computer systems
dropped in price while becoming much more powerful. The same thing happened in space sciences: apparently the amount of
information coming from the Hubble Space Telescope is an embarrassment of new knowledge. Before Hubble, if you would have given a
lecture on dark energy or dark matter (aside from missing matter) you would have been laughed out of the profession.
The "Folding@Home" project (as well as other similar projects based
upon BOINC) is a new twist on parallel computing individual PCs are doing molecular analysis for new drugs and diseases.